blob: 7cb364b4d77e2679f09fcb6e2bcd8740cf68e8a7 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_PARSER_H_
#define V8_PARSER_H_
#include "src/allocation.h"
#include "src/ast.h"
#include "src/compiler.h" // For CachedDataMode
#include "src/preparse-data-format.h"
#include "src/preparse-data.h"
#include "src/scopes.h"
#include "src/preparser.h"
namespace v8 {
class ScriptCompiler;
namespace internal {
class CompilationInfo;
class ParserLog;
class PositionStack;
class Target;
template <typename T> class ZoneListWrapper;
class FunctionEntry BASE_EMBEDDED {
public:
enum {
kStartPositionIndex,
kEndPositionIndex,
kLiteralCountIndex,
kPropertyCountIndex,
kStrictModeIndex,
kSize
};
explicit FunctionEntry(Vector<unsigned> backing)
: backing_(backing) { }
FunctionEntry() : backing_() { }
int start_pos() { return backing_[kStartPositionIndex]; }
int end_pos() { return backing_[kEndPositionIndex]; }
int literal_count() { return backing_[kLiteralCountIndex]; }
int property_count() { return backing_[kPropertyCountIndex]; }
StrictMode strict_mode() {
ASSERT(backing_[kStrictModeIndex] == SLOPPY ||
backing_[kStrictModeIndex] == STRICT);
return static_cast<StrictMode>(backing_[kStrictModeIndex]);
}
bool is_valid() { return !backing_.is_empty(); }
private:
Vector<unsigned> backing_;
};
class ScriptData {
public:
explicit ScriptData(Vector<unsigned> store)
: store_(store),
owns_store_(true) { }
ScriptData(Vector<unsigned> store, bool owns_store)
: store_(store),
owns_store_(owns_store) { }
// The created ScriptData won't take ownership of the data. If the alignment
// is not correct, this will copy the data (and the created ScriptData will
// take ownership of the copy).
static ScriptData* New(const char* data, int length);
virtual ~ScriptData();
virtual int Length();
virtual const char* Data();
virtual bool HasError();
void Initialize();
void ReadNextSymbolPosition();
FunctionEntry GetFunctionEntry(int start);
int GetSymbolIdentifier();
bool SanityCheck();
Scanner::Location MessageLocation() const;
bool IsReferenceError() const;
const char* BuildMessage() const;
const char* BuildArg() const;
int function_count() {
int functions_size =
static_cast<int>(store_[PreparseDataConstants::kFunctionsSizeOffset]);
if (functions_size < 0) return 0;
if (functions_size % FunctionEntry::kSize != 0) return 0;
return functions_size / FunctionEntry::kSize;
}
// The following functions should only be called if SanityCheck has
// returned true.
bool has_error() { return store_[PreparseDataConstants::kHasErrorOffset]; }
unsigned magic() { return store_[PreparseDataConstants::kMagicOffset]; }
unsigned version() { return store_[PreparseDataConstants::kVersionOffset]; }
private:
// Disable copying and assigning; because of owns_store they won't be correct.
ScriptData(const ScriptData&);
ScriptData& operator=(const ScriptData&);
friend class v8::ScriptCompiler;
Vector<unsigned> store_;
unsigned char* symbol_data_;
unsigned char* symbol_data_end_;
int function_index_;
bool owns_store_;
unsigned Read(int position) const;
unsigned* ReadAddress(int position) const;
// Reads a number from the current symbols
int ReadNumber(byte** source);
// Read strings written by ParserRecorder::WriteString.
static const char* ReadString(unsigned* start, int* chars);
};
// ----------------------------------------------------------------------------
// REGEXP PARSING
// A BufferedZoneList is an automatically growing list, just like (and backed
// by) a ZoneList, that is optimized for the case of adding and removing
// a single element. The last element added is stored outside the backing list,
// and if no more than one element is ever added, the ZoneList isn't even
// allocated.
// Elements must not be NULL pointers.
template <typename T, int initial_size>
class BufferedZoneList {
public:
BufferedZoneList() : list_(NULL), last_(NULL) {}
// Adds element at end of list. This element is buffered and can
// be read using last() or removed using RemoveLast until a new Add or until
// RemoveLast or GetList has been called.
void Add(T* value, Zone* zone) {
if (last_ != NULL) {
if (list_ == NULL) {
list_ = new(zone) ZoneList<T*>(initial_size, zone);
}
list_->Add(last_, zone);
}
last_ = value;
}
T* last() {
ASSERT(last_ != NULL);
return last_;
}
T* RemoveLast() {
ASSERT(last_ != NULL);
T* result = last_;
if ((list_ != NULL) && (list_->length() > 0))
last_ = list_->RemoveLast();
else
last_ = NULL;
return result;
}
T* Get(int i) {
ASSERT((0 <= i) && (i < length()));
if (list_ == NULL) {
ASSERT_EQ(0, i);
return last_;
} else {
if (i == list_->length()) {
ASSERT(last_ != NULL);
return last_;
} else {
return list_->at(i);
}
}
}
void Clear() {
list_ = NULL;
last_ = NULL;
}
int length() {
int length = (list_ == NULL) ? 0 : list_->length();
return length + ((last_ == NULL) ? 0 : 1);
}
ZoneList<T*>* GetList(Zone* zone) {
if (list_ == NULL) {
list_ = new(zone) ZoneList<T*>(initial_size, zone);
}
if (last_ != NULL) {
list_->Add(last_, zone);
last_ = NULL;
}
return list_;
}
private:
ZoneList<T*>* list_;
T* last_;
};
// Accumulates RegExp atoms and assertions into lists of terms and alternatives.
class RegExpBuilder: public ZoneObject {
public:
explicit RegExpBuilder(Zone* zone);
void AddCharacter(uc16 character);
// "Adds" an empty expression. Does nothing except consume a
// following quantifier
void AddEmpty();
void AddAtom(RegExpTree* tree);
void AddAssertion(RegExpTree* tree);
void NewAlternative(); // '|'
void AddQuantifierToAtom(
int min, int max, RegExpQuantifier::QuantifierType type);
RegExpTree* ToRegExp();
private:
void FlushCharacters();
void FlushText();
void FlushTerms();
Zone* zone() const { return zone_; }
Zone* zone_;
bool pending_empty_;
ZoneList<uc16>* characters_;
BufferedZoneList<RegExpTree, 2> terms_;
BufferedZoneList<RegExpTree, 2> text_;
BufferedZoneList<RegExpTree, 2> alternatives_;
#ifdef DEBUG
enum {ADD_NONE, ADD_CHAR, ADD_TERM, ADD_ASSERT, ADD_ATOM} last_added_;
#define LAST(x) last_added_ = x;
#else
#define LAST(x)
#endif
};
class RegExpParser BASE_EMBEDDED {
public:
RegExpParser(FlatStringReader* in,
Handle<String>* error,
bool multiline_mode,
Zone* zone);
static bool ParseRegExp(FlatStringReader* input,
bool multiline,
RegExpCompileData* result,
Zone* zone);
RegExpTree* ParsePattern();
RegExpTree* ParseDisjunction();
RegExpTree* ParseGroup();
RegExpTree* ParseCharacterClass();
// Parses a {...,...} quantifier and stores the range in the given
// out parameters.
bool ParseIntervalQuantifier(int* min_out, int* max_out);
// Parses and returns a single escaped character. The character
// must not be 'b' or 'B' since they are usually handle specially.
uc32 ParseClassCharacterEscape();
// Checks whether the following is a length-digit hexadecimal number,
// and sets the value if it is.
bool ParseHexEscape(int length, uc32* value);
uc32 ParseOctalLiteral();
// Tries to parse the input as a back reference. If successful it
// stores the result in the output parameter and returns true. If
// it fails it will push back the characters read so the same characters
// can be reparsed.
bool ParseBackReferenceIndex(int* index_out);
CharacterRange ParseClassAtom(uc16* char_class);
RegExpTree* ReportError(Vector<const char> message);
void Advance();
void Advance(int dist);
void Reset(int pos);
// Reports whether the pattern might be used as a literal search string.
// Only use if the result of the parse is a single atom node.
bool simple();
bool contains_anchor() { return contains_anchor_; }
void set_contains_anchor() { contains_anchor_ = true; }
int captures_started() { return captures_ == NULL ? 0 : captures_->length(); }
int position() { return next_pos_ - 1; }
bool failed() { return failed_; }
static const int kMaxCaptures = 1 << 16;
static const uc32 kEndMarker = (1 << 21);
private:
enum SubexpressionType {
INITIAL,
CAPTURE, // All positive values represent captures.
POSITIVE_LOOKAHEAD,
NEGATIVE_LOOKAHEAD,
GROUPING
};
class RegExpParserState : public ZoneObject {
public:
RegExpParserState(RegExpParserState* previous_state,
SubexpressionType group_type,
int disjunction_capture_index,
Zone* zone)
: previous_state_(previous_state),
builder_(new(zone) RegExpBuilder(zone)),
group_type_(group_type),
disjunction_capture_index_(disjunction_capture_index) {}
// Parser state of containing expression, if any.
RegExpParserState* previous_state() { return previous_state_; }
bool IsSubexpression() { return previous_state_ != NULL; }
// RegExpBuilder building this regexp's AST.
RegExpBuilder* builder() { return builder_; }
// Type of regexp being parsed (parenthesized group or entire regexp).
SubexpressionType group_type() { return group_type_; }
// Index in captures array of first capture in this sub-expression, if any.
// Also the capture index of this sub-expression itself, if group_type
// is CAPTURE.
int capture_index() { return disjunction_capture_index_; }
private:
// Linked list implementation of stack of states.
RegExpParserState* previous_state_;
// Builder for the stored disjunction.
RegExpBuilder* builder_;
// Stored disjunction type (capture, look-ahead or grouping), if any.
SubexpressionType group_type_;
// Stored disjunction's capture index (if any).
int disjunction_capture_index_;
};
Isolate* isolate() { return isolate_; }
Zone* zone() const { return zone_; }
uc32 current() { return current_; }
bool has_more() { return has_more_; }
bool has_next() { return next_pos_ < in()->length(); }
uc32 Next();
FlatStringReader* in() { return in_; }
void ScanForCaptures();
Isolate* isolate_;
Zone* zone_;
Handle<String>* error_;
ZoneList<RegExpCapture*>* captures_;
FlatStringReader* in_;
uc32 current_;
int next_pos_;
// The capture count is only valid after we have scanned for captures.
int capture_count_;
bool has_more_;
bool multiline_;
bool simple_;
bool contains_anchor_;
bool is_scanned_for_captures_;
bool failed_;
};
// ----------------------------------------------------------------------------
// JAVASCRIPT PARSING
class Parser;
class SingletonLogger;
class ParserTraits {
public:
struct Type {
// TODO(marja): To be removed. The Traits object should contain all the data
// it needs.
typedef v8::internal::Parser* Parser;
// Used by FunctionState and BlockState.
typedef v8::internal::Scope Scope;
typedef Variable GeneratorVariable;
typedef v8::internal::Zone Zone;
// Return types for traversing functions.
typedef Handle<String> Identifier;
typedef v8::internal::Expression* Expression;
typedef Yield* YieldExpression;
typedef v8::internal::FunctionLiteral* FunctionLiteral;
typedef v8::internal::Literal* Literal;
typedef ObjectLiteral::Property* ObjectLiteralProperty;
typedef ZoneList<v8::internal::Expression*>* ExpressionList;
typedef ZoneList<ObjectLiteral::Property*>* PropertyList;
typedef ZoneList<v8::internal::Statement*>* StatementList;
// For constructing objects returned by the traversing functions.
typedef AstNodeFactory<AstConstructionVisitor> Factory;
};
explicit ParserTraits(Parser* parser) : parser_(parser) {}
// Custom operations executed when FunctionStates are created and destructed.
template<typename FunctionState>
static void SetUpFunctionState(FunctionState* function_state, Zone* zone) {
Isolate* isolate = zone->isolate();
function_state->saved_ast_node_id_ = isolate->ast_node_id();
isolate->set_ast_node_id(BailoutId::FirstUsable().ToInt());
}
template<typename FunctionState>
static void TearDownFunctionState(FunctionState* function_state, Zone* zone) {
if (function_state->outer_function_state_ != NULL) {
zone->isolate()->set_ast_node_id(function_state->saved_ast_node_id_);
}
}
// Helper functions for recursive descent.
bool IsEvalOrArguments(Handle<String> identifier) const;
// Returns true if the expression is of type "this.foo".
static bool IsThisProperty(Expression* expression);
static bool IsIdentifier(Expression* expression);
static Handle<String> AsIdentifier(Expression* expression) {
ASSERT(IsIdentifier(expression));
return expression->AsVariableProxy()->name();
}
static bool IsBoilerplateProperty(ObjectLiteral::Property* property) {
return ObjectLiteral::IsBoilerplateProperty(property);
}
static bool IsArrayIndex(Handle<String> string, uint32_t* index) {
return !string.is_null() && string->AsArrayIndex(index);
}
// Functions for encapsulating the differences between parsing and preparsing;
// operations interleaved with the recursive descent.
static void PushLiteralName(FuncNameInferrer* fni, Handle<String> id) {
fni->PushLiteralName(id);
}
void PushPropertyName(FuncNameInferrer* fni, Expression* expression);
static void CheckFunctionLiteralInsideTopLevelObjectLiteral(
Scope* scope, Expression* value, bool* has_function) {
if (scope->DeclarationScope()->is_global_scope() &&
value->AsFunctionLiteral() != NULL) {
*has_function = true;
value->AsFunctionLiteral()->set_pretenure();
}
}
// If we assign a function literal to a property we pretenure the
// literal so it can be added as a constant function property.
static void CheckAssigningFunctionLiteralToProperty(Expression* left,
Expression* right);
// Keep track of eval() calls since they disable all local variable
// optimizations. This checks if expression is an eval call, and if yes,
// forwards the information to scope.
void CheckPossibleEvalCall(Expression* expression, Scope* scope);
// Determine if the expression is a variable proxy and mark it as being used
// in an assignment or with a increment/decrement operator. This is currently
// used on for the statically checking assignments to harmony const bindings.
static Expression* MarkExpressionAsLValue(Expression* expression);
// Returns true if we have a binary expression between two numeric
// literals. In that case, *x will be changed to an expression which is the
// computed value.
bool ShortcutNumericLiteralBinaryExpression(
Expression** x, Expression* y, Token::Value op, int pos,
AstNodeFactory<AstConstructionVisitor>* factory);
// Rewrites the following types of unary expressions:
// not <literal> -> true / false
// + <numeric literal> -> <numeric literal>
// - <numeric literal> -> <numeric literal with value negated>
// ! <literal> -> true / false
// The following rewriting rules enable the collection of type feedback
// without any special stub and the multiplication is removed later in
// Crankshaft's canonicalization pass.
// + foo -> foo * 1
// - foo -> foo * (-1)
// ~ foo -> foo ^(~0)
Expression* BuildUnaryExpression(
Expression* expression, Token::Value op, int pos,
AstNodeFactory<AstConstructionVisitor>* factory);
// Generate AST node that throws a ReferenceError with the given type.
Expression* NewThrowReferenceError(const char* type, int pos);
// Generate AST node that throws a SyntaxError with the given
// type. The first argument may be null (in the handle sense) in
// which case no arguments are passed to the constructor.
Expression* NewThrowSyntaxError(
const char* type, Handle<Object> arg, int pos);
// Generate AST node that throws a TypeError with the given
// type. Both arguments must be non-null (in the handle sense).
Expression* NewThrowTypeError(const char* type, Handle<Object> arg, int pos);
// Generic AST generator for throwing errors from compiled code.
Expression* NewThrowError(
Handle<String> constructor, const char* type,
Vector<Handle<Object> > arguments, int pos);
// Reporting errors.
void ReportMessageAt(Scanner::Location source_location,
const char* message,
const char* arg,
bool is_reference_error = false);
void ReportMessage(const char* message,
MaybeHandle<String> arg,
bool is_reference_error = false);
void ReportMessageAt(Scanner::Location source_location,
const char* message,
MaybeHandle<String> arg,
bool is_reference_error = false);
// "null" return type creators.
static Handle<String> EmptyIdentifier() {
return Handle<String>();
}
static Expression* EmptyExpression() {
return NULL;
}
static Literal* EmptyLiteral() {
return NULL;
}
// Used in error return values.
static ZoneList<Expression*>* NullExpressionList() {
return NULL;
}
// Odd-ball literal creators.
Literal* GetLiteralTheHole(int position,
AstNodeFactory<AstConstructionVisitor>* factory);
// Producing data during the recursive descent.
Handle<String> GetSymbol(Scanner* scanner = NULL);
Handle<String> NextLiteralString(Scanner* scanner,
PretenureFlag tenured);
Expression* ThisExpression(Scope* scope,
AstNodeFactory<AstConstructionVisitor>* factory);
Literal* ExpressionFromLiteral(
Token::Value token, int pos, Scanner* scanner,
AstNodeFactory<AstConstructionVisitor>* factory);
Expression* ExpressionFromIdentifier(
Handle<String> name, int pos, Scope* scope,
AstNodeFactory<AstConstructionVisitor>* factory);
Expression* ExpressionFromString(
int pos, Scanner* scanner,
AstNodeFactory<AstConstructionVisitor>* factory);
ZoneList<v8::internal::Expression*>* NewExpressionList(int size, Zone* zone) {
return new(zone) ZoneList<v8::internal::Expression*>(size, zone);
}
ZoneList<ObjectLiteral::Property*>* NewPropertyList(int size, Zone* zone) {
return new(zone) ZoneList<ObjectLiteral::Property*>(size, zone);
}
ZoneList<v8::internal::Statement*>* NewStatementList(int size, Zone* zone) {
return new(zone) ZoneList<v8::internal::Statement*>(size, zone);
}
// Temporary glue; these functions will move to ParserBase.
Expression* ParseV8Intrinsic(bool* ok);
FunctionLiteral* ParseFunctionLiteral(
Handle<String> name,
Scanner::Location function_name_location,
bool name_is_strict_reserved,
bool is_generator,
int function_token_position,
FunctionLiteral::FunctionType type,
FunctionLiteral::ArityRestriction arity_restriction,
bool* ok);
private:
Parser* parser_;
};
class Parser : public ParserBase<ParserTraits> {
public:
explicit Parser(CompilationInfo* info);
~Parser() {
delete reusable_preparser_;
reusable_preparser_ = NULL;
}
// Parses the source code represented by the compilation info and sets its
// function literal. Returns false (and deallocates any allocated AST
// nodes) if parsing failed.
static bool Parse(CompilationInfo* info,
bool allow_lazy = false) {
Parser parser(info);
parser.set_allow_lazy(allow_lazy);
return parser.Parse();
}
bool Parse();
private:
friend class ParserTraits;
// Limit the allowed number of local variables in a function. The hard limit
// is that offsets computed by FullCodeGenerator::StackOperand and similar
// functions are ints, and they should not overflow. In addition, accessing
// local variables creates user-controlled constants in the generated code,
// and we don't want too much user-controlled memory inside the code (this was
// the reason why this limit was introduced in the first place; see
// https://codereview.chromium.org/7003030/ ).
static const int kMaxNumFunctionLocals = 4194303; // 2^22-1
enum VariableDeclarationContext {
kModuleElement,
kBlockElement,
kStatement,
kForStatement
};
// If a list of variable declarations includes any initializers.
enum VariableDeclarationProperties {
kHasInitializers,
kHasNoInitializers
};
// Returns NULL if parsing failed.
FunctionLiteral* ParseProgram();
FunctionLiteral* ParseLazy();
FunctionLiteral* ParseLazy(Utf16CharacterStream* source);
Isolate* isolate() { return isolate_; }
CompilationInfo* info() const { return info_; }
// Called by ParseProgram after setting up the scanner.
FunctionLiteral* DoParseProgram(CompilationInfo* info,
Handle<String> source);
// Report syntax error
void ReportInvalidCachedData(Handle<String> name, bool* ok);
void SetCachedData(ScriptData** data,
CachedDataMode cached_data_mode) {
cached_data_mode_ = cached_data_mode;
if (cached_data_mode == NO_CACHED_DATA) {
cached_data_ = NULL;
} else {
ASSERT(data != NULL);
cached_data_ = data;
}
}
bool inside_with() const { return scope_->inside_with(); }
ScriptData** cached_data() const { return cached_data_; }
CachedDataMode cached_data_mode() const { return cached_data_mode_; }
Scope* DeclarationScope(VariableMode mode) {
return IsLexicalVariableMode(mode)
? scope_ : scope_->DeclarationScope();
}
// All ParseXXX functions take as the last argument an *ok parameter
// which is set to false if parsing failed; it is unchanged otherwise.
// By making the 'exception handling' explicit, we are forced to check
// for failure at the call sites.
void* ParseSourceElements(ZoneList<Statement*>* processor, int end_token,
bool is_eval, bool is_global, bool* ok);
Statement* ParseModuleElement(ZoneStringList* labels, bool* ok);
Statement* ParseModuleDeclaration(ZoneStringList* names, bool* ok);
Module* ParseModule(bool* ok);
Module* ParseModuleLiteral(bool* ok);
Module* ParseModulePath(bool* ok);
Module* ParseModuleVariable(bool* ok);
Module* ParseModuleUrl(bool* ok);
Module* ParseModuleSpecifier(bool* ok);
Block* ParseImportDeclaration(bool* ok);
Statement* ParseExportDeclaration(bool* ok);
Statement* ParseBlockElement(ZoneStringList* labels, bool* ok);
Statement* ParseStatement(ZoneStringList* labels, bool* ok);
Statement* ParseFunctionDeclaration(ZoneStringList* names, bool* ok);
Statement* ParseNativeDeclaration(bool* ok);
Block* ParseBlock(ZoneStringList* labels, bool* ok);
Block* ParseVariableStatement(VariableDeclarationContext var_context,
ZoneStringList* names,
bool* ok);
Block* ParseVariableDeclarations(VariableDeclarationContext var_context,
VariableDeclarationProperties* decl_props,
ZoneStringList* names,
Handle<String>* out,
bool* ok);
Statement* ParseExpressionOrLabelledStatement(ZoneStringList* labels,
bool* ok);
IfStatement* ParseIfStatement(ZoneStringList* labels, bool* ok);
Statement* ParseContinueStatement(bool* ok);
Statement* ParseBreakStatement(ZoneStringList* labels, bool* ok);
Statement* ParseReturnStatement(bool* ok);
Statement* ParseWithStatement(ZoneStringList* labels, bool* ok);
CaseClause* ParseCaseClause(bool* default_seen_ptr, bool* ok);
SwitchStatement* ParseSwitchStatement(ZoneStringList* labels, bool* ok);
DoWhileStatement* ParseDoWhileStatement(ZoneStringList* labels, bool* ok);
WhileStatement* ParseWhileStatement(ZoneStringList* labels, bool* ok);
Statement* ParseForStatement(ZoneStringList* labels, bool* ok);
Statement* ParseThrowStatement(bool* ok);
Expression* MakeCatchContext(Handle<String> id, VariableProxy* value);
TryStatement* ParseTryStatement(bool* ok);
DebuggerStatement* ParseDebuggerStatement(bool* ok);
// Support for hamony block scoped bindings.
Block* ParseScopedBlock(ZoneStringList* labels, bool* ok);
// Initialize the components of a for-in / for-of statement.
void InitializeForEachStatement(ForEachStatement* stmt,
Expression* each,
Expression* subject,
Statement* body);
Statement* DesugarLetBindingsInForStatement(
Scope* inner_scope, ZoneStringList* names, ForStatement* loop,
Statement* init, Expression* cond, Statement* next, Statement* body,
bool* ok);
FunctionLiteral* ParseFunctionLiteral(
Handle<String> name,
Scanner::Location function_name_location,
bool name_is_strict_reserved,
bool is_generator,
int function_token_position,
FunctionLiteral::FunctionType type,
FunctionLiteral::ArityRestriction arity_restriction,
bool* ok);
// Magical syntax support.
Expression* ParseV8Intrinsic(bool* ok);
bool CheckInOrOf(bool accept_OF, ForEachStatement::VisitMode* visit_mode);
// Get odd-ball literals.
Literal* GetLiteralUndefined(int position);
// For harmony block scoping mode: Check if the scope has conflicting var/let
// declarations from different scopes. It covers for example
//
// function f() { { { var x; } let x; } }
// function g() { { var x; let x; } }
//
// The var declarations are hoisted to the function scope, but originate from
// a scope where the name has also been let bound or the var declaration is
// hoisted over such a scope.
void CheckConflictingVarDeclarations(Scope* scope, bool* ok);
// Parser support
VariableProxy* NewUnresolved(Handle<String> name,
VariableMode mode,
Interface* interface);
void Declare(Declaration* declaration, bool resolve, bool* ok);
bool TargetStackContainsLabel(Handle<String> label);
BreakableStatement* LookupBreakTarget(Handle<String> label, bool* ok);
IterationStatement* LookupContinueTarget(Handle<String> label, bool* ok);
void RegisterTargetUse(Label* target, Target* stop);
// Factory methods.
Scope* NewScope(Scope* parent, ScopeType type);
// Skip over a lazy function, either using cached data if we have it, or
// by parsing the function with PreParser. Consumes the ending }.
void SkipLazyFunctionBody(Handle<String> function_name,
int* materialized_literal_count,
int* expected_property_count,
bool* ok);
PreParser::PreParseResult ParseLazyFunctionBodyWithPreParser(
SingletonLogger* logger);
// Consumes the ending }.
ZoneList<Statement*>* ParseEagerFunctionBody(Handle<String> function_name,
int pos,
Variable* fvar,
Token::Value fvar_init_op,
bool is_generator,
bool* ok);
void ThrowPendingError();
Isolate* isolate_;
Handle<Script> script_;
Scanner scanner_;
PreParser* reusable_preparser_;
Scope* original_scope_; // for ES5 function declarations in sloppy eval
Target* target_stack_; // for break, continue statements
ScriptData** cached_data_;
CachedDataMode cached_data_mode_;
CompilationInfo* info_;
// Pending errors.
bool has_pending_error_;
Scanner::Location pending_error_location_;
const char* pending_error_message_;
MaybeHandle<String> pending_error_arg_;
const char* pending_error_char_arg_;
bool pending_error_is_reference_error_;
};
// Support for handling complex values (array and object literals) that
// can be fully handled at compile time.
class CompileTimeValue: public AllStatic {
public:
enum LiteralType {
OBJECT_LITERAL_FAST_ELEMENTS,
OBJECT_LITERAL_SLOW_ELEMENTS,
ARRAY_LITERAL
};
static bool IsCompileTimeValue(Expression* expression);
// Get the value as a compile time value.
static Handle<FixedArray> GetValue(Isolate* isolate, Expression* expression);
// Get the type of a compile time value returned by GetValue().
static LiteralType GetLiteralType(Handle<FixedArray> value);
// Get the elements array of a compile time value returned by GetValue().
static Handle<FixedArray> GetElements(Handle<FixedArray> value);
private:
static const int kLiteralTypeSlot = 0;
static const int kElementsSlot = 1;
DISALLOW_IMPLICIT_CONSTRUCTORS(CompileTimeValue);
};
} } // namespace v8::internal
#endif // V8_PARSER_H_