blob: acf695a1e9c7bae2d6d25a84e236e69271f7cf11 [file] [log] [blame]
//==- UninitializedValues.cpp - Find Uninitialized Values -------*- C++ --*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements uninitialized values analysis for source-level CFGs.
//
//===----------------------------------------------------------------------===//
#include <utility>
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/PackedVector.h"
#include "llvm/ADT/DenseMap.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/AnalysisContext.h"
#include "clang/Analysis/Visitors/CFGRecStmtDeclVisitor.h"
#include "clang/Analysis/Analyses/UninitializedValues.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace clang;
#define DEBUG_LOGGING 0
static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
!vd->isExceptionVariable() &&
vd->getDeclContext() == dc) {
QualType ty = vd->getType();
return ty->isScalarType() || ty->isVectorType();
}
return false;
}
//------------------------------------------------------------------------====//
// DeclToIndex: a mapping from Decls we track to value indices.
//====------------------------------------------------------------------------//
namespace {
class DeclToIndex {
llvm::DenseMap<const VarDecl *, unsigned> map;
public:
DeclToIndex() {}
/// Compute the actual mapping from declarations to bits.
void computeMap(const DeclContext &dc);
/// Return the number of declarations in the map.
unsigned size() const { return map.size(); }
/// Returns the bit vector index for a given declaration.
llvm::Optional<unsigned> getValueIndex(const VarDecl *d) const;
};
}
void DeclToIndex::computeMap(const DeclContext &dc) {
unsigned count = 0;
DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
E(dc.decls_end());
for ( ; I != E; ++I) {
const VarDecl *vd = *I;
if (isTrackedVar(vd, &dc))
map[vd] = count++;
}
}
llvm::Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
if (I == map.end())
return llvm::Optional<unsigned>();
return I->second;
}
//------------------------------------------------------------------------====//
// CFGBlockValues: dataflow values for CFG blocks.
//====------------------------------------------------------------------------//
// These values are defined in such a way that a merge can be done using
// a bitwise OR.
enum Value { Unknown = 0x0, /* 00 */
Initialized = 0x1, /* 01 */
Uninitialized = 0x2, /* 10 */
MayUninitialized = 0x3 /* 11 */ };
static bool isUninitialized(const Value v) {
return v >= Uninitialized;
}
static bool isAlwaysUninit(const Value v) {
return v == Uninitialized;
}
namespace {
typedef llvm::PackedVector<Value, 2> ValueVector;
typedef std::pair<ValueVector *, ValueVector *> BVPair;
class CFGBlockValues {
const CFG &cfg;
BVPair *vals;
ValueVector scratch;
DeclToIndex declToIndex;
ValueVector &lazyCreate(ValueVector *&bv);
public:
CFGBlockValues(const CFG &cfg);
~CFGBlockValues();
unsigned getNumEntries() const { return declToIndex.size(); }
void computeSetOfDeclarations(const DeclContext &dc);
ValueVector &getValueVector(const CFGBlock *block,
const CFGBlock *dstBlock);
BVPair &getValueVectors(const CFGBlock *block, bool shouldLazyCreate);
void setAllScratchValues(Value V);
void mergeIntoScratch(ValueVector const &source, bool isFirst);
bool updateValueVectorWithScratch(const CFGBlock *block);
bool updateValueVectors(const CFGBlock *block, const BVPair &newVals);
bool hasNoDeclarations() const {
return declToIndex.size() == 0;
}
void resetScratch();
ValueVector &getScratch() { return scratch; }
ValueVector::reference operator[](const VarDecl *vd);
Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
const VarDecl *vd) {
const llvm::Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
assert(idx.hasValue());
return getValueVector(block, dstBlock)[idx.getValue()];
}
};
} // end anonymous namespace
CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {
unsigned n = cfg.getNumBlockIDs();
if (!n)
return;
vals = new std::pair<ValueVector*, ValueVector*>[n];
memset((void*)vals, 0, sizeof(*vals) * n);
}
CFGBlockValues::~CFGBlockValues() {
unsigned n = cfg.getNumBlockIDs();
if (n == 0)
return;
for (unsigned i = 0; i < n; ++i) {
delete vals[i].first;
delete vals[i].second;
}
delete [] vals;
}
void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
declToIndex.computeMap(dc);
scratch.resize(declToIndex.size());
}
ValueVector &CFGBlockValues::lazyCreate(ValueVector *&bv) {
if (!bv)
bv = new ValueVector(declToIndex.size());
return *bv;
}
/// This function pattern matches for a '&&' or '||' that appears at
/// the beginning of a CFGBlock that also (1) has a terminator and
/// (2) has no other elements. If such an expression is found, it is returned.
static const BinaryOperator *getLogicalOperatorInChain(const CFGBlock *block) {
if (block->empty())
return 0;
CFGElement front = block->front();
const CFGStmt *cstmt = front.getAs<CFGStmt>();
if (!cstmt)
return 0;
const BinaryOperator *b = dyn_cast_or_null<BinaryOperator>(cstmt->getStmt());
if (!b || !b->isLogicalOp())
return 0;
if (block->pred_size() == 2) {
if (block->getTerminatorCondition() == b) {
if (block->succ_size() == 2)
return b;
}
else if (block->size() == 1)
return b;
}
return 0;
}
ValueVector &CFGBlockValues::getValueVector(const CFGBlock *block,
const CFGBlock *dstBlock) {
unsigned idx = block->getBlockID();
if (dstBlock && getLogicalOperatorInChain(block)) {
if (*block->succ_begin() == dstBlock)
return lazyCreate(vals[idx].first);
assert(*(block->succ_begin()+1) == dstBlock);
return lazyCreate(vals[idx].second);
}
assert(vals[idx].second == 0);
return lazyCreate(vals[idx].first);
}
BVPair &CFGBlockValues::getValueVectors(const clang::CFGBlock *block,
bool shouldLazyCreate) {
unsigned idx = block->getBlockID();
lazyCreate(vals[idx].first);
if (shouldLazyCreate)
lazyCreate(vals[idx].second);
return vals[idx];
}
#if DEBUG_LOGGING
static void printVector(const CFGBlock *block, ValueVector &bv,
unsigned num) {
llvm::errs() << block->getBlockID() << " :";
for (unsigned i = 0; i < bv.size(); ++i) {
llvm::errs() << ' ' << bv[i];
}
llvm::errs() << " : " << num << '\n';
}
#endif
void CFGBlockValues::setAllScratchValues(Value V) {
for (unsigned I = 0, E = scratch.size(); I != E; ++I)
scratch[I] = V;
}
void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
bool isFirst) {
if (isFirst)
scratch = source;
else
scratch |= source;
}
bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
ValueVector &dst = getValueVector(block, 0);
bool changed = (dst != scratch);
if (changed)
dst = scratch;
#if DEBUG_LOGGING
printVector(block, scratch, 0);
#endif
return changed;
}
bool CFGBlockValues::updateValueVectors(const CFGBlock *block,
const BVPair &newVals) {
BVPair &vals = getValueVectors(block, true);
bool changed = *newVals.first != *vals.first ||
*newVals.second != *vals.second;
*vals.first = *newVals.first;
*vals.second = *newVals.second;
#if DEBUG_LOGGING
printVector(block, *vals.first, 1);
printVector(block, *vals.second, 2);
#endif
return changed;
}
void CFGBlockValues::resetScratch() {
scratch.reset();
}
ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
const llvm::Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
assert(idx.hasValue());
return scratch[idx.getValue()];
}
//------------------------------------------------------------------------====//
// Worklist: worklist for dataflow analysis.
//====------------------------------------------------------------------------//
namespace {
class DataflowWorklist {
SmallVector<const CFGBlock *, 20> worklist;
llvm::BitVector enqueuedBlocks;
public:
DataflowWorklist(const CFG &cfg) : enqueuedBlocks(cfg.getNumBlockIDs()) {}
void enqueueSuccessors(const CFGBlock *block);
const CFGBlock *dequeue();
};
}
void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) {
unsigned OldWorklistSize = worklist.size();
for (CFGBlock::const_succ_iterator I = block->succ_begin(),
E = block->succ_end(); I != E; ++I) {
const CFGBlock *Successor = *I;
if (!Successor || enqueuedBlocks[Successor->getBlockID()])
continue;
worklist.push_back(Successor);
enqueuedBlocks[Successor->getBlockID()] = true;
}
if (OldWorklistSize == 0 || OldWorklistSize == worklist.size())
return;
// Rotate the newly added blocks to the start of the worklist so that it forms
// a proper queue when we pop off the end of the worklist.
std::rotate(worklist.begin(), worklist.begin() + OldWorklistSize,
worklist.end());
}
const CFGBlock *DataflowWorklist::dequeue() {
if (worklist.empty())
return 0;
const CFGBlock *b = worklist.back();
worklist.pop_back();
enqueuedBlocks[b->getBlockID()] = false;
return b;
}
//------------------------------------------------------------------------====//
// Classification of DeclRefExprs as use or initialization.
//====------------------------------------------------------------------------//
namespace {
class FindVarResult {
const VarDecl *vd;
const DeclRefExpr *dr;
public:
FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}
const DeclRefExpr *getDeclRefExpr() const { return dr; }
const VarDecl *getDecl() const { return vd; }
};
static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
while (Ex) {
Ex = Ex->IgnoreParenNoopCasts(C);
if (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
if (CE->getCastKind() == CK_LValueBitCast) {
Ex = CE->getSubExpr();
continue;
}
}
break;
}
return Ex;
}
/// If E is an expression comprising a reference to a single variable, find that
/// variable.
static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
if (const DeclRefExpr *DRE =
dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
if (isTrackedVar(VD, DC))
return FindVarResult(VD, DRE);
return FindVarResult(0, 0);
}
/// \brief Classify each DeclRefExpr as an initialization or a use. Any
/// DeclRefExpr which isn't explicitly classified will be assumed to have
/// escaped the analysis and will be treated as an initialization.
class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
public:
enum Class {
Init,
Use,
SelfInit,
Ignore
};
private:
const DeclContext *DC;
llvm::DenseMap<const DeclRefExpr*, Class> Classification;
bool isTrackedVar(const VarDecl *VD) const {
return ::isTrackedVar(VD, DC);
}
void classify(const Expr *E, Class C);
public:
ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}
void VisitDeclStmt(DeclStmt *DS);
void VisitUnaryOperator(UnaryOperator *UO);
void VisitBinaryOperator(BinaryOperator *BO);
void VisitCallExpr(CallExpr *CE);
void VisitCastExpr(CastExpr *CE);
void operator()(Stmt *S) { Visit(S); }
Class get(const DeclRefExpr *DRE) const {
llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
= Classification.find(DRE);
if (I != Classification.end())
return I->second;
const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
if (!VD || !isTrackedVar(VD))
return Ignore;
return Init;
}
};
}
static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
if (Expr *Init = VD->getInit()) {
const DeclRefExpr *DRE
= dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
if (DRE && DRE->getDecl() == VD)
return DRE;
}
return 0;
}
void ClassifyRefs::classify(const Expr *E, Class C) {
FindVarResult Var = findVar(E, DC);
if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
Classification[DRE] = std::max(Classification[DRE], C);
}
void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end();
DI != DE; ++DI) {
VarDecl *VD = dyn_cast<VarDecl>(*DI);
if (VD && isTrackedVar(VD))
if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
Classification[DRE] = SelfInit;
}
}
void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
// Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
// is not a compound-assignment, we will treat it as initializing the variable
// when TransferFunctions visits it. A compound-assignment does not affect
// whether a variable is uninitialized, and there's no point counting it as a
// use.
if (BO->isCompoundAssignmentOp())
classify(BO->getLHS(), Use);
else if (BO->getOpcode() == BO_Assign)
classify(BO->getLHS(), Ignore);
}
void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
// Increment and decrement are uses despite there being no lvalue-to-rvalue
// conversion.
if (UO->isIncrementDecrementOp())
classify(UO->getSubExpr(), Use);
}
void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
// If a value is passed by const reference to a function, we should not assume
// that it is initialized by the call, and we conservatively do not assume
// that it is used.
for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
I != E; ++I)
if ((*I)->getType().isConstQualified() && (*I)->isGLValue())
classify(*I, Ignore);
}
void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
if (CE->getCastKind() == CK_LValueToRValue)
classify(CE->getSubExpr(), Use);
else if (CStyleCastExpr *CSE = dyn_cast<CStyleCastExpr>(CE)) {
if (CSE->getType()->isVoidType()) {
// Squelch any detected load of an uninitialized value if
// we cast it to void.
// e.g. (void) x;
classify(CSE->getSubExpr(), Ignore);
}
}
}
//------------------------------------------------------------------------====//
// Transfer function for uninitialized values analysis.
//====------------------------------------------------------------------------//
namespace {
class TransferFunctions : public StmtVisitor<TransferFunctions> {
CFGBlockValues &vals;
const CFG &cfg;
const CFGBlock *block;
AnalysisDeclContext &ac;
const ClassifyRefs &classification;
UninitVariablesHandler *handler;
public:
TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
const CFGBlock *block, AnalysisDeclContext &ac,
const ClassifyRefs &classification,
UninitVariablesHandler *handler)
: vals(vals), cfg(cfg), block(block), ac(ac),
classification(classification), handler(handler) {}
void reportUse(const Expr *ex, const VarDecl *vd);
void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
void VisitBlockExpr(BlockExpr *be);
void VisitCallExpr(CallExpr *ce);
void VisitDeclStmt(DeclStmt *ds);
void VisitDeclRefExpr(DeclRefExpr *dr);
void VisitBinaryOperator(BinaryOperator *bo);
bool isTrackedVar(const VarDecl *vd) {
return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
}
FindVarResult findVar(const Expr *ex) {
return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
}
UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
UninitUse Use(ex, isAlwaysUninit(v));
assert(isUninitialized(v));
if (Use.getKind() == UninitUse::Always)
return Use;
// If an edge which leads unconditionally to this use did not initialize
// the variable, we can say something stronger than 'may be uninitialized':
// we can say 'either it's used uninitialized or you have dead code'.
//
// We track the number of successors of a node which have been visited, and
// visit a node once we have visited all of its successors. Only edges where
// the variable might still be uninitialized are followed. Since a variable
// can't transfer from being initialized to being uninitialized, this will
// trace out the subgraph which inevitably leads to the use and does not
// initialize the variable. We do not want to skip past loops, since their
// non-termination might be correlated with the initialization condition.
//
// For example:
//
// void f(bool a, bool b) {
// block1: int n;
// if (a) {
// block2: if (b)
// block3: n = 1;
// block4: } else if (b) {
// block5: while (!a) {
// block6: do_work(&a);
// n = 2;
// }
// }
// block7: if (a)
// block8: g();
// block9: return n;
// }
//
// Starting from the maybe-uninitialized use in block 9:
// * Block 7 is not visited because we have only visited one of its two
// successors.
// * Block 8 is visited because we've visited its only successor.
// From block 8:
// * Block 7 is visited because we've now visited both of its successors.
// From block 7:
// * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
// of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
// * Block 3 is not visited because it initializes 'n'.
// Now the algorithm terminates, having visited blocks 7 and 8, and having
// found the frontier is blocks 2, 4, and 5.
//
// 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
// and 4), so we report that any time either of those edges is taken (in
// each case when 'b == false'), 'n' is used uninitialized.
llvm::SmallVector<const CFGBlock*, 32> Queue;
llvm::SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
Queue.push_back(block);
// Specify that we've already visited all successors of the starting block.
// This has the dual purpose of ensuring we never add it to the queue, and
// of marking it as not being a candidate element of the frontier.
SuccsVisited[block->getBlockID()] = block->succ_size();
while (!Queue.empty()) {
const CFGBlock *B = Queue.back();
Queue.pop_back();
for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
I != E; ++I) {
const CFGBlock *Pred = *I;
if (vals.getValue(Pred, B, vd) == Initialized)
// This block initializes the variable.
continue;
unsigned &SV = SuccsVisited[Pred->getBlockID()];
if (!SV) {
// When visiting the first successor of a block, mark all NULL
// successors as having been visited.
for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
SE = Pred->succ_end();
SI != SE; ++SI)
if (!*SI)
++SV;
}
if (++SV == Pred->succ_size())
// All paths from this block lead to the use and don't initialize the
// variable.
Queue.push_back(Pred);
}
}
// Scan the frontier, looking for blocks where the variable was
// uninitialized.
for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
const CFGBlock *Block = *BI;
unsigned BlockID = Block->getBlockID();
const Stmt *Term = Block->getTerminator();
if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
Term) {
// This block inevitably leads to the use. If we have an edge from here
// to a post-dominator block, and the variable is uninitialized on that
// edge, we have found a bug.
for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
E = Block->succ_end(); I != E; ++I) {
const CFGBlock *Succ = *I;
if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
vals.getValue(Block, Succ, vd) == Uninitialized) {
// Switch cases are a special case: report the label to the caller
// as the 'terminator', not the switch statement itself. Suppress
// situations where no label matched: we can't be sure that's
// possible.
if (isa<SwitchStmt>(Term)) {
const Stmt *Label = Succ->getLabel();
if (!Label || !isa<SwitchCase>(Label))
// Might not be possible.
continue;
UninitUse::Branch Branch;
Branch.Terminator = Label;
Branch.Output = 0; // Ignored.
Use.addUninitBranch(Branch);
} else {
UninitUse::Branch Branch;
Branch.Terminator = Term;
Branch.Output = I - Block->succ_begin();
Use.addUninitBranch(Branch);
}
}
}
}
}
return Use;
}
};
}
void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
if (!handler)
return;
Value v = vals[vd];
if (isUninitialized(v))
handler->handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
}
void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
// This represents an initialization of the 'element' value.
if (DeclStmt *DS = dyn_cast<DeclStmt>(FS->getElement())) {
const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
if (isTrackedVar(VD))
vals[VD] = Initialized;
}
}
void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
const BlockDecl *bd = be->getBlockDecl();
for (BlockDecl::capture_const_iterator i = bd->capture_begin(),
e = bd->capture_end() ; i != e; ++i) {
const VarDecl *vd = i->getVariable();
if (!isTrackedVar(vd))
continue;
if (i->isByRef()) {
vals[vd] = Initialized;
continue;
}
reportUse(be, vd);
}
}
void TransferFunctions::VisitCallExpr(CallExpr *ce) {
// After a call to a function like setjmp or vfork, any variable which is
// initialized anywhere within this function may now be initialized. For now,
// just assume such a call initializes all variables.
// FIXME: Only mark variables as initialized if they have an initializer which
// is reachable from here.
Decl *Callee = ce->getCalleeDecl();
if (Callee && Callee->hasAttr<ReturnsTwiceAttr>())
vals.setAllScratchValues(Initialized);
}
void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
switch (classification.get(dr)) {
case ClassifyRefs::Ignore:
break;
case ClassifyRefs::Use:
reportUse(dr, cast<VarDecl>(dr->getDecl()));
break;
case ClassifyRefs::Init:
vals[cast<VarDecl>(dr->getDecl())] = Initialized;
break;
case ClassifyRefs::SelfInit:
if (handler)
handler->handleSelfInit(cast<VarDecl>(dr->getDecl()));
break;
}
}
void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
if (BO->getOpcode() == BO_Assign) {
FindVarResult Var = findVar(BO->getLHS());
if (const VarDecl *VD = Var.getDecl())
vals[VD] = Initialized;
}
}
void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
for (DeclStmt::decl_iterator DI = DS->decl_begin(), DE = DS->decl_end();
DI != DE; ++DI) {
VarDecl *VD = dyn_cast<VarDecl>(*DI);
if (VD && isTrackedVar(VD)) {
if (getSelfInitExpr(VD)) {
// If the initializer consists solely of a reference to itself, we
// explicitly mark the variable as uninitialized. This allows code
// like the following:
//
// int x = x;
//
// to deliberately leave a variable uninitialized. Different analysis
// clients can detect this pattern and adjust their reporting
// appropriately, but we need to continue to analyze subsequent uses
// of the variable.
vals[VD] = Uninitialized;
} else if (VD->getInit()) {
// Treat the new variable as initialized.
vals[VD] = Initialized;
} else {
// No initializer: the variable is now uninitialized. This matters
// for cases like:
// while (...) {
// int n;
// use(n);
// n = 0;
// }
// FIXME: Mark the variable as uninitialized whenever its scope is
// left, since its scope could be re-entered by a jump over the
// declaration.
vals[VD] = Uninitialized;
}
}
}
}
//------------------------------------------------------------------------====//
// High-level "driver" logic for uninitialized values analysis.
//====------------------------------------------------------------------------//
static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
AnalysisDeclContext &ac, CFGBlockValues &vals,
const ClassifyRefs &classification,
llvm::BitVector &wasAnalyzed,
UninitVariablesHandler *handler = 0) {
wasAnalyzed[block->getBlockID()] = true;
if (const BinaryOperator *b = getLogicalOperatorInChain(block)) {
CFGBlock::const_pred_iterator itr = block->pred_begin();
BVPair vA = vals.getValueVectors(*itr, false);
++itr;
BVPair vB = vals.getValueVectors(*itr, false);
BVPair valsAB;
if (b->getOpcode() == BO_LAnd) {
// Merge the 'F' bits from the first and second.
vals.mergeIntoScratch(*(vA.second ? vA.second : vA.first), true);
vals.mergeIntoScratch(*(vB.second ? vB.second : vB.first), false);
valsAB.first = vA.first;
valsAB.second = &vals.getScratch();
} else {
// Merge the 'T' bits from the first and second.
assert(b->getOpcode() == BO_LOr);
vals.mergeIntoScratch(*vA.first, true);
vals.mergeIntoScratch(*vB.first, false);
valsAB.first = &vals.getScratch();
valsAB.second = vA.second ? vA.second : vA.first;
}
return vals.updateValueVectors(block, valsAB);
}
// Default behavior: merge in values of predecessor blocks.
vals.resetScratch();
bool isFirst = true;
for (CFGBlock::const_pred_iterator I = block->pred_begin(),
E = block->pred_end(); I != E; ++I) {
const CFGBlock *pred = *I;
if (wasAnalyzed[pred->getBlockID()]) {
vals.mergeIntoScratch(vals.getValueVector(pred, block), isFirst);
isFirst = false;
}
}
// Apply the transfer function.
TransferFunctions tf(vals, cfg, block, ac, classification, handler);
for (CFGBlock::const_iterator I = block->begin(), E = block->end();
I != E; ++I) {
if (const CFGStmt *cs = dyn_cast<CFGStmt>(&*I)) {
tf.Visit(const_cast<Stmt*>(cs->getStmt()));
}
}
return vals.updateValueVectorWithScratch(block);
}
void clang::runUninitializedVariablesAnalysis(
const DeclContext &dc,
const CFG &cfg,
AnalysisDeclContext &ac,
UninitVariablesHandler &handler,
UninitVariablesAnalysisStats &stats) {
CFGBlockValues vals(cfg);
vals.computeSetOfDeclarations(dc);
if (vals.hasNoDeclarations())
return;
#if DEBUG_LOGGING
cfg.dump(dc.getParentASTContext().getLangOpts(), true);
#endif
stats.NumVariablesAnalyzed = vals.getNumEntries();
// Precompute which expressions are uses and which are initializations.
ClassifyRefs classification(ac);
cfg.VisitBlockStmts(classification);
// Mark all variables uninitialized at the entry.
const CFGBlock &entry = cfg.getEntry();
for (CFGBlock::const_succ_iterator i = entry.succ_begin(),
e = entry.succ_end(); i != e; ++i) {
if (const CFGBlock *succ = *i) {
ValueVector &vec = vals.getValueVector(&entry, succ);
const unsigned n = vals.getNumEntries();
for (unsigned j = 0; j < n ; ++j) {
vec[j] = Uninitialized;
}
}
}
// Proceed with the workist.
DataflowWorklist worklist(cfg);
llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
worklist.enqueueSuccessors(&cfg.getEntry());
llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
wasAnalyzed[cfg.getEntry().getBlockID()] = true;
while (const CFGBlock *block = worklist.dequeue()) {
// Did the block change?
bool changed = runOnBlock(block, cfg, ac, vals,
classification, wasAnalyzed);
++stats.NumBlockVisits;
if (changed || !previouslyVisited[block->getBlockID()])
worklist.enqueueSuccessors(block);
previouslyVisited[block->getBlockID()] = true;
}
// Run through the blocks one more time, and report uninitialized variabes.
for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
const CFGBlock *block = *BI;
if (wasAnalyzed[block->getBlockID()]) {
runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, &handler);
++stats.NumBlockVisits;
}
}
}
UninitVariablesHandler::~UninitVariablesHandler() {}