blob: aaed97c30205150a92ff0cf644c990d5585d3444 [file] [log] [blame]
//===--- UnwrappedLineParser.cpp - Format C++ code ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file contains the implementation of the UnwrappedLineParser,
/// which turns a stream of tokens into UnwrappedLines.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "format-parser"
#include "UnwrappedLineParser.h"
#include "llvm/Support/Debug.h"
namespace clang {
namespace format {
class ScopedDeclarationState {
public:
ScopedDeclarationState(UnwrappedLine &Line, std::vector<bool> &Stack,
bool MustBeDeclaration)
: Line(Line), Stack(Stack) {
Line.MustBeDeclaration = MustBeDeclaration;
Stack.push_back(MustBeDeclaration);
}
~ScopedDeclarationState() {
Stack.pop_back();
if (!Stack.empty())
Line.MustBeDeclaration = Stack.back();
else
Line.MustBeDeclaration = true;
}
private:
UnwrappedLine &Line;
std::vector<bool> &Stack;
};
class ScopedMacroState : public FormatTokenSource {
public:
ScopedMacroState(UnwrappedLine &Line, FormatTokenSource *&TokenSource,
FormatToken &ResetToken, bool &StructuralError)
: Line(Line), TokenSource(TokenSource), ResetToken(ResetToken),
PreviousLineLevel(Line.Level), PreviousTokenSource(TokenSource),
StructuralError(StructuralError),
PreviousStructuralError(StructuralError) {
TokenSource = this;
Line.Level = 0;
Line.InPPDirective = true;
}
~ScopedMacroState() {
TokenSource = PreviousTokenSource;
ResetToken = Token;
Line.InPPDirective = false;
Line.Level = PreviousLineLevel;
StructuralError = PreviousStructuralError;
}
virtual FormatToken getNextToken() {
// The \c UnwrappedLineParser guards against this by never calling
// \c getNextToken() after it has encountered the first eof token.
assert(!eof());
Token = PreviousTokenSource->getNextToken();
if (eof())
return createEOF();
return Token;
}
virtual unsigned getPosition() {
return PreviousTokenSource->getPosition();
}
virtual FormatToken setPosition(unsigned Position) {
Token = PreviousTokenSource->setPosition(Position);
return Token;
}
private:
bool eof() { return Token.HasUnescapedNewline; }
FormatToken createEOF() {
FormatToken FormatTok;
FormatTok.Tok.startToken();
FormatTok.Tok.setKind(tok::eof);
return FormatTok;
}
UnwrappedLine &Line;
FormatTokenSource *&TokenSource;
FormatToken &ResetToken;
unsigned PreviousLineLevel;
FormatTokenSource *PreviousTokenSource;
bool &StructuralError;
bool PreviousStructuralError;
FormatToken Token;
};
class ScopedLineState {
public:
ScopedLineState(UnwrappedLineParser &Parser,
bool SwitchToPreprocessorLines = false)
: Parser(Parser), SwitchToPreprocessorLines(SwitchToPreprocessorLines) {
if (SwitchToPreprocessorLines)
Parser.CurrentLines = &Parser.PreprocessorDirectives;
PreBlockLine = Parser.Line.take();
Parser.Line.reset(new UnwrappedLine());
Parser.Line->Level = PreBlockLine->Level;
Parser.Line->InPPDirective = PreBlockLine->InPPDirective;
}
~ScopedLineState() {
if (!Parser.Line->Tokens.empty()) {
Parser.addUnwrappedLine();
}
assert(Parser.Line->Tokens.empty());
Parser.Line.reset(PreBlockLine);
Parser.MustBreakBeforeNextToken = true;
if (SwitchToPreprocessorLines)
Parser.CurrentLines = &Parser.Lines;
}
private:
UnwrappedLineParser &Parser;
const bool SwitchToPreprocessorLines;
UnwrappedLine *PreBlockLine;
};
class IndexedTokenSource : public FormatTokenSource {
public:
IndexedTokenSource(ArrayRef<FormatToken> Tokens)
: Tokens(Tokens), Position(-1) {}
virtual FormatToken getNextToken() {
++Position;
return Tokens[Position];
}
virtual unsigned getPosition() {
assert(Position >= 0);
return Position;
}
virtual FormatToken setPosition(unsigned P) {
Position = P;
return Tokens[Position];
}
private:
ArrayRef<FormatToken> Tokens;
int Position;
};
UnwrappedLineParser::UnwrappedLineParser(const FormatStyle &Style,
FormatTokenSource &Tokens,
UnwrappedLineConsumer &Callback)
: Line(new UnwrappedLine), MustBreakBeforeNextToken(false),
CurrentLines(&Lines), StructuralError(false), Style(Style),
Tokens(NULL), Callback(Callback) {
FormatToken Tok;
do {
Tok = Tokens.getNextToken();
AllTokens.push_back(Tok);
} while (Tok.Tok.isNot(tok::eof));
LBraces.resize(AllTokens.size(), BS_Unknown);
}
bool UnwrappedLineParser::parse() {
DEBUG(llvm::dbgs() << "----\n");
IndexedTokenSource TokenSource(AllTokens);
Tokens = &TokenSource;
readToken();
parseFile();
for (std::vector<UnwrappedLine>::iterator I = Lines.begin(), E = Lines.end();
I != E; ++I) {
Callback.consumeUnwrappedLine(*I);
}
// Create line with eof token.
pushToken(FormatTok);
Callback.consumeUnwrappedLine(*Line);
return StructuralError;
}
void UnwrappedLineParser::parseFile() {
ScopedDeclarationState DeclarationState(
*Line, DeclarationScopeStack,
/*MustBeDeclaration=*/ !Line->InPPDirective);
parseLevel(/*HasOpeningBrace=*/ false);
// Make sure to format the remaining tokens.
flushComments(true);
addUnwrappedLine();
}
void UnwrappedLineParser::parseLevel(bool HasOpeningBrace) {
do {
switch (FormatTok.Tok.getKind()) {
case tok::comment:
nextToken();
addUnwrappedLine();
break;
case tok::l_brace:
// FIXME: Add parameter whether this can happen - if this happens, we must
// be in a non-declaration context.
parseBlock(/*MustBeDeclaration=*/ false);
addUnwrappedLine();
break;
case tok::r_brace:
if (HasOpeningBrace)
return;
StructuralError = true;
nextToken();
addUnwrappedLine();
break;
default:
parseStructuralElement();
break;
}
} while (!eof());
}
void UnwrappedLineParser::calculateBraceTypes() {
// We'll parse forward through the tokens until we hit
// a closing brace or eof - note that getNextToken() will
// parse macros, so this will magically work inside macro
// definitions, too.
unsigned StoredPosition = Tokens->getPosition();
unsigned Position = StoredPosition;
FormatToken Tok = FormatTok;
// Keep a stack of positions of lbrace tokens. We will
// update information about whether an lbrace starts a
// braced init list or a different block during the loop.
SmallVector<unsigned, 8> LBraceStack;
assert(Tok.Tok.is(tok::l_brace));
do {
FormatToken NextTok = Tokens->getNextToken();
switch (Tok.Tok.getKind()) {
case tok::l_brace:
LBraceStack.push_back(Position);
break;
case tok::r_brace:
if (!LBraceStack.empty()) {
if (LBraces[LBraceStack.back()] == BS_Unknown) {
// If there is a comma, semicolon or right paren after the closing
// brace, we assume this is a braced initializer list.
// FIXME: Note that this currently works only because we do not
// use the brace information while inside a braced init list.
// Thus, if the parent is a braced init list, we consider all
// brace blocks inside it braced init list. That works good enough
// for now, but we will need to fix it to correctly handle lambdas.
if (NextTok.Tok.is(tok::comma) || NextTok.Tok.is(tok::semi) ||
NextTok.Tok.is(tok::r_paren) || NextTok.Tok.is(tok::l_brace))
LBraces[LBraceStack.back()] = BS_BracedInit;
else
LBraces[LBraceStack.back()] = BS_Block;
}
LBraceStack.pop_back();
}
break;
case tok::semi:
case tok::kw_if:
case tok::kw_while:
case tok::kw_for:
case tok::kw_switch:
case tok::kw_try:
if (!LBraceStack.empty())
LBraces[LBraceStack.back()] = BS_Block;
break;
default:
break;
}
Tok = NextTok;
++Position;
} while (Tok.Tok.isNot(tok::eof));
// Assume other blocks for all unclosed opening braces.
for (unsigned i = 0, e = LBraceStack.size(); i != e; ++i) {
if (LBraces[LBraceStack[i]] == BS_Unknown)
LBraces[LBraceStack[i]] = BS_Block;
}
FormatTok = Tokens->setPosition(StoredPosition);
}
void UnwrappedLineParser::parseBlock(bool MustBeDeclaration,
unsigned AddLevels) {
assert(FormatTok.Tok.is(tok::l_brace) && "'{' expected");
nextToken();
addUnwrappedLine();
ScopedDeclarationState DeclarationState(*Line, DeclarationScopeStack,
MustBeDeclaration);
Line->Level += AddLevels;
parseLevel(/*HasOpeningBrace=*/ true);
if (!FormatTok.Tok.is(tok::r_brace)) {
Line->Level -= AddLevels;
StructuralError = true;
return;
}
nextToken(); // Munch the closing brace.
Line->Level -= AddLevels;
}
void UnwrappedLineParser::parsePPDirective() {
assert(FormatTok.Tok.is(tok::hash) && "'#' expected");
ScopedMacroState MacroState(*Line, Tokens, FormatTok, StructuralError);
nextToken();
if (FormatTok.Tok.getIdentifierInfo() == NULL) {
parsePPUnknown();
return;
}
switch (FormatTok.Tok.getIdentifierInfo()->getPPKeywordID()) {
case tok::pp_define:
parsePPDefine();
return;
case tok::pp_if:
parsePPIf();
break;
case tok::pp_ifdef:
case tok::pp_ifndef:
parsePPIfdef();
break;
case tok::pp_else:
parsePPElse();
break;
case tok::pp_elif:
parsePPElIf();
break;
case tok::pp_endif:
parsePPEndIf();
break;
default:
parsePPUnknown();
break;
}
}
void UnwrappedLineParser::pushPPConditional() {
if (!PPStack.empty() && PPStack.back() == PP_Unreachable)
PPStack.push_back(PP_Unreachable);
else
PPStack.push_back(PP_Conditional);
}
void UnwrappedLineParser::parsePPIf() {
nextToken();
if ((FormatTok.Tok.isLiteral() &&
StringRef(FormatTok.Tok.getLiteralData(), FormatTok.Tok.getLength()) ==
"0") ||
FormatTok.Tok.is(tok::kw_false)) {
PPStack.push_back(PP_Unreachable);
} else {
pushPPConditional();
}
parsePPUnknown();
}
void UnwrappedLineParser::parsePPIfdef() {
pushPPConditional();
parsePPUnknown();
}
void UnwrappedLineParser::parsePPElse() {
if (!PPStack.empty())
PPStack.pop_back();
pushPPConditional();
parsePPUnknown();
}
void UnwrappedLineParser::parsePPElIf() {
parsePPElse();
}
void UnwrappedLineParser::parsePPEndIf() {
if (!PPStack.empty())
PPStack.pop_back();
parsePPUnknown();
}
void UnwrappedLineParser::parsePPDefine() {
nextToken();
if (FormatTok.Tok.getKind() != tok::identifier) {
parsePPUnknown();
return;
}
nextToken();
if (FormatTok.Tok.getKind() == tok::l_paren &&
FormatTok.WhitespaceRange.getBegin() ==
FormatTok.WhitespaceRange.getEnd()) {
parseParens();
}
addUnwrappedLine();
Line->Level = 1;
// Errors during a preprocessor directive can only affect the layout of the
// preprocessor directive, and thus we ignore them. An alternative approach
// would be to use the same approach we use on the file level (no
// re-indentation if there was a structural error) within the macro
// definition.
parseFile();
}
void UnwrappedLineParser::parsePPUnknown() {
do {
nextToken();
} while (!eof());
addUnwrappedLine();
}
// Here we blacklist certain tokens that are not usually the first token in an
// unwrapped line. This is used in attempt to distinguish macro calls without
// trailing semicolons from other constructs split to several lines.
bool tokenCanStartNewLine(clang::Token Tok) {
// Semicolon can be a null-statement, l_square can be a start of a macro or
// a C++11 attribute, but this doesn't seem to be common.
return Tok.isNot(tok::semi) && Tok.isNot(tok::l_brace) &&
Tok.isNot(tok::l_square) &&
// Tokens that can only be used as binary operators and a part of
// overloaded operator names.
Tok.isNot(tok::period) && Tok.isNot(tok::periodstar) &&
Tok.isNot(tok::arrow) && Tok.isNot(tok::arrowstar) &&
Tok.isNot(tok::less) && Tok.isNot(tok::greater) &&
Tok.isNot(tok::slash) && Tok.isNot(tok::percent) &&
Tok.isNot(tok::lessless) && Tok.isNot(tok::greatergreater) &&
Tok.isNot(tok::equal) && Tok.isNot(tok::plusequal) &&
Tok.isNot(tok::minusequal) && Tok.isNot(tok::starequal) &&
Tok.isNot(tok::slashequal) && Tok.isNot(tok::percentequal) &&
Tok.isNot(tok::ampequal) && Tok.isNot(tok::pipeequal) &&
Tok.isNot(tok::caretequal) && Tok.isNot(tok::greatergreaterequal) &&
Tok.isNot(tok::lesslessequal) &&
// Colon is used in labels, base class lists, initializer lists,
// range-based for loops, ternary operator, but should never be the
// first token in an unwrapped line.
Tok.isNot(tok::colon);
}
void UnwrappedLineParser::parseStructuralElement() {
assert(!FormatTok.Tok.is(tok::l_brace));
switch (FormatTok.Tok.getKind()) {
case tok::at:
nextToken();
if (FormatTok.Tok.is(tok::l_brace)) {
parseBracedList();
break;
}
switch (FormatTok.Tok.getObjCKeywordID()) {
case tok::objc_public:
case tok::objc_protected:
case tok::objc_package:
case tok::objc_private:
return parseAccessSpecifier();
case tok::objc_interface:
case tok::objc_implementation:
return parseObjCInterfaceOrImplementation();
case tok::objc_protocol:
return parseObjCProtocol();
case tok::objc_end:
return; // Handled by the caller.
case tok::objc_optional:
case tok::objc_required:
nextToken();
addUnwrappedLine();
return;
default:
break;
}
break;
case tok::kw_namespace:
parseNamespace();
return;
case tok::kw_inline:
nextToken();
if (FormatTok.Tok.is(tok::kw_namespace)) {
parseNamespace();
return;
}
break;
case tok::kw_public:
case tok::kw_protected:
case tok::kw_private:
parseAccessSpecifier();
return;
case tok::kw_if:
parseIfThenElse();
return;
case tok::kw_for:
case tok::kw_while:
parseForOrWhileLoop();
return;
case tok::kw_do:
parseDoWhile();
return;
case tok::kw_switch:
parseSwitch();
return;
case tok::kw_default:
nextToken();
parseLabel();
return;
case tok::kw_case:
parseCaseLabel();
return;
case tok::kw_return:
parseReturn();
return;
case tok::kw_extern:
nextToken();
if (FormatTok.Tok.is(tok::string_literal)) {
nextToken();
if (FormatTok.Tok.is(tok::l_brace)) {
parseBlock(/*MustBeDeclaration=*/ true, 0);
addUnwrappedLine();
return;
}
}
// In all other cases, parse the declaration.
break;
default:
break;
}
do {
switch (FormatTok.Tok.getKind()) {
case tok::at:
nextToken();
if (FormatTok.Tok.is(tok::l_brace))
parseBracedList();
break;
case tok::kw_enum:
parseEnum();
break;
case tok::kw_struct:
case tok::kw_union:
case tok::kw_class:
parseRecord();
// A record declaration or definition is always the start of a structural
// element.
break;
case tok::semi:
nextToken();
addUnwrappedLine();
return;
case tok::r_brace:
addUnwrappedLine();
return;
case tok::l_paren:
parseParens();
break;
case tok::l_brace:
if (!tryToParseBracedList()) {
// A block outside of parentheses must be the last part of a
// structural element.
// FIXME: Figure out cases where this is not true, and add projections
// for them (the one we know is missing are lambdas).
if (Style.BreakBeforeBraces == FormatStyle::BS_Linux ||
Style.BreakBeforeBraces == FormatStyle::BS_Stroustrup)
addUnwrappedLine();
parseBlock(/*MustBeDeclaration=*/ false);
addUnwrappedLine();
return;
}
// Otherwise this was a braced init list, and the structural
// element continues.
break;
case tok::identifier:
nextToken();
if (Line->Tokens.size() == 1) {
if (FormatTok.Tok.is(tok::colon)) {
parseLabel();
return;
}
// Recognize function-like macro usages without trailing semicolon.
if (FormatTok.Tok.is(tok::l_paren)) {
parseParens();
if (FormatTok.HasUnescapedNewline &&
tokenCanStartNewLine(FormatTok.Tok)) {
addUnwrappedLine();
return;
}
}
}
break;
case tok::equal:
nextToken();
if (FormatTok.Tok.is(tok::l_brace)) {
parseBracedList();
}
break;
default:
nextToken();
break;
}
} while (!eof());
}
bool UnwrappedLineParser::tryToParseBracedList() {
if (LBraces[Tokens->getPosition()] == BS_Unknown)
calculateBraceTypes();
assert(LBraces[Tokens->getPosition()] != BS_Unknown);
if (LBraces[Tokens->getPosition()] == BS_Block)
return false;
parseBracedList();
return true;
}
void UnwrappedLineParser::parseBracedList() {
nextToken();
// FIXME: Once we have an expression parser in the UnwrappedLineParser,
// replace this by using parseAssigmentExpression() inside.
bool StartOfExpression = true;
do {
// FIXME: When we start to support lambdas, we'll want to parse them away
// here, otherwise our bail-out scenarios below break. The better solution
// might be to just implement a more or less complete expression parser.
switch (FormatTok.Tok.getKind()) {
case tok::l_brace:
if (!StartOfExpression) {
// Probably a missing closing brace. Bail out.
addUnwrappedLine();
return;
}
parseBracedList();
StartOfExpression = false;
break;
case tok::r_brace:
nextToken();
return;
case tok::semi:
// Probably a missing closing brace. Bail out.
return;
case tok::comma:
nextToken();
StartOfExpression = true;
break;
default:
nextToken();
StartOfExpression = false;
break;
}
} while (!eof());
}
void UnwrappedLineParser::parseReturn() {
nextToken();
do {
switch (FormatTok.Tok.getKind()) {
case tok::l_brace:
parseBracedList();
if (FormatTok.Tok.isNot(tok::semi)) {
// Assume missing ';'.
addUnwrappedLine();
return;
}
break;
case tok::l_paren:
parseParens();
break;
case tok::r_brace:
// Assume missing ';'.
addUnwrappedLine();
return;
case tok::semi:
nextToken();
addUnwrappedLine();
return;
default:
nextToken();
break;
}
} while (!eof());
}
void UnwrappedLineParser::parseParens() {
assert(FormatTok.Tok.is(tok::l_paren) && "'(' expected.");
nextToken();
do {
switch (FormatTok.Tok.getKind()) {
case tok::l_paren:
parseParens();
break;
case tok::r_paren:
nextToken();
return;
case tok::l_brace: {
if (!tryToParseBracedList()) {
nextToken();
ScopedLineState LineState(*this);
ScopedDeclarationState DeclarationState(*Line, DeclarationScopeStack,
/*MustBeDeclaration=*/ false);
Line->Level += 1;
parseLevel(/*HasOpeningBrace=*/ true);
Line->Level -= 1;
}
break;
}
case tok::at:
nextToken();
if (FormatTok.Tok.is(tok::l_brace))
parseBracedList();
break;
default:
nextToken();
break;
}
} while (!eof());
}
void UnwrappedLineParser::parseIfThenElse() {
assert(FormatTok.Tok.is(tok::kw_if) && "'if' expected");
nextToken();
if (FormatTok.Tok.is(tok::l_paren))
parseParens();
bool NeedsUnwrappedLine = false;
if (FormatTok.Tok.is(tok::l_brace)) {
parseBlock(/*MustBeDeclaration=*/ false);
NeedsUnwrappedLine = true;
} else {
addUnwrappedLine();
++Line->Level;
parseStructuralElement();
--Line->Level;
}
if (FormatTok.Tok.is(tok::kw_else)) {
nextToken();
if (FormatTok.Tok.is(tok::l_brace)) {
parseBlock(/*MustBeDeclaration=*/ false);
addUnwrappedLine();
} else if (FormatTok.Tok.is(tok::kw_if)) {
parseIfThenElse();
} else {
addUnwrappedLine();
++Line->Level;
parseStructuralElement();
--Line->Level;
}
} else if (NeedsUnwrappedLine) {
addUnwrappedLine();
}
}
void UnwrappedLineParser::parseNamespace() {
assert(FormatTok.Tok.is(tok::kw_namespace) && "'namespace' expected");
nextToken();
if (FormatTok.Tok.is(tok::identifier))
nextToken();
if (FormatTok.Tok.is(tok::l_brace)) {
if (Style.BreakBeforeBraces == FormatStyle::BS_Linux)
addUnwrappedLine();
parseBlock(/*MustBeDeclaration=*/ true, 0);
// Munch the semicolon after a namespace. This is more common than one would
// think. Puttin the semicolon into its own line is very ugly.
if (FormatTok.Tok.is(tok::semi))
nextToken();
addUnwrappedLine();
}
// FIXME: Add error handling.
}
void UnwrappedLineParser::parseForOrWhileLoop() {
assert((FormatTok.Tok.is(tok::kw_for) || FormatTok.Tok.is(tok::kw_while)) &&
"'for' or 'while' expected");
nextToken();
if (FormatTok.Tok.is(tok::l_paren))
parseParens();
if (FormatTok.Tok.is(tok::l_brace)) {
parseBlock(/*MustBeDeclaration=*/ false);
addUnwrappedLine();
} else {
addUnwrappedLine();
++Line->Level;
parseStructuralElement();
--Line->Level;
}
}
void UnwrappedLineParser::parseDoWhile() {
assert(FormatTok.Tok.is(tok::kw_do) && "'do' expected");
nextToken();
if (FormatTok.Tok.is(tok::l_brace)) {
parseBlock(/*MustBeDeclaration=*/ false);
} else {
addUnwrappedLine();
++Line->Level;
parseStructuralElement();
--Line->Level;
}
// FIXME: Add error handling.
if (!FormatTok.Tok.is(tok::kw_while)) {
addUnwrappedLine();
return;
}
nextToken();
parseStructuralElement();
}
void UnwrappedLineParser::parseLabel() {
if (FormatTok.Tok.isNot(tok::colon))
return;
nextToken();
unsigned OldLineLevel = Line->Level;
if (Line->Level > 1 || (!Line->InPPDirective && Line->Level > 0))
--Line->Level;
if (CommentsBeforeNextToken.empty() && FormatTok.Tok.is(tok::l_brace)) {
parseBlock(/*MustBeDeclaration=*/ false);
if (FormatTok.Tok.is(tok::kw_break))
parseStructuralElement(); // "break;" after "}" goes on the same line.
}
addUnwrappedLine();
Line->Level = OldLineLevel;
}
void UnwrappedLineParser::parseCaseLabel() {
assert(FormatTok.Tok.is(tok::kw_case) && "'case' expected");
// FIXME: fix handling of complex expressions here.
do {
nextToken();
} while (!eof() && !FormatTok.Tok.is(tok::colon));
parseLabel();
}
void UnwrappedLineParser::parseSwitch() {
assert(FormatTok.Tok.is(tok::kw_switch) && "'switch' expected");
nextToken();
if (FormatTok.Tok.is(tok::l_paren))
parseParens();
if (FormatTok.Tok.is(tok::l_brace)) {
parseBlock(/*MustBeDeclaration=*/ false, Style.IndentCaseLabels ? 2 : 1);
addUnwrappedLine();
} else {
addUnwrappedLine();
Line->Level += (Style.IndentCaseLabels ? 2 : 1);
parseStructuralElement();
Line->Level -= (Style.IndentCaseLabels ? 2 : 1);
}
}
void UnwrappedLineParser::parseAccessSpecifier() {
nextToken();
// Otherwise, we don't know what it is, and we'd better keep the next token.
if (FormatTok.Tok.is(tok::colon))
nextToken();
addUnwrappedLine();
}
void UnwrappedLineParser::parseEnum() {
nextToken();
if (FormatTok.Tok.is(tok::identifier) ||
FormatTok.Tok.is(tok::kw___attribute) ||
FormatTok.Tok.is(tok::kw___declspec)) {
nextToken();
// We can have macros or attributes in between 'enum' and the enum name.
if (FormatTok.Tok.is(tok::l_paren)) {
parseParens();
}
if (FormatTok.Tok.is(tok::identifier))
nextToken();
}
if (FormatTok.Tok.is(tok::l_brace)) {
nextToken();
addUnwrappedLine();
++Line->Level;
do {
switch (FormatTok.Tok.getKind()) {
case tok::l_paren:
parseParens();
break;
case tok::r_brace:
addUnwrappedLine();
nextToken();
--Line->Level;
return;
case tok::comma:
nextToken();
addUnwrappedLine();
break;
default:
nextToken();
break;
}
} while (!eof());
}
// We fall through to parsing a structural element afterwards, so that in
// enum A {} n, m;
// "} n, m;" will end up in one unwrapped line.
}
void UnwrappedLineParser::parseRecord() {
nextToken();
if (FormatTok.Tok.is(tok::identifier) ||
FormatTok.Tok.is(tok::kw___attribute) ||
FormatTok.Tok.is(tok::kw___declspec)) {
nextToken();
// We can have macros or attributes in between 'class' and the class name.
if (FormatTok.Tok.is(tok::l_paren)) {
parseParens();
}
// The actual identifier can be a nested name specifier, and in macros
// it is often token-pasted.
while (FormatTok.Tok.is(tok::identifier) ||
FormatTok.Tok.is(tok::coloncolon) || FormatTok.Tok.is(tok::hashhash))
nextToken();
// Note that parsing away template declarations here leads to incorrectly
// accepting function declarations as record declarations.
// In general, we cannot solve this problem. Consider:
// class A<int> B() {}
// which can be a function definition or a class definition when B() is a
// macro. If we find enough real-world cases where this is a problem, we
// can parse for the 'template' keyword in the beginning of the statement,
// and thus rule out the record production in case there is no template
// (this would still leave us with an ambiguity between template function
// and class declarations).
if (FormatTok.Tok.is(tok::colon) || FormatTok.Tok.is(tok::less)) {
while (!eof() && FormatTok.Tok.isNot(tok::l_brace)) {
if (FormatTok.Tok.is(tok::semi))
return;
nextToken();
}
}
}
if (FormatTok.Tok.is(tok::l_brace)) {
if (Style.BreakBeforeBraces == FormatStyle::BS_Linux)
addUnwrappedLine();
parseBlock(/*MustBeDeclaration=*/ true);
}
// We fall through to parsing a structural element afterwards, so
// class A {} n, m;
// will end up in one unwrapped line.
}
void UnwrappedLineParser::parseObjCProtocolList() {
assert(FormatTok.Tok.is(tok::less) && "'<' expected.");
do
nextToken();
while (!eof() && FormatTok.Tok.isNot(tok::greater));
nextToken(); // Skip '>'.
}
void UnwrappedLineParser::parseObjCUntilAtEnd() {
do {
if (FormatTok.Tok.isObjCAtKeyword(tok::objc_end)) {
nextToken();
addUnwrappedLine();
break;
}
parseStructuralElement();
} while (!eof());
}
void UnwrappedLineParser::parseObjCInterfaceOrImplementation() {
nextToken();
nextToken(); // interface name
// @interface can be followed by either a base class, or a category.
if (FormatTok.Tok.is(tok::colon)) {
nextToken();
nextToken(); // base class name
} else if (FormatTok.Tok.is(tok::l_paren))
// Skip category, if present.
parseParens();
if (FormatTok.Tok.is(tok::less))
parseObjCProtocolList();
// If instance variables are present, keep the '{' on the first line too.
if (FormatTok.Tok.is(tok::l_brace))
parseBlock(/*MustBeDeclaration=*/ true);
// With instance variables, this puts '}' on its own line. Without instance
// variables, this ends the @interface line.
addUnwrappedLine();
parseObjCUntilAtEnd();
}
void UnwrappedLineParser::parseObjCProtocol() {
nextToken();
nextToken(); // protocol name
if (FormatTok.Tok.is(tok::less))
parseObjCProtocolList();
// Check for protocol declaration.
if (FormatTok.Tok.is(tok::semi)) {
nextToken();
return addUnwrappedLine();
}
addUnwrappedLine();
parseObjCUntilAtEnd();
}
void UnwrappedLineParser::addUnwrappedLine() {
if (Line->Tokens.empty())
return;
DEBUG({
llvm::dbgs() << "Line(" << Line->Level << ")"
<< (Line->InPPDirective ? " MACRO" : "") << ": ";
for (std::list<FormatToken>::iterator I = Line->Tokens.begin(),
E = Line->Tokens.end();
I != E; ++I) {
llvm::dbgs() << I->Tok.getName() << " ";
}
llvm::dbgs() << "\n";
});
CurrentLines->push_back(*Line);
Line->Tokens.clear();
if (CurrentLines == &Lines && !PreprocessorDirectives.empty()) {
for (std::vector<UnwrappedLine>::iterator
I = PreprocessorDirectives.begin(),
E = PreprocessorDirectives.end();
I != E; ++I) {
CurrentLines->push_back(*I);
}
PreprocessorDirectives.clear();
}
}
bool UnwrappedLineParser::eof() const { return FormatTok.Tok.is(tok::eof); }
void UnwrappedLineParser::flushComments(bool NewlineBeforeNext) {
bool JustComments = Line->Tokens.empty();
for (SmallVectorImpl<FormatToken>::const_iterator
I = CommentsBeforeNextToken.begin(),
E = CommentsBeforeNextToken.end();
I != E; ++I) {
if (I->NewlinesBefore && JustComments) {
addUnwrappedLine();
}
pushToken(*I);
}
if (NewlineBeforeNext && JustComments) {
addUnwrappedLine();
}
CommentsBeforeNextToken.clear();
}
void UnwrappedLineParser::nextToken() {
if (eof())
return;
flushComments(FormatTok.NewlinesBefore > 0);
pushToken(FormatTok);
readToken();
}
void UnwrappedLineParser::readToken() {
bool CommentsInCurrentLine = true;
do {
FormatTok = Tokens->getNextToken();
while (!Line->InPPDirective && FormatTok.Tok.is(tok::hash) &&
(FormatTok.HasUnescapedNewline || FormatTok.IsFirst)) {
// If there is an unfinished unwrapped line, we flush the preprocessor
// directives only after that unwrapped line was finished later.
bool SwitchToPreprocessorLines =
!Line->Tokens.empty() && CurrentLines == &Lines;
ScopedLineState BlockState(*this, SwitchToPreprocessorLines);
// Comments stored before the preprocessor directive need to be output
// before the preprocessor directive, at the same level as the
// preprocessor directive, as we consider them to apply to the directive.
flushComments(FormatTok.NewlinesBefore > 0);
parsePPDirective();
}
if (!PPStack.empty() && (PPStack.back() == PP_Unreachable) &&
!Line->InPPDirective) {
continue;
}
if (!FormatTok.Tok.is(tok::comment))
return;
if (FormatTok.NewlinesBefore > 0 || FormatTok.IsFirst) {
CommentsInCurrentLine = false;
}
if (CommentsInCurrentLine) {
pushToken(FormatTok);
} else {
CommentsBeforeNextToken.push_back(FormatTok);
}
} while (!eof());
}
void UnwrappedLineParser::pushToken(const FormatToken &Tok) {
Line->Tokens.push_back(Tok);
if (MustBreakBeforeNextToken) {
Line->Tokens.back().MustBreakBefore = true;
MustBreakBeforeNextToken = false;
}
}
} // end namespace format
} // end namespace clang