blob: b2cbea734e2d2a9cdde9fcbf6aad008809b16e36 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_MIPS_CONSTANTS_H_
#define V8_MIPS_CONSTANTS_H_
// UNIMPLEMENTED_ macro for MIPS.
#ifdef DEBUG
#define UNIMPLEMENTED_MIPS() \
v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \
__FILE__, __LINE__, __func__)
#else
#define UNIMPLEMENTED_MIPS()
#endif
#define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n")
enum ArchVariants {
kMips32r2,
kMips32r1,
kLoongson
};
#ifdef _MIPS_ARCH_MIPS32R2
static const ArchVariants kArchVariant = kMips32r2;
#elif _MIPS_ARCH_LOONGSON
// The loongson flag refers to the LOONGSON architectures based on MIPS-III,
// which predates (and is a subset of) the mips32r2 and r1 architectures.
static const ArchVariants kArchVariant = kLoongson;
#else
static const ArchVariants kArchVariant = kMips32r1;
#endif
enum Endianness {
kLittle,
kBig
};
#if defined(V8_TARGET_LITTLE_ENDIAN)
static const Endianness kArchEndian = kLittle;
#elif defined(V8_TARGET_BIG_ENDIAN)
static const Endianness kArchEndian = kBig;
#else
#error Unknown endianness
#endif
#if(defined(__mips_hard_float) && __mips_hard_float != 0)
// Use floating-point coprocessor instructions. This flag is raised when
// -mhard-float is passed to the compiler.
const bool IsMipsSoftFloatABI = false;
#elif(defined(__mips_soft_float) && __mips_soft_float != 0)
// This flag is raised when -msoft-float is passed to the compiler.
// Although FPU is a base requirement for v8, soft-float ABI is used
// on soft-float systems with FPU kernel emulation.
const bool IsMipsSoftFloatABI = true;
#else
const bool IsMipsSoftFloatABI = true;
#endif
#if defined(V8_TARGET_LITTLE_ENDIAN)
const uint32_t kHoleNanUpper32Offset = 4;
const uint32_t kHoleNanLower32Offset = 0;
#elif defined(V8_TARGET_BIG_ENDIAN)
const uint32_t kHoleNanUpper32Offset = 0;
const uint32_t kHoleNanLower32Offset = 4;
#else
#error Unknown endianness
#endif
// Defines constants and accessor classes to assemble, disassemble and
// simulate MIPS32 instructions.
//
// See: MIPS32 Architecture For Programmers
// Volume II: The MIPS32 Instruction Set
// Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf.
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// Registers and FPURegisters.
// Number of general purpose registers.
const int kNumRegisters = 32;
const int kInvalidRegister = -1;
// Number of registers with HI, LO, and pc.
const int kNumSimuRegisters = 35;
// In the simulator, the PC register is simulated as the 34th register.
const int kPCRegister = 34;
// Number coprocessor registers.
const int kNumFPURegisters = 32;
const int kInvalidFPURegister = -1;
// FPU (coprocessor 1) control registers. Currently only FCSR is implemented.
const int kFCSRRegister = 31;
const int kInvalidFPUControlRegister = -1;
const uint32_t kFPUInvalidResult = static_cast<uint32_t>(1 << 31) - 1;
// FCSR constants.
const uint32_t kFCSRInexactFlagBit = 2;
const uint32_t kFCSRUnderflowFlagBit = 3;
const uint32_t kFCSROverflowFlagBit = 4;
const uint32_t kFCSRDivideByZeroFlagBit = 5;
const uint32_t kFCSRInvalidOpFlagBit = 6;
const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit;
const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit;
const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit;
const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit;
const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit;
const uint32_t kFCSRFlagMask =
kFCSRInexactFlagMask |
kFCSRUnderflowFlagMask |
kFCSROverflowFlagMask |
kFCSRDivideByZeroFlagMask |
kFCSRInvalidOpFlagMask;
const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask;
// 'pref' instruction hints
const int32_t kPrefHintLoad = 0;
const int32_t kPrefHintStore = 1;
const int32_t kPrefHintLoadStreamed = 4;
const int32_t kPrefHintStoreStreamed = 5;
const int32_t kPrefHintLoadRetained = 6;
const int32_t kPrefHintStoreRetained = 7;
const int32_t kPrefHintWritebackInvalidate = 25;
const int32_t kPrefHintPrepareForStore = 30;
// Helper functions for converting between register numbers and names.
class Registers {
public:
// Return the name of the register.
static const char* Name(int reg);
// Lookup the register number for the name provided.
static int Number(const char* name);
struct RegisterAlias {
int reg;
const char* name;
};
static const int32_t kMaxValue = 0x7fffffff;
static const int32_t kMinValue = 0x80000000;
private:
static const char* names_[kNumSimuRegisters];
static const RegisterAlias aliases_[];
};
// Helper functions for converting between register numbers and names.
class FPURegisters {
public:
// Return the name of the register.
static const char* Name(int reg);
// Lookup the register number for the name provided.
static int Number(const char* name);
struct RegisterAlias {
int creg;
const char* name;
};
private:
static const char* names_[kNumFPURegisters];
static const RegisterAlias aliases_[];
};
// -----------------------------------------------------------------------------
// Instructions encoding constants.
// On MIPS all instructions are 32 bits.
typedef int32_t Instr;
// Special Software Interrupt codes when used in the presence of the MIPS
// simulator.
enum SoftwareInterruptCodes {
// Transition to C code.
call_rt_redirected = 0xfffff
};
// On MIPS Simulator breakpoints can have different codes:
// - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
// the simulator will run through them and print the registers.
// - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
// instructions (see Assembler::stop()).
// - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
// debugger.
const uint32_t kMaxWatchpointCode = 31;
const uint32_t kMaxStopCode = 127;
STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode);
// ----- Fields offset and length.
const int kOpcodeShift = 26;
const int kOpcodeBits = 6;
const int kRsShift = 21;
const int kRsBits = 5;
const int kRtShift = 16;
const int kRtBits = 5;
const int kRdShift = 11;
const int kRdBits = 5;
const int kSaShift = 6;
const int kSaBits = 5;
const int kFunctionShift = 0;
const int kFunctionBits = 6;
const int kLuiShift = 16;
const int kImm16Shift = 0;
const int kImm16Bits = 16;
const int kImm26Shift = 0;
const int kImm26Bits = 26;
const int kImm28Shift = 0;
const int kImm28Bits = 28;
// In branches and jumps immediate fields point to words, not bytes,
// and are therefore shifted by 2.
const int kImmFieldShift = 2;
const int kFrBits = 5;
const int kFrShift = 21;
const int kFsShift = 11;
const int kFsBits = 5;
const int kFtShift = 16;
const int kFtBits = 5;
const int kFdShift = 6;
const int kFdBits = 5;
const int kFCccShift = 8;
const int kFCccBits = 3;
const int kFBccShift = 18;
const int kFBccBits = 3;
const int kFBtrueShift = 16;
const int kFBtrueBits = 1;
// ----- Miscellaneous useful masks.
// Instruction bit masks.
const int kOpcodeMask = ((1 << kOpcodeBits) - 1) << kOpcodeShift;
const int kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift;
const int kImm26Mask = ((1 << kImm26Bits) - 1) << kImm26Shift;
const int kImm28Mask = ((1 << kImm28Bits) - 1) << kImm28Shift;
const int kRsFieldMask = ((1 << kRsBits) - 1) << kRsShift;
const int kRtFieldMask = ((1 << kRtBits) - 1) << kRtShift;
const int kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift;
const int kSaFieldMask = ((1 << kSaBits) - 1) << kSaShift;
const int kFunctionFieldMask = ((1 << kFunctionBits) - 1) << kFunctionShift;
// Misc masks.
const int kHiMask = 0xffff << 16;
const int kLoMask = 0xffff;
const int kSignMask = 0x80000000;
const int kJumpAddrMask = (1 << (kImm26Bits + kImmFieldShift)) - 1;
// ----- MIPS Opcodes and Function Fields.
// We use this presentation to stay close to the table representation in
// MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set.
enum Opcode {
SPECIAL = 0 << kOpcodeShift,
REGIMM = 1 << kOpcodeShift,
J = ((0 << 3) + 2) << kOpcodeShift,
JAL = ((0 << 3) + 3) << kOpcodeShift,
BEQ = ((0 << 3) + 4) << kOpcodeShift,
BNE = ((0 << 3) + 5) << kOpcodeShift,
BLEZ = ((0 << 3) + 6) << kOpcodeShift,
BGTZ = ((0 << 3) + 7) << kOpcodeShift,
ADDI = ((1 << 3) + 0) << kOpcodeShift,
ADDIU = ((1 << 3) + 1) << kOpcodeShift,
SLTI = ((1 << 3) + 2) << kOpcodeShift,
SLTIU = ((1 << 3) + 3) << kOpcodeShift,
ANDI = ((1 << 3) + 4) << kOpcodeShift,
ORI = ((1 << 3) + 5) << kOpcodeShift,
XORI = ((1 << 3) + 6) << kOpcodeShift,
LUI = ((1 << 3) + 7) << kOpcodeShift,
COP1 = ((2 << 3) + 1) << kOpcodeShift, // Coprocessor 1 class.
BEQL = ((2 << 3) + 4) << kOpcodeShift,
BNEL = ((2 << 3) + 5) << kOpcodeShift,
BLEZL = ((2 << 3) + 6) << kOpcodeShift,
BGTZL = ((2 << 3) + 7) << kOpcodeShift,
SPECIAL2 = ((3 << 3) + 4) << kOpcodeShift,
SPECIAL3 = ((3 << 3) + 7) << kOpcodeShift,
LB = ((4 << 3) + 0) << kOpcodeShift,
LH = ((4 << 3) + 1) << kOpcodeShift,
LWL = ((4 << 3) + 2) << kOpcodeShift,
LW = ((4 << 3) + 3) << kOpcodeShift,
LBU = ((4 << 3) + 4) << kOpcodeShift,
LHU = ((4 << 3) + 5) << kOpcodeShift,
LWR = ((4 << 3) + 6) << kOpcodeShift,
SB = ((5 << 3) + 0) << kOpcodeShift,
SH = ((5 << 3) + 1) << kOpcodeShift,
SWL = ((5 << 3) + 2) << kOpcodeShift,
SW = ((5 << 3) + 3) << kOpcodeShift,
SWR = ((5 << 3) + 6) << kOpcodeShift,
LWC1 = ((6 << 3) + 1) << kOpcodeShift,
LDC1 = ((6 << 3) + 5) << kOpcodeShift,
PREF = ((6 << 3) + 3) << kOpcodeShift,
SWC1 = ((7 << 3) + 1) << kOpcodeShift,
SDC1 = ((7 << 3) + 5) << kOpcodeShift,
COP1X = ((1 << 4) + 3) << kOpcodeShift
};
enum SecondaryField {
// SPECIAL Encoding of Function Field.
SLL = ((0 << 3) + 0),
MOVCI = ((0 << 3) + 1),
SRL = ((0 << 3) + 2),
SRA = ((0 << 3) + 3),
SLLV = ((0 << 3) + 4),
SRLV = ((0 << 3) + 6),
SRAV = ((0 << 3) + 7),
JR = ((1 << 3) + 0),
JALR = ((1 << 3) + 1),
MOVZ = ((1 << 3) + 2),
MOVN = ((1 << 3) + 3),
BREAK = ((1 << 3) + 5),
MFHI = ((2 << 3) + 0),
MFLO = ((2 << 3) + 2),
MULT = ((3 << 3) + 0),
MULTU = ((3 << 3) + 1),
DIV = ((3 << 3) + 2),
DIVU = ((3 << 3) + 3),
ADD = ((4 << 3) + 0),
ADDU = ((4 << 3) + 1),
SUB = ((4 << 3) + 2),
SUBU = ((4 << 3) + 3),
AND = ((4 << 3) + 4),
OR = ((4 << 3) + 5),
XOR = ((4 << 3) + 6),
NOR = ((4 << 3) + 7),
SLT = ((5 << 3) + 2),
SLTU = ((5 << 3) + 3),
TGE = ((6 << 3) + 0),
TGEU = ((6 << 3) + 1),
TLT = ((6 << 3) + 2),
TLTU = ((6 << 3) + 3),
TEQ = ((6 << 3) + 4),
TNE = ((6 << 3) + 6),
// SPECIAL2 Encoding of Function Field.
MUL = ((0 << 3) + 2),
CLZ = ((4 << 3) + 0),
CLO = ((4 << 3) + 1),
// SPECIAL3 Encoding of Function Field.
EXT = ((0 << 3) + 0),
INS = ((0 << 3) + 4),
// REGIMM encoding of rt Field.
BLTZ = ((0 << 3) + 0) << 16,
BGEZ = ((0 << 3) + 1) << 16,
BLTZAL = ((2 << 3) + 0) << 16,
BGEZAL = ((2 << 3) + 1) << 16,
// COP1 Encoding of rs Field.
MFC1 = ((0 << 3) + 0) << 21,
CFC1 = ((0 << 3) + 2) << 21,
MFHC1 = ((0 << 3) + 3) << 21,
MTC1 = ((0 << 3) + 4) << 21,
CTC1 = ((0 << 3) + 6) << 21,
MTHC1 = ((0 << 3) + 7) << 21,
BC1 = ((1 << 3) + 0) << 21,
S = ((2 << 3) + 0) << 21,
D = ((2 << 3) + 1) << 21,
W = ((2 << 3) + 4) << 21,
L = ((2 << 3) + 5) << 21,
PS = ((2 << 3) + 6) << 21,
// COP1 Encoding of Function Field When rs=S.
ROUND_L_S = ((1 << 3) + 0),
TRUNC_L_S = ((1 << 3) + 1),
CEIL_L_S = ((1 << 3) + 2),
FLOOR_L_S = ((1 << 3) + 3),
ROUND_W_S = ((1 << 3) + 4),
TRUNC_W_S = ((1 << 3) + 5),
CEIL_W_S = ((1 << 3) + 6),
FLOOR_W_S = ((1 << 3) + 7),
CVT_D_S = ((4 << 3) + 1),
CVT_W_S = ((4 << 3) + 4),
CVT_L_S = ((4 << 3) + 5),
CVT_PS_S = ((4 << 3) + 6),
// COP1 Encoding of Function Field When rs=D.
ADD_D = ((0 << 3) + 0),
SUB_D = ((0 << 3) + 1),
MUL_D = ((0 << 3) + 2),
DIV_D = ((0 << 3) + 3),
SQRT_D = ((0 << 3) + 4),
ABS_D = ((0 << 3) + 5),
MOV_D = ((0 << 3) + 6),
NEG_D = ((0 << 3) + 7),
ROUND_L_D = ((1 << 3) + 0),
TRUNC_L_D = ((1 << 3) + 1),
CEIL_L_D = ((1 << 3) + 2),
FLOOR_L_D = ((1 << 3) + 3),
ROUND_W_D = ((1 << 3) + 4),
TRUNC_W_D = ((1 << 3) + 5),
CEIL_W_D = ((1 << 3) + 6),
FLOOR_W_D = ((1 << 3) + 7),
CVT_S_D = ((4 << 3) + 0),
CVT_W_D = ((4 << 3) + 4),
CVT_L_D = ((4 << 3) + 5),
C_F_D = ((6 << 3) + 0),
C_UN_D = ((6 << 3) + 1),
C_EQ_D = ((6 << 3) + 2),
C_UEQ_D = ((6 << 3) + 3),
C_OLT_D = ((6 << 3) + 4),
C_ULT_D = ((6 << 3) + 5),
C_OLE_D = ((6 << 3) + 6),
C_ULE_D = ((6 << 3) + 7),
// COP1 Encoding of Function Field When rs=W or L.
CVT_S_W = ((4 << 3) + 0),
CVT_D_W = ((4 << 3) + 1),
CVT_S_L = ((4 << 3) + 0),
CVT_D_L = ((4 << 3) + 1),
// COP1 Encoding of Function Field When rs=PS.
// COP1X Encoding of Function Field.
MADD_D = ((4 << 3) + 1),
NULLSF = 0
};
// ----- Emulated conditions.
// On MIPS we use this enum to abstract from conditionnal branch instructions.
// The 'U' prefix is used to specify unsigned comparisons.
// Oppposite conditions must be paired as odd/even numbers
// because 'NegateCondition' function flips LSB to negate condition.
enum Condition {
// Any value < 0 is considered no_condition.
kNoCondition = -1,
overflow = 0,
no_overflow = 1,
Uless = 2,
Ugreater_equal= 3,
equal = 4,
not_equal = 5,
Uless_equal = 6,
Ugreater = 7,
negative = 8,
positive = 9,
parity_even = 10,
parity_odd = 11,
less = 12,
greater_equal = 13,
less_equal = 14,
greater = 15,
ueq = 16, // Unordered or Equal.
nue = 17, // Not (Unordered or Equal).
cc_always = 18,
// Aliases.
carry = Uless,
not_carry = Ugreater_equal,
zero = equal,
eq = equal,
not_zero = not_equal,
ne = not_equal,
nz = not_equal,
sign = negative,
not_sign = positive,
mi = negative,
pl = positive,
hi = Ugreater,
ls = Uless_equal,
ge = greater_equal,
lt = less,
gt = greater,
le = less_equal,
hs = Ugreater_equal,
lo = Uless,
al = cc_always,
cc_default = kNoCondition
};
// Returns the equivalent of !cc.
// Negation of the default kNoCondition (-1) results in a non-default
// no_condition value (-2). As long as tests for no_condition check
// for condition < 0, this will work as expected.
inline Condition NegateCondition(Condition cc) {
DCHECK(cc != cc_always);
return static_cast<Condition>(cc ^ 1);
}
// Commute a condition such that {a cond b == b cond' a}.
inline Condition CommuteCondition(Condition cc) {
switch (cc) {
case Uless:
return Ugreater;
case Ugreater:
return Uless;
case Ugreater_equal:
return Uless_equal;
case Uless_equal:
return Ugreater_equal;
case less:
return greater;
case greater:
return less;
case greater_equal:
return less_equal;
case less_equal:
return greater_equal;
default:
return cc;
}
}
// ----- Coprocessor conditions.
enum FPUCondition {
kNoFPUCondition = -1,
F = 0, // False.
UN = 1, // Unordered.
EQ = 2, // Equal.
UEQ = 3, // Unordered or Equal.
OLT = 4, // Ordered or Less Than.
ULT = 5, // Unordered or Less Than.
OLE = 6, // Ordered or Less Than or Equal.
ULE = 7 // Unordered or Less Than or Equal.
};
// FPU rounding modes.
enum FPURoundingMode {
RN = 0 << 0, // Round to Nearest.
RZ = 1 << 0, // Round towards zero.
RP = 2 << 0, // Round towards Plus Infinity.
RM = 3 << 0, // Round towards Minus Infinity.
// Aliases.
kRoundToNearest = RN,
kRoundToZero = RZ,
kRoundToPlusInf = RP,
kRoundToMinusInf = RM
};
const uint32_t kFPURoundingModeMask = 3 << 0;
enum CheckForInexactConversion {
kCheckForInexactConversion,
kDontCheckForInexactConversion
};
// -----------------------------------------------------------------------------
// Hints.
// Branch hints are not used on the MIPS. They are defined so that they can
// appear in shared function signatures, but will be ignored in MIPS
// implementations.
enum Hint {
no_hint = 0
};
inline Hint NegateHint(Hint hint) {
return no_hint;
}
// -----------------------------------------------------------------------------
// Specific instructions, constants, and masks.
// These constants are declared in assembler-mips.cc, as they use named
// registers and other constants.
// addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
// operations as post-increment of sp.
extern const Instr kPopInstruction;
// addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
extern const Instr kPushInstruction;
// sw(r, MemOperand(sp, 0))
extern const Instr kPushRegPattern;
// lw(r, MemOperand(sp, 0))
extern const Instr kPopRegPattern;
extern const Instr kLwRegFpOffsetPattern;
extern const Instr kSwRegFpOffsetPattern;
extern const Instr kLwRegFpNegOffsetPattern;
extern const Instr kSwRegFpNegOffsetPattern;
// A mask for the Rt register for push, pop, lw, sw instructions.
extern const Instr kRtMask;
extern const Instr kLwSwInstrTypeMask;
extern const Instr kLwSwInstrArgumentMask;
extern const Instr kLwSwOffsetMask;
// Break 0xfffff, reserved for redirected real time call.
const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6;
// A nop instruction. (Encoding of sll 0 0 0).
const Instr nopInstr = 0;
class Instruction {
public:
enum {
kInstrSize = 4,
kInstrSizeLog2 = 2,
// On MIPS PC cannot actually be directly accessed. We behave as if PC was
// always the value of the current instruction being executed.
kPCReadOffset = 0
};
// Get the raw instruction bits.
inline Instr InstructionBits() const {
return *reinterpret_cast<const Instr*>(this);
}
// Set the raw instruction bits to value.
inline void SetInstructionBits(Instr value) {
*reinterpret_cast<Instr*>(this) = value;
}
// Read one particular bit out of the instruction bits.
inline int Bit(int nr) const {
return (InstructionBits() >> nr) & 1;
}
// Read a bit field out of the instruction bits.
inline int Bits(int hi, int lo) const {
return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
}
// Instruction type.
enum Type {
kRegisterType,
kImmediateType,
kJumpType,
kUnsupported = -1
};
// Get the encoding type of the instruction.
Type InstructionType() const;
// Accessors for the different named fields used in the MIPS encoding.
inline Opcode OpcodeValue() const {
return static_cast<Opcode>(
Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
}
inline int RsValue() const {
DCHECK(InstructionType() == kRegisterType ||
InstructionType() == kImmediateType);
return Bits(kRsShift + kRsBits - 1, kRsShift);
}
inline int RtValue() const {
DCHECK(InstructionType() == kRegisterType ||
InstructionType() == kImmediateType);
return Bits(kRtShift + kRtBits - 1, kRtShift);
}
inline int RdValue() const {
DCHECK(InstructionType() == kRegisterType);
return Bits(kRdShift + kRdBits - 1, kRdShift);
}
inline int SaValue() const {
DCHECK(InstructionType() == kRegisterType);
return Bits(kSaShift + kSaBits - 1, kSaShift);
}
inline int FunctionValue() const {
DCHECK(InstructionType() == kRegisterType ||
InstructionType() == kImmediateType);
return Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
}
inline int FdValue() const {
return Bits(kFdShift + kFdBits - 1, kFdShift);
}
inline int FsValue() const {
return Bits(kFsShift + kFsBits - 1, kFsShift);
}
inline int FtValue() const {
return Bits(kFtShift + kFtBits - 1, kFtShift);
}
inline int FrValue() const {
return Bits(kFrShift + kFrBits -1, kFrShift);
}
// Float Compare condition code instruction bits.
inline int FCccValue() const {
return Bits(kFCccShift + kFCccBits - 1, kFCccShift);
}
// Float Branch condition code instruction bits.
inline int FBccValue() const {
return Bits(kFBccShift + kFBccBits - 1, kFBccShift);
}
// Float Branch true/false instruction bit.
inline int FBtrueValue() const {
return Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift);
}
// Return the fields at their original place in the instruction encoding.
inline Opcode OpcodeFieldRaw() const {
return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
}
inline int RsFieldRaw() const {
DCHECK(InstructionType() == kRegisterType ||
InstructionType() == kImmediateType);
return InstructionBits() & kRsFieldMask;
}
// Same as above function, but safe to call within InstructionType().
inline int RsFieldRawNoAssert() const {
return InstructionBits() & kRsFieldMask;
}
inline int RtFieldRaw() const {
DCHECK(InstructionType() == kRegisterType ||
InstructionType() == kImmediateType);
return InstructionBits() & kRtFieldMask;
}
inline int RdFieldRaw() const {
DCHECK(InstructionType() == kRegisterType);
return InstructionBits() & kRdFieldMask;
}
inline int SaFieldRaw() const {
DCHECK(InstructionType() == kRegisterType);
return InstructionBits() & kSaFieldMask;
}
inline int FunctionFieldRaw() const {
return InstructionBits() & kFunctionFieldMask;
}
// Get the secondary field according to the opcode.
inline int SecondaryValue() const {
Opcode op = OpcodeFieldRaw();
switch (op) {
case SPECIAL:
case SPECIAL2:
return FunctionValue();
case COP1:
return RsValue();
case REGIMM:
return RtValue();
default:
return NULLSF;
}
}
inline int32_t Imm16Value() const {
DCHECK(InstructionType() == kImmediateType);
return Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
}
inline int32_t Imm26Value() const {
DCHECK(InstructionType() == kJumpType);
return Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift);
}
// Say if the instruction should not be used in a branch delay slot.
bool IsForbiddenInBranchDelay() const;
// Say if the instruction 'links'. e.g. jal, bal.
bool IsLinkingInstruction() const;
// Say if the instruction is a break or a trap.
bool IsTrap() const;
// Instructions are read of out a code stream. The only way to get a
// reference to an instruction is to convert a pointer. There is no way
// to allocate or create instances of class Instruction.
// Use the At(pc) function to create references to Instruction.
static Instruction* At(byte* pc) {
return reinterpret_cast<Instruction*>(pc);
}
private:
// We need to prevent the creation of instances of class Instruction.
DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
};
// -----------------------------------------------------------------------------
// MIPS assembly various constants.
// C/C++ argument slots size.
const int kCArgSlotCount = 4;
const int kCArgsSlotsSize = kCArgSlotCount * Instruction::kInstrSize;
// JS argument slots size.
const int kJSArgsSlotsSize = 0 * Instruction::kInstrSize;
// Assembly builtins argument slots size.
const int kBArgsSlotsSize = 0 * Instruction::kInstrSize;
const int kBranchReturnOffset = 2 * Instruction::kInstrSize;
} } // namespace v8::internal
#endif // #ifndef V8_MIPS_CONSTANTS_H_