blob: fa359c5bc6e5ae9e54537db0d3a144a2ecfb1134 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#if V8_TARGET_ARCH_X64
#include "src/codegen.h"
#include "src/deoptimizer.h"
#include "src/full-codegen.h"
#include "src/stub-cache.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm,
CFunctionId id,
BuiltinExtraArguments extra_args) {
// ----------- S t a t e -------------
// -- rax : number of arguments excluding receiver
// -- rdi : called function (only guaranteed when
// extra_args requires it)
// -- rsi : context
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -- ...
// -- rsp[8 * argc] : first argument (argc == rax)
// -- rsp[8 * (argc + 1)] : receiver
// -----------------------------------
// Insert extra arguments.
int num_extra_args = 0;
if (extra_args == NEEDS_CALLED_FUNCTION) {
num_extra_args = 1;
__ PopReturnAddressTo(kScratchRegister);
__ Push(rdi);
__ PushReturnAddressFrom(kScratchRegister);
} else {
ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
}
// JumpToExternalReference expects rax to contain the number of arguments
// including the receiver and the extra arguments.
__ addp(rax, Immediate(num_extra_args + 1));
__ JumpToExternalReference(ExternalReference(id, masm->isolate()), 1);
}
static void CallRuntimePassFunction(
MacroAssembler* masm, Runtime::FunctionId function_id) {
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the function onto the stack.
__ Push(rdi);
// Function is also the parameter to the runtime call.
__ Push(rdi);
__ CallRuntime(function_id, 1);
// Restore receiver.
__ Pop(rdi);
}
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
__ movp(kScratchRegister,
FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movp(kScratchRegister,
FieldOperand(kScratchRegister, SharedFunctionInfo::kCodeOffset));
__ leap(kScratchRegister, FieldOperand(kScratchRegister, Code::kHeaderSize));
__ jmp(kScratchRegister);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm) {
__ leap(rax, FieldOperand(rax, Code::kHeaderSize));
__ jmp(rax);
}
void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
// Checking whether the queued function is ready for install is optional,
// since we come across interrupts and stack checks elsewhere. However,
// not checking may delay installing ready functions, and always checking
// would be quite expensive. A good compromise is to first check against
// stack limit as a cue for an interrupt signal.
Label ok;
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
__ j(above_equal, &ok);
CallRuntimePassFunction(masm, Runtime::kHiddenTryInstallOptimizedCode);
GenerateTailCallToReturnedCode(masm);
__ bind(&ok);
GenerateTailCallToSharedCode(masm);
}
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
bool is_api_function,
bool create_memento) {
// ----------- S t a t e -------------
// -- rax: number of arguments
// -- rdi: constructor function
// -- rbx: allocation site or undefined
// -----------------------------------
// Should never create mementos for api functions.
ASSERT(!is_api_function || !create_memento);
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
if (create_memento) {
__ AssertUndefinedOrAllocationSite(rbx);
__ Push(rbx);
}
// Store a smi-tagged arguments count on the stack.
__ Integer32ToSmi(rax, rax);
__ Push(rax);
// Push the function to invoke on the stack.
__ Push(rdi);
// Try to allocate the object without transitioning into C code. If any of
// the preconditions is not met, the code bails out to the runtime call.
Label rt_call, allocated;
if (FLAG_inline_new) {
Label undo_allocation;
ExternalReference debug_step_in_fp =
ExternalReference::debug_step_in_fp_address(masm->isolate());
__ Move(kScratchRegister, debug_step_in_fp);
__ cmpp(Operand(kScratchRegister, 0), Immediate(0));
__ j(not_equal, &rt_call);
// Verified that the constructor is a JSFunction.
// Load the initial map and verify that it is in fact a map.
// rdi: constructor
__ movp(rax, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi
ASSERT(kSmiTag == 0);
__ JumpIfSmi(rax, &rt_call);
// rdi: constructor
// rax: initial map (if proven valid below)
__ CmpObjectType(rax, MAP_TYPE, rbx);
__ j(not_equal, &rt_call);
// Check that the constructor is not constructing a JSFunction (see
// comments in Runtime_NewObject in runtime.cc). In which case the
// initial map's instance type would be JS_FUNCTION_TYPE.
// rdi: constructor
// rax: initial map
__ CmpInstanceType(rax, JS_FUNCTION_TYPE);
__ j(equal, &rt_call);
if (!is_api_function) {
Label allocate;
// The code below relies on these assumptions.
STATIC_ASSERT(JSFunction::kNoSlackTracking == 0);
STATIC_ASSERT(Map::ConstructionCount::kShift +
Map::ConstructionCount::kSize == 32);
// Check if slack tracking is enabled.
__ movl(rsi, FieldOperand(rax, Map::kBitField3Offset));
__ shrl(rsi, Immediate(Map::ConstructionCount::kShift));
__ j(zero, &allocate); // JSFunction::kNoSlackTracking
// Decrease generous allocation count.
__ subl(FieldOperand(rax, Map::kBitField3Offset),
Immediate(1 << Map::ConstructionCount::kShift));
__ cmpl(rsi, Immediate(JSFunction::kFinishSlackTracking));
__ j(not_equal, &allocate);
__ Push(rax);
__ Push(rdi);
__ Push(rdi); // constructor
__ CallRuntime(Runtime::kHiddenFinalizeInstanceSize, 1);
__ Pop(rdi);
__ Pop(rax);
__ xorl(rsi, rsi); // JSFunction::kNoSlackTracking
__ bind(&allocate);
}
// Now allocate the JSObject on the heap.
__ movzxbp(rdi, FieldOperand(rax, Map::kInstanceSizeOffset));
__ shlp(rdi, Immediate(kPointerSizeLog2));
if (create_memento) {
__ addp(rdi, Immediate(AllocationMemento::kSize));
}
// rdi: size of new object
__ Allocate(rdi,
rbx,
rdi,
no_reg,
&rt_call,
NO_ALLOCATION_FLAGS);
Factory* factory = masm->isolate()->factory();
// Allocated the JSObject, now initialize the fields.
// rax: initial map
// rbx: JSObject (not HeapObject tagged - the actual address).
// rdi: start of next object (including memento if create_memento)
__ movp(Operand(rbx, JSObject::kMapOffset), rax);
__ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex);
__ movp(Operand(rbx, JSObject::kPropertiesOffset), rcx);
__ movp(Operand(rbx, JSObject::kElementsOffset), rcx);
// Set extra fields in the newly allocated object.
// rax: initial map
// rbx: JSObject
// rdi: start of next object (including memento if create_memento)
// rsi: slack tracking counter (non-API function case)
__ leap(rcx, Operand(rbx, JSObject::kHeaderSize));
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
if (!is_api_function) {
Label no_inobject_slack_tracking;
// Check if slack tracking is enabled.
__ cmpl(rsi, Immediate(JSFunction::kNoSlackTracking));
__ j(equal, &no_inobject_slack_tracking);
// Allocate object with a slack.
__ movzxbp(rsi,
FieldOperand(rax, Map::kPreAllocatedPropertyFieldsOffset));
__ leap(rsi,
Operand(rbx, rsi, times_pointer_size, JSObject::kHeaderSize));
// rsi: offset of first field after pre-allocated fields
if (FLAG_debug_code) {
__ cmpp(rsi, rdi);
__ Assert(less_equal,
kUnexpectedNumberOfPreAllocatedPropertyFields);
}
__ InitializeFieldsWithFiller(rcx, rsi, rdx);
__ LoadRoot(rdx, Heap::kOnePointerFillerMapRootIndex);
// Fill the remaining fields with one pointer filler map.
__ bind(&no_inobject_slack_tracking);
}
if (create_memento) {
__ leap(rsi, Operand(rdi, -AllocationMemento::kSize));
__ InitializeFieldsWithFiller(rcx, rsi, rdx);
// Fill in memento fields if necessary.
// rsi: points to the allocated but uninitialized memento.
__ Move(Operand(rsi, AllocationMemento::kMapOffset),
factory->allocation_memento_map());
// Get the cell or undefined.
__ movp(rdx, Operand(rsp, kPointerSize*2));
__ movp(Operand(rsi, AllocationMemento::kAllocationSiteOffset), rdx);
} else {
__ InitializeFieldsWithFiller(rcx, rdi, rdx);
}
// Add the object tag to make the JSObject real, so that we can continue
// and jump into the continuation code at any time from now on. Any
// failures need to undo the allocation, so that the heap is in a
// consistent state and verifiable.
// rax: initial map
// rbx: JSObject
// rdi: start of next object
__ orp(rbx, Immediate(kHeapObjectTag));
// Check if a non-empty properties array is needed.
// Allocate and initialize a FixedArray if it is.
// rax: initial map
// rbx: JSObject
// rdi: start of next object
// Calculate total properties described map.
__ movzxbp(rdx, FieldOperand(rax, Map::kUnusedPropertyFieldsOffset));
__ movzxbp(rcx,
FieldOperand(rax, Map::kPreAllocatedPropertyFieldsOffset));
__ addp(rdx, rcx);
// Calculate unused properties past the end of the in-object properties.
__ movzxbp(rcx, FieldOperand(rax, Map::kInObjectPropertiesOffset));
__ subp(rdx, rcx);
// Done if no extra properties are to be allocated.
__ j(zero, &allocated);
__ Assert(positive, kPropertyAllocationCountFailed);
// Scale the number of elements by pointer size and add the header for
// FixedArrays to the start of the next object calculation from above.
// rbx: JSObject
// rdi: start of next object (will be start of FixedArray)
// rdx: number of elements in properties array
__ Allocate(FixedArray::kHeaderSize,
times_pointer_size,
rdx,
rdi,
rax,
no_reg,
&undo_allocation,
RESULT_CONTAINS_TOP);
// Initialize the FixedArray.
// rbx: JSObject
// rdi: FixedArray
// rdx: number of elements
// rax: start of next object
__ LoadRoot(rcx, Heap::kFixedArrayMapRootIndex);
__ movp(Operand(rdi, HeapObject::kMapOffset), rcx); // setup the map
__ Integer32ToSmi(rdx, rdx);
__ movp(Operand(rdi, FixedArray::kLengthOffset), rdx); // and length
// Initialize the fields to undefined.
// rbx: JSObject
// rdi: FixedArray
// rax: start of next object
// rdx: number of elements
{ Label loop, entry;
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
__ leap(rcx, Operand(rdi, FixedArray::kHeaderSize));
__ jmp(&entry);
__ bind(&loop);
__ movp(Operand(rcx, 0), rdx);
__ addp(rcx, Immediate(kPointerSize));
__ bind(&entry);
__ cmpp(rcx, rax);
__ j(below, &loop);
}
// Store the initialized FixedArray into the properties field of
// the JSObject
// rbx: JSObject
// rdi: FixedArray
__ orp(rdi, Immediate(kHeapObjectTag)); // add the heap tag
__ movp(FieldOperand(rbx, JSObject::kPropertiesOffset), rdi);
// Continue with JSObject being successfully allocated
// rbx: JSObject
__ jmp(&allocated);
// Undo the setting of the new top so that the heap is verifiable. For
// example, the map's unused properties potentially do not match the
// allocated objects unused properties.
// rbx: JSObject (previous new top)
__ bind(&undo_allocation);
__ UndoAllocationInNewSpace(rbx);
}
// Allocate the new receiver object using the runtime call.
// rdi: function (constructor)
__ bind(&rt_call);
int offset = 0;
if (create_memento) {
// Get the cell or allocation site.
__ movp(rdi, Operand(rsp, kPointerSize*2));
__ Push(rdi);
offset = kPointerSize;
}
// Must restore rsi (context) and rdi (constructor) before calling runtime.
__ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
__ movp(rdi, Operand(rsp, offset));
__ Push(rdi);
if (create_memento) {
__ CallRuntime(Runtime::kHiddenNewObjectWithAllocationSite, 2);
} else {
__ CallRuntime(Runtime::kHiddenNewObject, 1);
}
__ movp(rbx, rax); // store result in rbx
// If we ended up using the runtime, and we want a memento, then the
// runtime call made it for us, and we shouldn't do create count
// increment.
Label count_incremented;
if (create_memento) {
__ jmp(&count_incremented);
}
// New object allocated.
// rbx: newly allocated object
__ bind(&allocated);
if (create_memento) {
__ movp(rcx, Operand(rsp, kPointerSize*2));
__ Cmp(rcx, masm->isolate()->factory()->undefined_value());
__ j(equal, &count_incremented);
// rcx is an AllocationSite. We are creating a memento from it, so we
// need to increment the memento create count.
__ SmiAddConstant(
FieldOperand(rcx, AllocationSite::kPretenureCreateCountOffset),
Smi::FromInt(1));
__ bind(&count_incremented);
}
// Retrieve the function from the stack.
__ Pop(rdi);
// Retrieve smi-tagged arguments count from the stack.
__ movp(rax, Operand(rsp, 0));
__ SmiToInteger32(rax, rax);
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ Push(rbx);
__ Push(rbx);
// Set up pointer to last argument.
__ leap(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ movp(rcx, rax);
__ jmp(&entry);
__ bind(&loop);
__ Push(Operand(rbx, rcx, times_pointer_size, 0));
__ bind(&entry);
__ decp(rcx);
__ j(greater_equal, &loop);
// Call the function.
if (is_api_function) {
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
Handle<Code> code =
masm->isolate()->builtins()->HandleApiCallConstruct();
__ Call(code, RelocInfo::CODE_TARGET);
} else {
ParameterCount actual(rax);
__ InvokeFunction(rdi, actual, CALL_FUNCTION, NullCallWrapper());
}
// Store offset of return address for deoptimizer.
if (!is_api_function) {
masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
}
// Restore context from the frame.
__ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(rax, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
__ j(above_equal, &exit);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ movp(rax, Operand(rsp, 0));
// Restore the arguments count and leave the construct frame.
__ bind(&exit);
__ movp(rbx, Operand(rsp, kPointerSize)); // Get arguments count.
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
__ PopReturnAddressTo(rcx);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ PushReturnAddressFrom(rcx);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->constructed_objects(), 1);
__ ret(0);
}
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, FLAG_pretenuring_call_new);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true, false);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Expects five C++ function parameters.
// - Address entry (ignored)
// - JSFunction* function (
// - Object* receiver
// - int argc
// - Object*** argv
// (see Handle::Invoke in execution.cc).
// Open a C++ scope for the FrameScope.
{
// Platform specific argument handling. After this, the stack contains
// an internal frame and the pushed function and receiver, and
// register rax and rbx holds the argument count and argument array,
// while rdi holds the function pointer and rsi the context.
#ifdef _WIN64
// MSVC parameters in:
// rcx : entry (ignored)
// rdx : function
// r8 : receiver
// r9 : argc
// [rsp+0x20] : argv
// Clear the context before we push it when entering the internal frame.
__ Set(rsi, 0);
// Enter an internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
// Load the function context into rsi.
__ movp(rsi, FieldOperand(rdx, JSFunction::kContextOffset));
// Push the function and the receiver onto the stack.
__ Push(rdx);
__ Push(r8);
// Load the number of arguments and setup pointer to the arguments.
__ movp(rax, r9);
// Load the previous frame pointer to access C argument on stack
__ movp(kScratchRegister, Operand(rbp, 0));
__ movp(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset));
// Load the function pointer into rdi.
__ movp(rdi, rdx);
#else // _WIN64
// GCC parameters in:
// rdi : entry (ignored)
// rsi : function
// rdx : receiver
// rcx : argc
// r8 : argv
__ movp(rdi, rsi);
// rdi : function
// Clear the context before we push it when entering the internal frame.
__ Set(rsi, 0);
// Enter an internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
// Push the function and receiver and setup the context.
__ Push(rdi);
__ Push(rdx);
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Load the number of arguments and setup pointer to the arguments.
__ movp(rax, rcx);
__ movp(rbx, r8);
#endif // _WIN64
// Current stack contents:
// [rsp + 2 * kPointerSize ... ] : Internal frame
// [rsp + kPointerSize] : function
// [rsp] : receiver
// Current register contents:
// rax : argc
// rbx : argv
// rsi : context
// rdi : function
// Copy arguments to the stack in a loop.
// Register rbx points to array of pointers to handle locations.
// Push the values of these handles.
Label loop, entry;
__ Set(rcx, 0); // Set loop variable to 0.
__ jmp(&entry);
__ bind(&loop);
__ movp(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0));
__ Push(Operand(kScratchRegister, 0)); // dereference handle
__ addp(rcx, Immediate(1));
__ bind(&entry);
__ cmpp(rcx, rax);
__ j(not_equal, &loop);
// Invoke the code.
if (is_construct) {
// No type feedback cell is available
__ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
// Expects rdi to hold function pointer.
CallConstructStub stub(masm->isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
__ CallStub(&stub);
} else {
ParameterCount actual(rax);
// Function must be in rdi.
__ InvokeFunction(rdi, actual, CALL_FUNCTION, NullCallWrapper());
}
// Exit the internal frame. Notice that this also removes the empty
// context and the function left on the stack by the code
// invocation.
}
// TODO(X64): Is argument correct? Is there a receiver to remove?
__ ret(1 * kPointerSize); // Remove receiver.
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
void Builtins::Generate_CompileUnoptimized(MacroAssembler* masm) {
CallRuntimePassFunction(masm, Runtime::kHiddenCompileUnoptimized);
GenerateTailCallToReturnedCode(masm);
}
static void CallCompileOptimized(MacroAssembler* masm,
bool concurrent) {
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the function onto the stack.
__ Push(rdi);
// Function is also the parameter to the runtime call.
__ Push(rdi);
// Whether to compile in a background thread.
__ Push(masm->isolate()->factory()->ToBoolean(concurrent));
__ CallRuntime(Runtime::kHiddenCompileOptimized, 2);
// Restore receiver.
__ Pop(rdi);
}
void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
CallCompileOptimized(masm, false);
GenerateTailCallToReturnedCode(masm);
}
void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
CallCompileOptimized(masm, true);
GenerateTailCallToReturnedCode(masm);
}
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
// For now, we are relying on the fact that make_code_young doesn't do any
// garbage collection which allows us to save/restore the registers without
// worrying about which of them contain pointers. We also don't build an
// internal frame to make the code faster, since we shouldn't have to do stack
// crawls in MakeCodeYoung. This seems a bit fragile.
// Re-execute the code that was patched back to the young age when
// the stub returns.
__ subp(Operand(rsp, 0), Immediate(5));
__ Pushad();
__ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate()));
__ movp(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize));
{ // NOLINT
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(2);
__ CallCFunction(
ExternalReference::get_make_code_young_function(masm->isolate()), 2);
}
__ Popad();
__ ret(0);
}
#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
} \
void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
}
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
// For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
// that make_code_young doesn't do any garbage collection which allows us to
// save/restore the registers without worrying about which of them contain
// pointers.
__ Pushad();
__ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate()));
__ movp(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize));
__ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength));
{ // NOLINT
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(2);
__ CallCFunction(
ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
2);
}
__ Popad();
// Perform prologue operations usually performed by the young code stub.
__ PopReturnAddressTo(kScratchRegister);
__ pushq(rbp); // Caller's frame pointer.
__ movp(rbp, rsp);
__ Push(rsi); // Callee's context.
__ Push(rdi); // Callee's JS Function.
__ PushReturnAddressFrom(kScratchRegister);
// Jump to point after the code-age stub.
__ ret(0);
}
void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
GenerateMakeCodeYoungAgainCommon(masm);
}
static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
SaveFPRegsMode save_doubles) {
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve registers across notification, this is important for compiled
// stubs that tail call the runtime on deopts passing their parameters in
// registers.
__ Pushad();
__ CallRuntime(Runtime::kHiddenNotifyStubFailure, 0, save_doubles);
__ Popad();
// Tear down internal frame.
}
__ DropUnderReturnAddress(1); // Ignore state offset
__ ret(0); // Return to IC Miss stub, continuation still on stack.
}
void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
}
void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass the deoptimization type to the runtime system.
__ Push(Smi::FromInt(static_cast<int>(type)));
__ CallRuntime(Runtime::kHiddenNotifyDeoptimized, 1);
// Tear down internal frame.
}
// Get the full codegen state from the stack and untag it.
__ SmiToInteger32(kScratchRegister, Operand(rsp, kPCOnStackSize));
// Switch on the state.
Label not_no_registers, not_tos_rax;
__ cmpp(kScratchRegister, Immediate(FullCodeGenerator::NO_REGISTERS));
__ j(not_equal, &not_no_registers, Label::kNear);
__ ret(1 * kPointerSize); // Remove state.
__ bind(&not_no_registers);
__ movp(rax, Operand(rsp, kPCOnStackSize + kPointerSize));
__ cmpp(kScratchRegister, Immediate(FullCodeGenerator::TOS_REG));
__ j(not_equal, &not_tos_rax, Label::kNear);
__ ret(2 * kPointerSize); // Remove state, rax.
__ bind(&not_tos_rax);
__ Abort(kNoCasesLeft);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
// Stack Layout:
// rsp[0] : Return address
// rsp[8] : Argument n
// rsp[16] : Argument n-1
// ...
// rsp[8 * n] : Argument 1
// rsp[8 * (n + 1)] : Receiver (function to call)
//
// rax contains the number of arguments, n, not counting the receiver.
//
// 1. Make sure we have at least one argument.
{ Label done;
__ testp(rax, rax);
__ j(not_zero, &done);
__ PopReturnAddressTo(rbx);
__ Push(masm->isolate()->factory()->undefined_value());
__ PushReturnAddressFrom(rbx);
__ incp(rax);
__ bind(&done);
}
// 2. Get the function to call (passed as receiver) from the stack, check
// if it is a function.
Label slow, non_function;
StackArgumentsAccessor args(rsp, rax);
__ movp(rdi, args.GetReceiverOperand());
__ JumpIfSmi(rdi, &non_function);
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &slow);
// 3a. Patch the first argument if necessary when calling a function.
Label shift_arguments;
__ Set(rdx, 0); // indicate regular JS_FUNCTION
{ Label convert_to_object, use_global_receiver, patch_receiver;
// Change context eagerly in case we need the global receiver.
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Do not transform the receiver for strict mode functions.
__ movp(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ testb(FieldOperand(rbx, SharedFunctionInfo::kStrictModeByteOffset),
Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
__ j(not_equal, &shift_arguments);
// Do not transform the receiver for natives.
// SharedFunctionInfo is already loaded into rbx.
__ testb(FieldOperand(rbx, SharedFunctionInfo::kNativeByteOffset),
Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
__ j(not_zero, &shift_arguments);
// Compute the receiver in sloppy mode.
__ movp(rbx, args.GetArgumentOperand(1));
__ JumpIfSmi(rbx, &convert_to_object, Label::kNear);
__ CompareRoot(rbx, Heap::kNullValueRootIndex);
__ j(equal, &use_global_receiver);
__ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
__ j(equal, &use_global_receiver);
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ CmpObjectType(rbx, FIRST_SPEC_OBJECT_TYPE, rcx);
__ j(above_equal, &shift_arguments);
__ bind(&convert_to_object);
{
// Enter an internal frame in order to preserve argument count.
FrameScope scope(masm, StackFrame::INTERNAL);
__ Integer32ToSmi(rax, rax);
__ Push(rax);
__ Push(rbx);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ movp(rbx, rax);
__ Set(rdx, 0); // indicate regular JS_FUNCTION
__ Pop(rax);
__ SmiToInteger32(rax, rax);
}
// Restore the function to rdi.
__ movp(rdi, args.GetReceiverOperand());
__ jmp(&patch_receiver, Label::kNear);
__ bind(&use_global_receiver);
__ movp(rbx,
Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
__ movp(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
__ bind(&patch_receiver);
__ movp(args.GetArgumentOperand(1), rbx);
__ jmp(&shift_arguments);
}
// 3b. Check for function proxy.
__ bind(&slow);
__ Set(rdx, 1); // indicate function proxy
__ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE);
__ j(equal, &shift_arguments);
__ bind(&non_function);
__ Set(rdx, 2); // indicate non-function
// 3c. Patch the first argument when calling a non-function. The
// CALL_NON_FUNCTION builtin expects the non-function callee as
// receiver, so overwrite the first argument which will ultimately
// become the receiver.
__ movp(args.GetArgumentOperand(1), rdi);
// 4. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
__ bind(&shift_arguments);
{ Label loop;
__ movp(rcx, rax);
StackArgumentsAccessor args(rsp, rcx);
__ bind(&loop);
__ movp(rbx, args.GetArgumentOperand(1));
__ movp(args.GetArgumentOperand(0), rbx);
__ decp(rcx);
__ j(not_zero, &loop); // While non-zero.
__ DropUnderReturnAddress(1, rbx); // Drop one slot under return address.
__ decp(rax); // One fewer argument (first argument is new receiver).
}
// 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
// or a function proxy via CALL_FUNCTION_PROXY.
{ Label function, non_proxy;
__ testp(rdx, rdx);
__ j(zero, &function);
__ Set(rbx, 0);
__ cmpp(rdx, Immediate(1));
__ j(not_equal, &non_proxy);
__ PopReturnAddressTo(rdx);
__ Push(rdi); // re-add proxy object as additional argument
__ PushReturnAddressFrom(rdx);
__ incp(rax);
__ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY);
__ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
__ bind(&non_proxy);
__ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
__ bind(&function);
}
// 5b. Get the code to call from the function and check that the number of
// expected arguments matches what we're providing. If so, jump
// (tail-call) to the code in register edx without checking arguments.
__ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ LoadSharedFunctionInfoSpecialField(rbx, rdx,
SharedFunctionInfo::kFormalParameterCountOffset);
__ movp(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
__ cmpp(rax, rbx);
__ j(not_equal,
masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
ParameterCount expected(0);
__ InvokeCode(rdx, expected, expected, JUMP_FUNCTION, NullCallWrapper());
}
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
// Stack at entry:
// rsp : return address
// rsp[8] : arguments
// rsp[16] : receiver ("this")
// rsp[24] : function
{
FrameScope frame_scope(masm, StackFrame::INTERNAL);
// Stack frame:
// rbp : Old base pointer
// rbp[8] : return address
// rbp[16] : function arguments
// rbp[24] : receiver
// rbp[32] : function
static const int kArgumentsOffset = kFPOnStackSize + kPCOnStackSize;
static const int kReceiverOffset = kArgumentsOffset + kPointerSize;
static const int kFunctionOffset = kReceiverOffset + kPointerSize;
__ Push(Operand(rbp, kFunctionOffset));
__ Push(Operand(rbp, kArgumentsOffset));
__ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex);
__ movp(rcx, rsp);
// Make rcx the space we have left. The stack might already be overflowed
// here which will cause rcx to become negative.
__ subp(rcx, kScratchRegister);
// Make rdx the space we need for the array when it is unrolled onto the
// stack.
__ PositiveSmiTimesPowerOfTwoToInteger64(rdx, rax, kPointerSizeLog2);
// Check if the arguments will overflow the stack.
__ cmpp(rcx, rdx);
__ j(greater, &okay); // Signed comparison.
// Out of stack space.
__ Push(Operand(rbp, kFunctionOffset));
__ Push(rax);
__ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
__ bind(&okay);
// End of stack check.
// Push current index and limit.
const int kLimitOffset =
StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
__ Push(rax); // limit
__ Push(Immediate(0)); // index
// Get the receiver.
__ movp(rbx, Operand(rbp, kReceiverOffset));
// Check that the function is a JS function (otherwise it must be a proxy).
Label push_receiver;
__ movp(rdi, Operand(rbp, kFunctionOffset));
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &push_receiver);
// Change context eagerly to get the right global object if necessary.
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Do not transform the receiver for strict mode functions.
Label call_to_object, use_global_receiver;
__ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ testb(FieldOperand(rdx, SharedFunctionInfo::kStrictModeByteOffset),
Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
__ j(not_equal, &push_receiver);
// Do not transform the receiver for natives.
__ testb(FieldOperand(rdx, SharedFunctionInfo::kNativeByteOffset),
Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
__ j(not_equal, &push_receiver);
// Compute the receiver in sloppy mode.
__ JumpIfSmi(rbx, &call_to_object, Label::kNear);
__ CompareRoot(rbx, Heap::kNullValueRootIndex);
__ j(equal, &use_global_receiver);
__ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
__ j(equal, &use_global_receiver);
// If given receiver is already a JavaScript object then there's no
// reason for converting it.
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ CmpObjectType(rbx, FIRST_SPEC_OBJECT_TYPE, rcx);
__ j(above_equal, &push_receiver);
// Convert the receiver to an object.
__ bind(&call_to_object);
__ Push(rbx);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ movp(rbx, rax);
__ jmp(&push_receiver, Label::kNear);
__ bind(&use_global_receiver);
__ movp(rbx,
Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
__ movp(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
// Push the receiver.
__ bind(&push_receiver);
__ Push(rbx);
// Copy all arguments from the array to the stack.
Label entry, loop;
__ movp(rax, Operand(rbp, kIndexOffset));
__ jmp(&entry);
__ bind(&loop);
__ movp(rdx, Operand(rbp, kArgumentsOffset)); // load arguments
// Use inline caching to speed up access to arguments.
Handle<Code> ic =
masm->isolate()->builtins()->KeyedLoadIC_Initialize();
__ Call(ic, RelocInfo::CODE_TARGET);
// It is important that we do not have a test instruction after the
// call. A test instruction after the call is used to indicate that
// we have generated an inline version of the keyed load. In this
// case, we know that we are not generating a test instruction next.
// Push the nth argument.
__ Push(rax);
// Update the index on the stack and in register rax.
__ movp(rax, Operand(rbp, kIndexOffset));
__ SmiAddConstant(rax, rax, Smi::FromInt(1));
__ movp(Operand(rbp, kIndexOffset), rax);
__ bind(&entry);
__ cmpp(rax, Operand(rbp, kLimitOffset));
__ j(not_equal, &loop);
// Call the function.
Label call_proxy;
ParameterCount actual(rax);
__ SmiToInteger32(rax, rax);
__ movp(rdi, Operand(rbp, kFunctionOffset));
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &call_proxy);
__ InvokeFunction(rdi, actual, CALL_FUNCTION, NullCallWrapper());
frame_scope.GenerateLeaveFrame();
__ ret(3 * kPointerSize); // remove this, receiver, and arguments
// Call the function proxy.
__ bind(&call_proxy);
__ Push(rdi); // add function proxy as last argument
__ incp(rax);
__ Set(rbx, 0);
__ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY);
__ call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
// Leave internal frame.
}
__ ret(3 * kPointerSize); // remove this, receiver, and arguments
}
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
Label generic_array_code;
// Get the InternalArray function.
__ LoadGlobalFunction(Context::INTERNAL_ARRAY_FUNCTION_INDEX, rdi);
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
STATIC_ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
__ Check(not_smi, kUnexpectedInitialMapForInternalArrayFunction);
__ CmpObjectType(rbx, MAP_TYPE, rcx);
__ Check(equal, kUnexpectedInitialMapForInternalArrayFunction);
}
// Run the native code for the InternalArray function called as a normal
// function.
// tail call a stub
InternalArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
Label generic_array_code;
// Get the Array function.
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rdi);
if (FLAG_debug_code) {
// Initial map for the builtin Array functions should be maps.
__ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
STATIC_ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
__ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
__ CmpObjectType(rbx, MAP_TYPE, rcx);
__ Check(equal, kUnexpectedInitialMapForArrayFunction);
}
// Run the native code for the Array function called as a normal function.
// tail call a stub
__ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : number of arguments
// -- rdi : constructor function
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->string_ctor_calls(), 1);
if (FLAG_debug_code) {
__ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, rcx);
__ cmpp(rdi, rcx);
__ Assert(equal, kUnexpectedStringFunction);
}
// Load the first argument into rax and get rid of the rest
// (including the receiver).
StackArgumentsAccessor args(rsp, rax);
Label no_arguments;
__ testp(rax, rax);
__ j(zero, &no_arguments);
__ movp(rbx, args.GetArgumentOperand(1));
__ PopReturnAddressTo(rcx);
__ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
__ PushReturnAddressFrom(rcx);
__ movp(rax, rbx);
// Lookup the argument in the number to string cache.
Label not_cached, argument_is_string;
__ LookupNumberStringCache(rax, // Input.
rbx, // Result.
rcx, // Scratch 1.
rdx, // Scratch 2.
&not_cached);
__ IncrementCounter(counters->string_ctor_cached_number(), 1);
__ bind(&argument_is_string);
// ----------- S t a t e -------------
// -- rbx : argument converted to string
// -- rdi : constructor function
// -- rsp[0] : return address
// -----------------------------------
// Allocate a JSValue and put the tagged pointer into rax.
Label gc_required;
__ Allocate(JSValue::kSize,
rax, // Result.
rcx, // New allocation top (we ignore it).
no_reg,
&gc_required,
TAG_OBJECT);
// Set the map.
__ LoadGlobalFunctionInitialMap(rdi, rcx);
if (FLAG_debug_code) {
__ cmpb(FieldOperand(rcx, Map::kInstanceSizeOffset),
Immediate(JSValue::kSize >> kPointerSizeLog2));
__ Assert(equal, kUnexpectedStringWrapperInstanceSize);
__ cmpb(FieldOperand(rcx, Map::kUnusedPropertyFieldsOffset), Immediate(0));
__ Assert(equal, kUnexpectedUnusedPropertiesOfStringWrapper);
}
__ movp(FieldOperand(rax, HeapObject::kMapOffset), rcx);
// Set properties and elements.
__ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex);
__ movp(FieldOperand(rax, JSObject::kPropertiesOffset), rcx);
__ movp(FieldOperand(rax, JSObject::kElementsOffset), rcx);
// Set the value.
__ movp(FieldOperand(rax, JSValue::kValueOffset), rbx);
// Ensure the object is fully initialized.
STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
// We're done. Return.
__ ret(0);
// The argument was not found in the number to string cache. Check
// if it's a string already before calling the conversion builtin.
Label convert_argument;
__ bind(&not_cached);
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(rax, &convert_argument);
Condition is_string = masm->IsObjectStringType(rax, rbx, rcx);
__ j(NegateCondition(is_string), &convert_argument);
__ movp(rbx, rax);
__ IncrementCounter(counters->string_ctor_string_value(), 1);
__ jmp(&argument_is_string);
// Invoke the conversion builtin and put the result into rbx.
__ bind(&convert_argument);
__ IncrementCounter(counters->string_ctor_conversions(), 1);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rdi); // Preserve the function.
__ Push(rax);
__ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
__ Pop(rdi);
}
__ movp(rbx, rax);
__ jmp(&argument_is_string);
// Load the empty string into rbx, remove the receiver from the
// stack, and jump back to the case where the argument is a string.
__ bind(&no_arguments);
__ LoadRoot(rbx, Heap::kempty_stringRootIndex);
__ PopReturnAddressTo(rcx);
__ leap(rsp, Operand(rsp, kPointerSize));
__ PushReturnAddressFrom(rcx);
__ jmp(&argument_is_string);
// At this point the argument is already a string. Call runtime to
// create a string wrapper.
__ bind(&gc_required);
__ IncrementCounter(counters->string_ctor_gc_required(), 1);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rbx);
__ CallRuntime(Runtime::kNewStringWrapper, 1);
}
__ ret(0);
}
static void ArgumentsAdaptorStackCheck(MacroAssembler* masm,
Label* stack_overflow) {
// ----------- S t a t e -------------
// -- rax : actual number of arguments
// -- rbx : expected number of arguments
// -- rdi: function (passed through to callee)
// -----------------------------------
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(rdx, Heap::kRealStackLimitRootIndex);
__ movp(rcx, rsp);
// Make rcx the space we have left. The stack might already be overflowed
// here which will cause rcx to become negative.
__ subp(rcx, rdx);
// Make rdx the space we need for the array when it is unrolled onto the
// stack.
__ movp(rdx, rbx);
__ shlp(rdx, Immediate(kPointerSizeLog2));
// Check if the arguments will overflow the stack.
__ cmpp(rcx, rdx);
__ j(less_equal, stack_overflow); // Signed comparison.
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ pushq(rbp);
__ movp(rbp, rsp);
// Store the arguments adaptor context sentinel.
__ Push(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
// Push the function on the stack.
__ Push(rdi);
// Preserve the number of arguments on the stack. Must preserve rax,
// rbx and rcx because these registers are used when copying the
// arguments and the receiver.
__ Integer32ToSmi(r8, rax);
__ Push(r8);
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// Retrieve the number of arguments from the stack. Number is a Smi.
__ movp(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));
// Leave the frame.
__ movp(rsp, rbp);
__ popq(rbp);
// Remove caller arguments from the stack.
__ PopReturnAddressTo(rcx);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ PushReturnAddressFrom(rcx);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : actual number of arguments
// -- rbx : expected number of arguments
// -- rdi: function (passed through to callee)
// -----------------------------------
Label invoke, dont_adapt_arguments;
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->arguments_adaptors(), 1);
Label stack_overflow;
ArgumentsAdaptorStackCheck(masm, &stack_overflow);
Label enough, too_few;
__ movp(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
__ cmpp(rax, rbx);
__ j(less, &too_few);
__ cmpp(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
__ j(equal, &dont_adapt_arguments);
{ // Enough parameters: Actual >= expected.
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
// Copy receiver and all expected arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ leap(rax, Operand(rbp, rax, times_pointer_size, offset));
__ Set(r8, -1); // account for receiver
Label copy;
__ bind(&copy);
__ incp(r8);
__ Push(Operand(rax, 0));
__ subp(rax, Immediate(kPointerSize));
__ cmpp(r8, rbx);
__ j(less, &copy);
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
// Copy receiver and all actual arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ leap(rdi, Operand(rbp, rax, times_pointer_size, offset));
__ Set(r8, -1); // account for receiver
Label copy;
__ bind(&copy);
__ incp(r8);
__ Push(Operand(rdi, 0));
__ subp(rdi, Immediate(kPointerSize));
__ cmpp(r8, rax);
__ j(less, &copy);
// Fill remaining expected arguments with undefined values.
Label fill;
__ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
__ bind(&fill);
__ incp(r8);
__ Push(kScratchRegister);
__ cmpp(r8, rbx);
__ j(less, &fill);
// Restore function pointer.
__ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
}
// Call the entry point.
__ bind(&invoke);
__ call(rdx);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Leave frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ ret(0);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ jmp(rdx);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
EnterArgumentsAdaptorFrame(masm);
__ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
__ int3();
}
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
// Lookup the function in the JavaScript frame.
__ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ Push(rax);
__ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
}
Label skip;
// If the code object is null, just return to the unoptimized code.
__ cmpp(rax, Immediate(0));
__ j(not_equal, &skip, Label::kNear);
__ ret(0);
__ bind(&skip);
// Load deoptimization data from the code object.
__ movp(rbx, Operand(rax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
// Load the OSR entrypoint offset from the deoptimization data.
__ SmiToInteger32(rbx, Operand(rbx, FixedArray::OffsetOfElementAt(
DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));
// Compute the target address = code_obj + header_size + osr_offset
__ leap(rax, Operand(rax, rbx, times_1, Code::kHeaderSize - kHeapObjectTag));
// Overwrite the return address on the stack.
__ movq(StackOperandForReturnAddress(0), rax);
// And "return" to the OSR entry point of the function.
__ ret(0);
}
void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
// We check the stack limit as indicator that recompilation might be done.
Label ok;
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
__ j(above_equal, &ok);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kHiddenStackGuard, 0);
}
__ jmp(masm->isolate()->builtins()->OnStackReplacement(),
RelocInfo::CODE_TARGET);
__ bind(&ok);
__ ret(0);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64