blob: aa35e9d6b4094b06f6676bfd6c78c31f905d8849 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if V8_TARGET_ARCH_IA32
#include "lithium-allocator-inl.h"
#include "ia32/lithium-ia32.h"
#include "ia32/lithium-codegen-ia32.h"
#include "hydrogen-osr.h"
namespace v8 {
namespace internal {
#define DEFINE_COMPILE(type) \
void L##type::CompileToNative(LCodeGen* generator) { \
generator->Do##type(this); \
}
LITHIUM_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
#undef DEFINE_COMPILE
#ifdef DEBUG
void LInstruction::VerifyCall() {
// Call instructions can use only fixed registers as temporaries and
// outputs because all registers are blocked by the calling convention.
// Inputs operands must use a fixed register or use-at-start policy or
// a non-register policy.
ASSERT(Output() == NULL ||
LUnallocated::cast(Output())->HasFixedPolicy() ||
!LUnallocated::cast(Output())->HasRegisterPolicy());
for (UseIterator it(this); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
ASSERT(operand->HasFixedPolicy() ||
operand->IsUsedAtStart());
}
for (TempIterator it(this); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
ASSERT(operand->HasFixedPolicy() ||!operand->HasRegisterPolicy());
}
}
#endif
bool LInstruction::HasDoubleRegisterResult() {
return HasResult() && result()->IsDoubleRegister();
}
bool LInstruction::HasDoubleRegisterInput() {
for (int i = 0; i < InputCount(); i++) {
LOperand* op = InputAt(i);
if (op != NULL && op->IsDoubleRegister()) {
return true;
}
}
return false;
}
bool LInstruction::IsDoubleInput(X87Register reg, LCodeGen* cgen) {
for (int i = 0; i < InputCount(); i++) {
LOperand* op = InputAt(i);
if (op != NULL && op->IsDoubleRegister()) {
if (cgen->ToX87Register(op).is(reg)) return true;
}
}
return false;
}
void LInstruction::PrintTo(StringStream* stream) {
stream->Add("%s ", this->Mnemonic());
PrintOutputOperandTo(stream);
PrintDataTo(stream);
if (HasEnvironment()) {
stream->Add(" ");
environment()->PrintTo(stream);
}
if (HasPointerMap()) {
stream->Add(" ");
pointer_map()->PrintTo(stream);
}
}
void LInstruction::PrintDataTo(StringStream* stream) {
stream->Add("= ");
for (int i = 0; i < InputCount(); i++) {
if (i > 0) stream->Add(" ");
if (InputAt(i) == NULL) {
stream->Add("NULL");
} else {
InputAt(i)->PrintTo(stream);
}
}
}
void LInstruction::PrintOutputOperandTo(StringStream* stream) {
if (HasResult()) result()->PrintTo(stream);
}
void LLabel::PrintDataTo(StringStream* stream) {
LGap::PrintDataTo(stream);
LLabel* rep = replacement();
if (rep != NULL) {
stream->Add(" Dead block replaced with B%d", rep->block_id());
}
}
bool LGap::IsRedundant() const {
for (int i = 0; i < 4; i++) {
if (parallel_moves_[i] != NULL && !parallel_moves_[i]->IsRedundant()) {
return false;
}
}
return true;
}
void LGap::PrintDataTo(StringStream* stream) {
for (int i = 0; i < 4; i++) {
stream->Add("(");
if (parallel_moves_[i] != NULL) {
parallel_moves_[i]->PrintDataTo(stream);
}
stream->Add(") ");
}
}
const char* LArithmeticD::Mnemonic() const {
switch (op()) {
case Token::ADD: return "add-d";
case Token::SUB: return "sub-d";
case Token::MUL: return "mul-d";
case Token::DIV: return "div-d";
case Token::MOD: return "mod-d";
default:
UNREACHABLE();
return NULL;
}
}
const char* LArithmeticT::Mnemonic() const {
switch (op()) {
case Token::ADD: return "add-t";
case Token::SUB: return "sub-t";
case Token::MUL: return "mul-t";
case Token::MOD: return "mod-t";
case Token::DIV: return "div-t";
case Token::BIT_AND: return "bit-and-t";
case Token::BIT_OR: return "bit-or-t";
case Token::BIT_XOR: return "bit-xor-t";
case Token::ROR: return "ror-t";
case Token::SHL: return "sal-t";
case Token::SAR: return "sar-t";
case Token::SHR: return "shr-t";
default:
UNREACHABLE();
return NULL;
}
}
bool LGoto::HasInterestingComment(LCodeGen* gen) const {
return !gen->IsNextEmittedBlock(block_id());
}
void LGoto::PrintDataTo(StringStream* stream) {
stream->Add("B%d", block_id());
}
void LBranch::PrintDataTo(StringStream* stream) {
stream->Add("B%d | B%d on ", true_block_id(), false_block_id());
value()->PrintTo(stream);
}
void LCompareNumericAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if ");
left()->PrintTo(stream);
stream->Add(" %s ", Token::String(op()));
right()->PrintTo(stream);
stream->Add(" then B%d else B%d", true_block_id(), false_block_id());
}
void LIsObjectAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if is_object(");
value()->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LIsStringAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if is_string(");
value()->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LIsSmiAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if is_smi(");
value()->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LIsUndetectableAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if is_undetectable(");
value()->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LStringCompareAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if string_compare(");
left()->PrintTo(stream);
right()->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LHasInstanceTypeAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if has_instance_type(");
value()->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LHasCachedArrayIndexAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if has_cached_array_index(");
value()->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LClassOfTestAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if class_of_test(");
value()->PrintTo(stream);
stream->Add(", \"%o\") then B%d else B%d",
*hydrogen()->class_name(),
true_block_id(),
false_block_id());
}
void LTypeofIsAndBranch::PrintDataTo(StringStream* stream) {
stream->Add("if typeof ");
value()->PrintTo(stream);
stream->Add(" == \"%s\" then B%d else B%d",
*hydrogen()->type_literal()->ToCString(),
true_block_id(), false_block_id());
}
void LStoreCodeEntry::PrintDataTo(StringStream* stream) {
stream->Add(" = ");
function()->PrintTo(stream);
stream->Add(".code_entry = ");
code_object()->PrintTo(stream);
}
void LInnerAllocatedObject::PrintDataTo(StringStream* stream) {
stream->Add(" = ");
base_object()->PrintTo(stream);
stream->Add(" + ");
offset()->PrintTo(stream);
}
void LCallConstantFunction::PrintDataTo(StringStream* stream) {
stream->Add("#%d / ", arity());
}
void LLoadContextSlot::PrintDataTo(StringStream* stream) {
context()->PrintTo(stream);
stream->Add("[%d]", slot_index());
}
void LStoreContextSlot::PrintDataTo(StringStream* stream) {
context()->PrintTo(stream);
stream->Add("[%d] <- ", slot_index());
value()->PrintTo(stream);
}
void LInvokeFunction::PrintDataTo(StringStream* stream) {
stream->Add("= ");
context()->PrintTo(stream);
stream->Add(" ");
function()->PrintTo(stream);
stream->Add(" #%d / ", arity());
}
void LCallKeyed::PrintDataTo(StringStream* stream) {
stream->Add("[ecx] #%d / ", arity());
}
void LCallNamed::PrintDataTo(StringStream* stream) {
SmartArrayPointer<char> name_string = name()->ToCString();
stream->Add("%s #%d / ", *name_string, arity());
}
void LCallGlobal::PrintDataTo(StringStream* stream) {
SmartArrayPointer<char> name_string = name()->ToCString();
stream->Add("%s #%d / ", *name_string, arity());
}
void LCallKnownGlobal::PrintDataTo(StringStream* stream) {
stream->Add("#%d / ", arity());
}
void LCallNew::PrintDataTo(StringStream* stream) {
stream->Add("= ");
context()->PrintTo(stream);
stream->Add(" ");
constructor()->PrintTo(stream);
stream->Add(" #%d / ", arity());
}
void LCallNewArray::PrintDataTo(StringStream* stream) {
stream->Add("= ");
context()->PrintTo(stream);
stream->Add(" ");
constructor()->PrintTo(stream);
stream->Add(" #%d / ", arity());
ElementsKind kind = hydrogen()->elements_kind();
stream->Add(" (%s) ", ElementsKindToString(kind));
}
void LAccessArgumentsAt::PrintDataTo(StringStream* stream) {
arguments()->PrintTo(stream);
stream->Add(" length ");
length()->PrintTo(stream);
stream->Add(" index ");
index()->PrintTo(stream);
}
int LPlatformChunk::GetNextSpillIndex(RegisterKind kind) {
// Skip a slot if for a double-width slot.
if (kind == DOUBLE_REGISTERS) {
spill_slot_count_++;
spill_slot_count_ |= 1;
num_double_slots_++;
}
return spill_slot_count_++;
}
LOperand* LPlatformChunk::GetNextSpillSlot(RegisterKind kind) {
int index = GetNextSpillIndex(kind);
if (kind == DOUBLE_REGISTERS) {
return LDoubleStackSlot::Create(index, zone());
} else {
ASSERT(kind == GENERAL_REGISTERS);
return LStackSlot::Create(index, zone());
}
}
void LStoreNamedField::PrintDataTo(StringStream* stream) {
object()->PrintTo(stream);
hydrogen()->access().PrintTo(stream);
stream->Add(" <- ");
value()->PrintTo(stream);
}
void LStoreNamedGeneric::PrintDataTo(StringStream* stream) {
object()->PrintTo(stream);
stream->Add(".");
stream->Add(*String::cast(*name())->ToCString());
stream->Add(" <- ");
value()->PrintTo(stream);
}
void LLoadKeyed::PrintDataTo(StringStream* stream) {
elements()->PrintTo(stream);
stream->Add("[");
key()->PrintTo(stream);
if (hydrogen()->IsDehoisted()) {
stream->Add(" + %d]", additional_index());
} else {
stream->Add("]");
}
}
void LStoreKeyed::PrintDataTo(StringStream* stream) {
elements()->PrintTo(stream);
stream->Add("[");
key()->PrintTo(stream);
if (hydrogen()->IsDehoisted()) {
stream->Add(" + %d] <-", additional_index());
} else {
stream->Add("] <- ");
}
if (value() == NULL) {
ASSERT(hydrogen()->IsConstantHoleStore() &&
hydrogen()->value()->representation().IsDouble());
stream->Add("<the hole(nan)>");
} else {
value()->PrintTo(stream);
}
}
void LStoreKeyedGeneric::PrintDataTo(StringStream* stream) {
object()->PrintTo(stream);
stream->Add("[");
key()->PrintTo(stream);
stream->Add("] <- ");
value()->PrintTo(stream);
}
void LTransitionElementsKind::PrintDataTo(StringStream* stream) {
object()->PrintTo(stream);
stream->Add(" %p -> %p", *original_map(), *transitioned_map());
}
LPlatformChunk* LChunkBuilder::Build() {
ASSERT(is_unused());
chunk_ = new(zone()) LPlatformChunk(info(), graph());
LPhase phase("L_Building chunk", chunk_);
status_ = BUILDING;
// Reserve the first spill slot for the state of dynamic alignment.
if (info()->IsOptimizing()) {
int alignment_state_index = chunk_->GetNextSpillIndex(GENERAL_REGISTERS);
ASSERT_EQ(alignment_state_index, 0);
USE(alignment_state_index);
}
// If compiling for OSR, reserve space for the unoptimized frame,
// which will be subsumed into this frame.
if (graph()->has_osr()) {
for (int i = graph()->osr()->UnoptimizedFrameSlots(); i > 0; i--) {
chunk_->GetNextSpillIndex(GENERAL_REGISTERS);
}
}
const ZoneList<HBasicBlock*>* blocks = graph()->blocks();
for (int i = 0; i < blocks->length(); i++) {
HBasicBlock* next = NULL;
if (i < blocks->length() - 1) next = blocks->at(i + 1);
DoBasicBlock(blocks->at(i), next);
if (is_aborted()) return NULL;
}
status_ = DONE;
return chunk_;
}
void LChunkBuilder::Abort(BailoutReason reason) {
info()->set_bailout_reason(reason);
status_ = ABORTED;
}
LUnallocated* LChunkBuilder::ToUnallocated(Register reg) {
return new(zone()) LUnallocated(LUnallocated::FIXED_REGISTER,
Register::ToAllocationIndex(reg));
}
LUnallocated* LChunkBuilder::ToUnallocated(XMMRegister reg) {
return new(zone()) LUnallocated(LUnallocated::FIXED_DOUBLE_REGISTER,
XMMRegister::ToAllocationIndex(reg));
}
LOperand* LChunkBuilder::UseFixed(HValue* value, Register fixed_register) {
return Use(value, ToUnallocated(fixed_register));
}
LOperand* LChunkBuilder::UseFixedDouble(HValue* value, XMMRegister reg) {
return Use(value, ToUnallocated(reg));
}
LOperand* LChunkBuilder::UseRegister(HValue* value) {
return Use(value, new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER));
}
LOperand* LChunkBuilder::UseRegisterAtStart(HValue* value) {
return Use(value,
new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER,
LUnallocated::USED_AT_START));
}
LOperand* LChunkBuilder::UseTempRegister(HValue* value) {
return Use(value, new(zone()) LUnallocated(LUnallocated::WRITABLE_REGISTER));
}
LOperand* LChunkBuilder::Use(HValue* value) {
return Use(value, new(zone()) LUnallocated(LUnallocated::NONE));
}
LOperand* LChunkBuilder::UseAtStart(HValue* value) {
return Use(value, new(zone()) LUnallocated(LUnallocated::NONE,
LUnallocated::USED_AT_START));
}
static inline bool CanBeImmediateConstant(HValue* value) {
return value->IsConstant() && HConstant::cast(value)->NotInNewSpace();
}
LOperand* LChunkBuilder::UseOrConstant(HValue* value) {
return CanBeImmediateConstant(value)
? chunk_->DefineConstantOperand(HConstant::cast(value))
: Use(value);
}
LOperand* LChunkBuilder::UseOrConstantAtStart(HValue* value) {
return CanBeImmediateConstant(value)
? chunk_->DefineConstantOperand(HConstant::cast(value))
: UseAtStart(value);
}
LOperand* LChunkBuilder::UseFixedOrConstant(HValue* value,
Register fixed_register) {
return CanBeImmediateConstant(value)
? chunk_->DefineConstantOperand(HConstant::cast(value))
: UseFixed(value, fixed_register);
}
LOperand* LChunkBuilder::UseRegisterOrConstant(HValue* value) {
return CanBeImmediateConstant(value)
? chunk_->DefineConstantOperand(HConstant::cast(value))
: UseRegister(value);
}
LOperand* LChunkBuilder::UseRegisterOrConstantAtStart(HValue* value) {
return CanBeImmediateConstant(value)
? chunk_->DefineConstantOperand(HConstant::cast(value))
: UseRegisterAtStart(value);
}
LOperand* LChunkBuilder::UseConstant(HValue* value) {
return chunk_->DefineConstantOperand(HConstant::cast(value));
}
LOperand* LChunkBuilder::UseAny(HValue* value) {
return value->IsConstant()
? chunk_->DefineConstantOperand(HConstant::cast(value))
: Use(value, new(zone()) LUnallocated(LUnallocated::ANY));
}
LOperand* LChunkBuilder::Use(HValue* value, LUnallocated* operand) {
if (value->EmitAtUses()) {
HInstruction* instr = HInstruction::cast(value);
VisitInstruction(instr);
}
operand->set_virtual_register(value->id());
return operand;
}
template<int I, int T>
LInstruction* LChunkBuilder::Define(LTemplateInstruction<1, I, T>* instr,
LUnallocated* result) {
result->set_virtual_register(current_instruction_->id());
instr->set_result(result);
return instr;
}
template<int I, int T>
LInstruction* LChunkBuilder::DefineAsRegister(
LTemplateInstruction<1, I, T>* instr) {
return Define(instr,
new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER));
}
template<int I, int T>
LInstruction* LChunkBuilder::DefineAsSpilled(
LTemplateInstruction<1, I, T>* instr,
int index) {
return Define(instr,
new(zone()) LUnallocated(LUnallocated::FIXED_SLOT, index));
}
template<int I, int T>
LInstruction* LChunkBuilder::DefineSameAsFirst(
LTemplateInstruction<1, I, T>* instr) {
return Define(instr,
new(zone()) LUnallocated(LUnallocated::SAME_AS_FIRST_INPUT));
}
template<int I, int T>
LInstruction* LChunkBuilder::DefineFixed(LTemplateInstruction<1, I, T>* instr,
Register reg) {
return Define(instr, ToUnallocated(reg));
}
template<int I, int T>
LInstruction* LChunkBuilder::DefineFixedDouble(
LTemplateInstruction<1, I, T>* instr,
XMMRegister reg) {
return Define(instr, ToUnallocated(reg));
}
LInstruction* LChunkBuilder::AssignEnvironment(LInstruction* instr) {
HEnvironment* hydrogen_env = current_block_->last_environment();
int argument_index_accumulator = 0;
ZoneList<HValue*> objects_to_materialize(0, zone());
instr->set_environment(CreateEnvironment(hydrogen_env,
&argument_index_accumulator,
&objects_to_materialize));
return instr;
}
LInstruction* LChunkBuilder::MarkAsCall(LInstruction* instr,
HInstruction* hinstr,
CanDeoptimize can_deoptimize) {
info()->MarkAsNonDeferredCalling();
#ifdef DEBUG
instr->VerifyCall();
#endif
instr->MarkAsCall();
instr = AssignPointerMap(instr);
if (hinstr->HasObservableSideEffects()) {
ASSERT(hinstr->next()->IsSimulate());
HSimulate* sim = HSimulate::cast(hinstr->next());
ASSERT(instruction_pending_deoptimization_environment_ == NULL);
ASSERT(pending_deoptimization_ast_id_.IsNone());
instruction_pending_deoptimization_environment_ = instr;
pending_deoptimization_ast_id_ = sim->ast_id();
}
// If instruction does not have side-effects lazy deoptimization
// after the call will try to deoptimize to the point before the call.
// Thus we still need to attach environment to this call even if
// call sequence can not deoptimize eagerly.
bool needs_environment =
(can_deoptimize == CAN_DEOPTIMIZE_EAGERLY) ||
!hinstr->HasObservableSideEffects();
if (needs_environment && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
}
return instr;
}
LInstruction* LChunkBuilder::AssignPointerMap(LInstruction* instr) {
ASSERT(!instr->HasPointerMap());
instr->set_pointer_map(new(zone()) LPointerMap(zone()));
return instr;
}
LUnallocated* LChunkBuilder::TempRegister() {
LUnallocated* operand =
new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER);
int vreg = allocator_->GetVirtualRegister();
if (!allocator_->AllocationOk()) {
Abort(kOutOfVirtualRegistersWhileTryingToAllocateTempRegister);
vreg = 0;
}
operand->set_virtual_register(vreg);
return operand;
}
LOperand* LChunkBuilder::FixedTemp(Register reg) {
LUnallocated* operand = ToUnallocated(reg);
ASSERT(operand->HasFixedPolicy());
return operand;
}
LOperand* LChunkBuilder::FixedTemp(XMMRegister reg) {
LUnallocated* operand = ToUnallocated(reg);
ASSERT(operand->HasFixedPolicy());
return operand;
}
LInstruction* LChunkBuilder::DoBlockEntry(HBlockEntry* instr) {
return new(zone()) LLabel(instr->block());
}
LInstruction* LChunkBuilder::DoDummyUse(HDummyUse* instr) {
return DefineAsRegister(new(zone()) LDummyUse(UseAny(instr->value())));
}
LInstruction* LChunkBuilder::DoEnvironmentMarker(HEnvironmentMarker* instr) {
UNREACHABLE();
return NULL;
}
LInstruction* LChunkBuilder::DoDeoptimize(HDeoptimize* instr) {
return AssignEnvironment(new(zone()) LDeoptimize);
}
LInstruction* LChunkBuilder::DoShift(Token::Value op,
HBitwiseBinaryOperation* instr) {
if (instr->representation().IsSmiOrInteger32()) {
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
LOperand* left = UseRegisterAtStart(instr->left());
HValue* right_value = instr->right();
LOperand* right = NULL;
int constant_value = 0;
bool does_deopt = false;
if (right_value->IsConstant()) {
HConstant* constant = HConstant::cast(right_value);
right = chunk_->DefineConstantOperand(constant);
constant_value = constant->Integer32Value() & 0x1f;
// Left shifts can deoptimize if we shift by > 0 and the result cannot be
// truncated to smi.
if (instr->representation().IsSmi() && constant_value > 0) {
does_deopt = !instr->CheckUsesForFlag(HValue::kTruncatingToSmi);
}
} else {
right = UseFixed(right_value, ecx);
}
// Shift operations can only deoptimize if we do a logical shift by 0 and
// the result cannot be truncated to int32.
if (op == Token::SHR && constant_value == 0) {
if (FLAG_opt_safe_uint32_operations) {
does_deopt = !instr->CheckFlag(HInstruction::kUint32);
} else {
does_deopt = !instr->CheckUsesForFlag(HValue::kTruncatingToInt32);
}
}
LInstruction* result =
DefineSameAsFirst(new(zone()) LShiftI(op, left, right, does_deopt));
return does_deopt ? AssignEnvironment(result) : result;
} else {
return DoArithmeticT(op, instr);
}
}
LInstruction* LChunkBuilder::DoArithmeticD(Token::Value op,
HArithmeticBinaryOperation* instr) {
ASSERT(instr->representation().IsDouble());
ASSERT(instr->left()->representation().IsDouble());
ASSERT(instr->right()->representation().IsDouble());
if (op == Token::MOD) {
LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand());
LOperand* right = UseRegisterAtStart(instr->BetterRightOperand());
LArithmeticD* result = new(zone()) LArithmeticD(op, left, right);
return MarkAsCall(DefineSameAsFirst(result), instr);
} else {
LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand());
LOperand* right = UseRegisterAtStart(instr->BetterRightOperand());
LArithmeticD* result = new(zone()) LArithmeticD(op, left, right);
return DefineSameAsFirst(result);
}
}
LInstruction* LChunkBuilder::DoArithmeticT(Token::Value op,
HBinaryOperation* instr) {
HValue* left = instr->left();
HValue* right = instr->right();
ASSERT(left->representation().IsTagged());
ASSERT(right->representation().IsTagged());
LOperand* context = UseFixed(instr->context(), esi);
LOperand* left_operand = UseFixed(left, edx);
LOperand* right_operand = UseFixed(right, eax);
LArithmeticT* result =
new(zone()) LArithmeticT(op, context, left_operand, right_operand);
return MarkAsCall(DefineFixed(result, eax), instr);
}
void LChunkBuilder::DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block) {
ASSERT(is_building());
current_block_ = block;
next_block_ = next_block;
if (block->IsStartBlock()) {
block->UpdateEnvironment(graph_->start_environment());
argument_count_ = 0;
} else if (block->predecessors()->length() == 1) {
// We have a single predecessor => copy environment and outgoing
// argument count from the predecessor.
ASSERT(block->phis()->length() == 0);
HBasicBlock* pred = block->predecessors()->at(0);
HEnvironment* last_environment = pred->last_environment();
ASSERT(last_environment != NULL);
// Only copy the environment, if it is later used again.
if (pred->end()->SecondSuccessor() == NULL) {
ASSERT(pred->end()->FirstSuccessor() == block);
} else {
if (pred->end()->FirstSuccessor()->block_id() > block->block_id() ||
pred->end()->SecondSuccessor()->block_id() > block->block_id()) {
last_environment = last_environment->Copy();
}
}
block->UpdateEnvironment(last_environment);
ASSERT(pred->argument_count() >= 0);
argument_count_ = pred->argument_count();
} else {
// We are at a state join => process phis.
HBasicBlock* pred = block->predecessors()->at(0);
// No need to copy the environment, it cannot be used later.
HEnvironment* last_environment = pred->last_environment();
for (int i = 0; i < block->phis()->length(); ++i) {
HPhi* phi = block->phis()->at(i);
if (phi->HasMergedIndex()) {
last_environment->SetValueAt(phi->merged_index(), phi);
}
}
for (int i = 0; i < block->deleted_phis()->length(); ++i) {
if (block->deleted_phis()->at(i) < last_environment->length()) {
last_environment->SetValueAt(block->deleted_phis()->at(i),
graph_->GetConstantUndefined());
}
}
block->UpdateEnvironment(last_environment);
// Pick up the outgoing argument count of one of the predecessors.
argument_count_ = pred->argument_count();
}
HInstruction* current = block->first();
int start = chunk_->instructions()->length();
while (current != NULL && !is_aborted()) {
// Code for constants in registers is generated lazily.
if (!current->EmitAtUses()) {
VisitInstruction(current);
}
current = current->next();
}
int end = chunk_->instructions()->length() - 1;
if (end >= start) {
block->set_first_instruction_index(start);
block->set_last_instruction_index(end);
}
block->set_argument_count(argument_count_);
next_block_ = NULL;
current_block_ = NULL;
}
void LChunkBuilder::VisitInstruction(HInstruction* current) {
HInstruction* old_current = current_instruction_;
current_instruction_ = current;
LInstruction* instr = NULL;
if (current->CanReplaceWithDummyUses()) {
if (current->OperandCount() == 0) {
instr = DefineAsRegister(new(zone()) LDummy());
} else {
instr = DefineAsRegister(new(zone())
LDummyUse(UseAny(current->OperandAt(0))));
}
for (int i = 1; i < current->OperandCount(); ++i) {
LInstruction* dummy =
new(zone()) LDummyUse(UseAny(current->OperandAt(i)));
dummy->set_hydrogen_value(current);
chunk_->AddInstruction(dummy, current_block_);
}
} else {
instr = current->CompileToLithium(this);
}
argument_count_ += current->argument_delta();
ASSERT(argument_count_ >= 0);
if (instr != NULL) {
// Associate the hydrogen instruction first, since we may need it for
// the ClobbersRegisters() or ClobbersDoubleRegisters() calls below.
instr->set_hydrogen_value(current);
#if DEBUG
// Make sure that the lithium instruction has either no fixed register
// constraints in temps or the result OR no uses that are only used at
// start. If this invariant doesn't hold, the register allocator can decide
// to insert a split of a range immediately before the instruction due to an
// already allocated register needing to be used for the instruction's fixed
// register constraint. In this case, The register allocator won't see an
// interference between the split child and the use-at-start (it would if
// the it was just a plain use), so it is free to move the split child into
// the same register that is used for the use-at-start.
// See https://code.google.com/p/chromium/issues/detail?id=201590
if (!(instr->ClobbersRegisters() && instr->ClobbersDoubleRegisters())) {
int fixed = 0;
int used_at_start = 0;
for (UseIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->IsUsedAtStart()) ++used_at_start;
}
if (instr->Output() != NULL) {
if (LUnallocated::cast(instr->Output())->HasFixedPolicy()) ++fixed;
}
for (TempIterator it(instr); !it.Done(); it.Advance()) {
LUnallocated* operand = LUnallocated::cast(it.Current());
if (operand->HasFixedPolicy()) ++fixed;
}
ASSERT(fixed == 0 || used_at_start == 0);
}
#endif
if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) {
instr = AssignPointerMap(instr);
}
if (FLAG_stress_environments && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
}
if (!CpuFeatures::IsSafeForSnapshot(SSE2) && instr->IsGoto() &&
LGoto::cast(instr)->jumps_to_join()) {
// TODO(olivf) Since phis of spilled values are joined as registers
// (not in the stack slot), we need to allow the goto gaps to keep one
// x87 register alive. To ensure all other values are still spilled, we
// insert a fpu register barrier right before.
LClobberDoubles* clobber = new(zone()) LClobberDoubles();
clobber->set_hydrogen_value(current);
chunk_->AddInstruction(clobber, current_block_);
}
chunk_->AddInstruction(instr, current_block_);
}
current_instruction_ = old_current;
}
LEnvironment* LChunkBuilder::CreateEnvironment(
HEnvironment* hydrogen_env,
int* argument_index_accumulator,
ZoneList<HValue*>* objects_to_materialize) {
if (hydrogen_env == NULL) return NULL;
LEnvironment* outer = CreateEnvironment(hydrogen_env->outer(),
argument_index_accumulator,
objects_to_materialize);
BailoutId ast_id = hydrogen_env->ast_id();
ASSERT(!ast_id.IsNone() ||
hydrogen_env->frame_type() != JS_FUNCTION);
int value_count = hydrogen_env->length() - hydrogen_env->specials_count();
LEnvironment* result =
new(zone()) LEnvironment(hydrogen_env->closure(),
hydrogen_env->frame_type(),
ast_id,
hydrogen_env->parameter_count(),
argument_count_,
value_count,
outer,
hydrogen_env->entry(),
zone());
int argument_index = *argument_index_accumulator;
int object_index = objects_to_materialize->length();
for (int i = 0; i < hydrogen_env->length(); ++i) {
if (hydrogen_env->is_special_index(i)) continue;
LOperand* op;
HValue* value = hydrogen_env->values()->at(i);
if (value->IsArgumentsObject() || value->IsCapturedObject()) {
objects_to_materialize->Add(value, zone());
op = LEnvironment::materialization_marker();
} else if (value->IsPushArgument()) {
op = new(zone()) LArgument(argument_index++);
} else {
op = UseAny(value);
}
result->AddValue(op,
value->representation(),
value->CheckFlag(HInstruction::kUint32));
}
for (int i = object_index; i < objects_to_materialize->length(); ++i) {
HValue* object_to_materialize = objects_to_materialize->at(i);
int previously_materialized_object = -1;
for (int prev = 0; prev < i; ++prev) {
if (objects_to_materialize->at(prev) == objects_to_materialize->at(i)) {
previously_materialized_object = prev;
break;
}
}
int length = object_to_materialize->OperandCount();
bool is_arguments = object_to_materialize->IsArgumentsObject();
if (previously_materialized_object >= 0) {
result->AddDuplicateObject(previously_materialized_object);
continue;
} else {
result->AddNewObject(is_arguments ? length - 1 : length, is_arguments);
}
for (int i = is_arguments ? 1 : 0; i < length; ++i) {
LOperand* op;
HValue* value = object_to_materialize->OperandAt(i);
if (value->IsArgumentsObject() || value->IsCapturedObject()) {
objects_to_materialize->Add(value, zone());
op = LEnvironment::materialization_marker();
} else {
ASSERT(!value->IsPushArgument());
op = UseAny(value);
}
result->AddValue(op,
value->representation(),
value->CheckFlag(HInstruction::kUint32));
}
}
if (hydrogen_env->frame_type() == JS_FUNCTION) {
*argument_index_accumulator = argument_index;
}
return result;
}
LInstruction* LChunkBuilder::DoGoto(HGoto* instr) {
return new(zone()) LGoto(instr->FirstSuccessor());
}
LInstruction* LChunkBuilder::DoBranch(HBranch* instr) {
LInstruction* goto_instr = CheckElideControlInstruction(instr);
if (goto_instr != NULL) return goto_instr;
ToBooleanStub::Types expected = instr->expected_input_types();
// Tagged values that are not known smis or booleans require a
// deoptimization environment. If the instruction is generic no
// environment is needed since all cases are handled.
HValue* value = instr->value();
Representation rep = value->representation();
HType type = value->type();
if (!rep.IsTagged() || type.IsSmi() || type.IsBoolean()) {
return new(zone()) LBranch(UseRegister(value), NULL);
}
bool needs_temp = expected.NeedsMap() || expected.IsEmpty();
LOperand* temp = needs_temp ? TempRegister() : NULL;
// The Generic stub does not have a deopt, so we need no environment.
if (expected.IsGeneric()) {
return new(zone()) LBranch(UseRegister(value), temp);
}
// We need a temporary register when we have to access the map *or* we have
// no type info yet, in which case we handle all cases (including the ones
// involving maps).
return AssignEnvironment(new(zone()) LBranch(UseRegister(value), temp));
}
LInstruction* LChunkBuilder::DoDebugBreak(HDebugBreak* instr) {
return new(zone()) LDebugBreak();
}
LInstruction* LChunkBuilder::DoCompareMap(HCompareMap* instr) {
ASSERT(instr->value()->representation().IsTagged());
LOperand* value = UseRegisterAtStart(instr->value());
return new(zone()) LCmpMapAndBranch(value);
}
LInstruction* LChunkBuilder::DoArgumentsLength(HArgumentsLength* length) {
info()->MarkAsRequiresFrame();
return DefineAsRegister(new(zone()) LArgumentsLength(Use(length->value())));
}
LInstruction* LChunkBuilder::DoArgumentsElements(HArgumentsElements* elems) {
info()->MarkAsRequiresFrame();
return DefineAsRegister(new(zone()) LArgumentsElements);
}
LInstruction* LChunkBuilder::DoInstanceOf(HInstanceOf* instr) {
LOperand* left = UseFixed(instr->left(), InstanceofStub::left());
LOperand* right = UseFixed(instr->right(), InstanceofStub::right());
LOperand* context = UseFixed(instr->context(), esi);
LInstanceOf* result = new(zone()) LInstanceOf(context, left, right);
return MarkAsCall(DefineFixed(result, eax), instr);
}
LInstruction* LChunkBuilder::DoInstanceOfKnownGlobal(
HInstanceOfKnownGlobal* instr) {
LInstanceOfKnownGlobal* result =
new(zone()) LInstanceOfKnownGlobal(
UseFixed(instr->context(), esi),
UseFixed(instr->left(), InstanceofStub::left()),
FixedTemp(edi));
return MarkAsCall(DefineFixed(result, eax), instr);
}
LInstruction* LChunkBuilder::DoWrapReceiver(HWrapReceiver* instr) {
LOperand* receiver = UseRegister(instr->receiver());
LOperand* function = UseRegisterAtStart(instr->function());
LOperand* temp = TempRegister();
LWrapReceiver* result =
new(zone()) LWrapReceiver(receiver, function, temp);
return AssignEnvironment(DefineSameAsFirst(result));
}
LInstruction* LChunkBuilder::DoApplyArguments(HApplyArguments* instr) {
LOperand* function = UseFixed(instr->function(), edi);
LOperand* receiver = UseFixed(instr->receiver(), eax);
LOperand* length = UseFixed(instr->length(), ebx);
LOperand* elements = UseFixed(instr->elements(), ecx);
LApplyArguments* result = new(zone()) LApplyArguments(function,
receiver,
length,
elements);
return MarkAsCall(DefineFixed(result, eax), instr, CAN_DEOPTIMIZE_EAGERLY);
}
LInstruction* LChunkBuilder::DoPushArgument(HPushArgument* instr) {
LOperand* argument = UseAny(instr->argument());
return new(zone()) LPushArgument(argument);
}
LInstruction* LChunkBuilder::DoStoreCodeEntry(
HStoreCodeEntry* store_code_entry) {
LOperand* function = UseRegister(store_code_entry->function());
LOperand* code_object = UseTempRegister(store_code_entry->code_object());
return new(zone()) LStoreCodeEntry(function, code_object);
}
LInstruction* LChunkBuilder::DoInnerAllocatedObject(
HInnerAllocatedObject* instr) {
LOperand* base_object = UseRegisterAtStart(instr->base_object());
LOperand* offset = UseRegisterOrConstantAtStart(instr->offset());
return DefineAsRegister(
new(zone()) LInnerAllocatedObject(base_object, offset));
}
LInstruction* LChunkBuilder::DoThisFunction(HThisFunction* instr) {
return instr->HasNoUses()
? NULL
: DefineAsRegister(new(zone()) LThisFunction);
}
LInstruction* LChunkBuilder::DoContext(HContext* instr) {
if (instr->HasNoUses()) return NULL;
if (info()->IsStub()) {
return DefineFixed(new(zone()) LContext, esi);
}
return DefineAsRegister(new(zone()) LContext);
}
LInstruction* LChunkBuilder::DoOuterContext(HOuterContext* instr) {
LOperand* context = UseRegisterAtStart(instr->value());
return DefineAsRegister(new(zone()) LOuterContext(context));
}
LInstruction* LChunkBuilder::DoDeclareGlobals(HDeclareGlobals* instr) {
LOperand* context = UseFixed(instr->context(), esi);
return MarkAsCall(new(zone()) LDeclareGlobals(context), instr);
}
LInstruction* LChunkBuilder::DoGlobalObject(HGlobalObject* instr) {
LOperand* context = UseRegisterAtStart(instr->value());
return DefineAsRegister(new(zone()) LGlobalObject(context));
}
LInstruction* LChunkBuilder::DoGlobalReceiver(HGlobalReceiver* instr) {
LOperand* global_object = UseRegisterAtStart(instr->value());
return DefineAsRegister(new(zone()) LGlobalReceiver(global_object));
}
LInstruction* LChunkBuilder::DoCallConstantFunction(
HCallConstantFunction* instr) {
return MarkAsCall(DefineFixed(new(zone()) LCallConstantFunction, eax), instr);
}
LInstruction* LChunkBuilder::DoInvokeFunction(HInvokeFunction* instr) {
LOperand* context = UseFixed(instr->context(), esi);
LOperand* function = UseFixed(instr->function(), edi);
LInvokeFunction* result = new(zone()) LInvokeFunction(context, function);
return MarkAsCall(DefineFixed(result, eax), instr, CANNOT_DEOPTIMIZE_EAGERLY);
}
LInstruction* LChunkBuilder::DoUnaryMathOperation(HUnaryMathOperation* instr) {
switch (instr->op()) {
case kMathFloor: return DoMathFloor(instr);
case kMathRound: return DoMathRound(instr);
case kMathAbs: return DoMathAbs(instr);
case kMathLog: return DoMathLog(instr);
case kMathSin: return DoMathSin(instr);
case kMathCos: return DoMathCos(instr);
case kMathTan: return DoMathTan(instr);
case kMathExp: return DoMathExp(instr);
case kMathSqrt: return DoMathSqrt(instr);
case kMathPowHalf: return DoMathPowHalf(instr);
default:
UNREACHABLE();
return NULL;
}
}
LInstruction* LChunkBuilder::DoMathFloor(HUnaryMathOperation* instr) {
LOperand* input = UseRegisterAtStart(instr->value());
LMathFloor* result = new(zone()) LMathFloor(input);
return AssignEnvironment(DefineAsRegister(result));
}
LInstruction* LChunkBuilder::DoMathRound(HUnaryMathOperation* instr) {
LOperand* input = UseRegister(instr->value());
LOperand* temp = FixedTemp(xmm4);
LMathRound* result = new(zone()) LMathRound(input, temp);
return AssignEnvironment(DefineAsRegister(result));
}
LInstruction* LChunkBuilder::DoMathAbs(HUnaryMathOperation* instr) {
LOperand* context = UseAny(instr->context()); // Deferred use.
LOperand* input = UseRegisterAtStart(instr->value());
LMathAbs* result = new(zone()) LMathAbs(context, input);
return AssignEnvironment(AssignPointerMap(DefineSameAsFirst(result)));
}
LInstruction* LChunkBuilder::DoMathLog(HUnaryMathOperation* instr) {
ASSERT(instr->representation().IsDouble());
ASSERT(instr->value()->representation().IsDouble());
LOperand* input = UseRegisterAtStart(instr->value());
LMathLog* result = new(zone()) LMathLog(input);
return DefineSameAsFirst(result);
}
LInstruction* LChunkBuilder::DoMathSin(HUnaryMathOperation* instr) {
LOperand* input = UseFixedDouble(instr->value(), xmm1);
LMathSin* result = new(zone()) LMathSin(input);
return MarkAsCall(DefineFixedDouble(result, xmm1), instr);
}
LInstruction* LChunkBuilder::DoMathCos(HUnaryMathOperation* instr) {
LOperand* input = UseFixedDouble(instr->value(), xmm1);
LMathCos* result = new(zone()) LMathCos(input);
return MarkAsCall(DefineFixedDouble(result, xmm1), instr);
}
LInstruction* LChunkBuilder::DoMathTan(HUnaryMathOperation* instr) {
LOperand* input = UseFixedDouble(instr->value(), xmm1);
LMathTan* result = new(zone()) LMathTan(input);
return MarkAsCall(DefineFixedDouble(result, xmm1), instr);
}
LInstruction* LChunkBuilder::DoMathExp(HUnaryMathOperation* instr) {
ASSERT(instr->representation().IsDouble());
ASSERT(instr->value()->representation().IsDouble());
LOperand* value = UseTempRegister(instr->value());
LOperand* temp1 = TempRegister();
LOperand* temp2 = TempRegister();
LMathExp* result = new(zone()) LMathExp(value, temp1, temp2);
return DefineAsRegister(result);
}
LInstruction* LChunkBuilder::DoMathSqrt(HUnaryMathOperation* instr) {
LOperand* input = UseRegisterAtStart(instr->value());
LMathSqrt* result = new(zone()) LMathSqrt(input);
return DefineSameAsFirst(result);
}
LInstruction* LChunkBuilder::DoMathPowHalf(HUnaryMathOperation* instr) {
LOperand* input = UseRegisterAtStart(instr->value());
LOperand* temp = TempRegister();
LMathPowHalf* result = new(zone()) LMathPowHalf(input, temp);
return DefineSameAsFirst(result);
}
LInstruction* LChunkBuilder::DoCallKeyed(HCallKeyed* instr) {
ASSERT(instr->key()->representation().IsTagged());
LOperand* context = UseFixed(instr->context(), esi);
LOperand* key = UseFixed(instr->key(), ecx);
LCallKeyed* result = new(zone()) LCallKeyed(context, key);
return MarkAsCall(DefineFixed(result, eax), instr);
}
LInstruction* LChunkBuilder::DoCallNamed(HCallNamed* instr) {
LOperand* context = UseFixed(instr->context(), esi);
LCallNamed* result = new(zone()) LCallNamed(context);
return MarkAsCall(DefineFixed(result, eax), instr);
}
LInstruction* LChunkBuilder::DoCallGlobal(HCallGlobal* instr) {
LOperand* context = UseFixed(instr->context(), esi);
LCallGlobal* result = new(zone()) LCallGlobal(context);
return MarkAsCall(DefineFixed(result, eax), instr);
}
LInstruction* LChunkBuilder::DoCallKnownGlobal(HCallKnownGlobal* instr) {
return MarkAsCall(DefineFixed(new(zone()) LCallKnownGlobal, eax), instr);
}
LInstruction* LChunkBuilder::DoCallNew(HCallNew* instr) {
LOperand* context = UseFixed(instr->context(), esi);
LOperand* constructor = UseFixed(instr->constructor(), edi);
LCallNew* result = new(zone()) LCallNew(context, constructor);
return MarkAsCall(DefineFixed(result, eax), instr);
}
LInstruction* LChunkBuilder::DoCallNewArray(HCallNewArray* instr) {
LOperand* context = UseFixed(instr->context(), esi);
LOperand* constructor = UseFixed(instr->constructor(), edi);
LCallNewArray* result = new(zone()) LCallNewArray(context, constructor);
return MarkAsCall(DefineFixed(result, eax), instr);
}
LInstruction* LChunkBuilder::DoCallFunction(HCallFunction* instr) {
LOperand* context = UseFixed(instr->context(), esi);
LOperand* function = UseFixed(instr->function(), edi);
LCallFunction* call = new(zone()) LCallFunction(context, function);
LInstruction* result = DefineFixed(call, eax);
if (instr->IsTailCall()) return result;
return MarkAsCall(result, instr);
}
LInstruction* LChunkBuilder::DoCallRuntime(HCallRuntime* instr) {
LOperand* context = UseFixed(instr->context(), esi);
return MarkAsCall(DefineFixed(new(zone()) LCallRuntime(context), eax), instr);
}
LInstruction* LChunkBuilder::DoRor(HRor* instr) {
return DoShift(Token::ROR, instr);
}
LInstruction* LChunkBuilder::DoShr(HShr* instr) {
return DoShift(Token::SHR, instr);
}
LInstruction* LChunkBuilder::DoSar(HSar* instr) {
return DoShift(Token::SAR, instr);
}
LInstruction* LChunkBuilder::DoShl(HShl* instr) {
return DoShift(Token::SHL, instr);
}
LInstruction* LChunkBuilder::DoBitwise(HBitwise* instr) {
if (instr->representation().IsSmiOrInteger32()) {
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
ASSERT(instr->CheckFlag(HValue::kTruncatingToInt32));
LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand());
LOperand* right = UseOrConstantAtStart(instr->BetterRightOperand());
return DefineSameAsFirst(new(zone()) LBitI(left, right));
} else {
return DoArithmeticT(instr->op(), instr);
}
}
LInstruction* LChunkBuilder::DoDiv(HDiv* instr) {
if (instr->representation().IsSmiOrInteger32()) {
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
if (instr->HasPowerOf2Divisor()) {
ASSERT(!instr->CheckFlag(HValue::kCanBeDivByZero));
LOperand* value = UseRegisterAtStart(instr->left());
LDivI* div =
new(zone()) LDivI(value, UseOrConstant(instr->right()), NULL);
return AssignEnvironment(DefineSameAsFirst(div));
}
// The temporary operand is necessary to ensure that right is not allocated
// into edx.
LOperand* temp = FixedTemp(edx);
LOperand* dividend = UseFixed(instr->left(), eax);
LOperand* divisor = UseRegister(instr->right());
LDivI* result = new(zone()) LDivI(dividend, divisor, temp);
return AssignEnvironment(DefineFixed(result, eax));
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::DIV, instr);
} else {
return DoArithmeticT(Token::DIV, instr);
}
}
HValue* LChunkBuilder::SimplifiedDivisorForMathFloorOfDiv(HValue* divisor) {
if (divisor->IsConstant() &&
HConstant::cast(divisor)->HasInteger32Value()) {
HConstant* constant_val = HConstant::cast(divisor);
return constant_val->CopyToRepresentation(Representation::Integer32(),
divisor->block()->zone());
}
// A value with an integer representation does not need to be transformed.
if (divisor->representation().IsInteger32()) {
return divisor;
// A change from an integer32 can be replaced by the integer32 value.
} else if (divisor->IsChange() &&
HChange::cast(divisor)->from().IsInteger32()) {
return HChange::cast(divisor)->value();
}
return NULL;
}
LInstruction* LChunkBuilder::DoMathFloorOfDiv(HMathFloorOfDiv* instr) {
HValue* right = instr->right();
if (!right->IsConstant()) {
ASSERT(right->representation().IsInteger32());
// The temporary operand is necessary to ensure that right is not allocated
// into edx.
LOperand* temp = FixedTemp(edx);
LOperand* dividend = UseFixed(instr->left(), eax);
LOperand* divisor = UseRegister(instr->right());
LDivI* flooring_div = new(zone()) LDivI(dividend, divisor, temp);
return AssignEnvironment(DefineFixed(flooring_div, eax));
}
ASSERT(right->IsConstant() && HConstant::cast(right)->HasInteger32Value());
LOperand* divisor = chunk_->DefineConstantOperand(HConstant::cast(right));
int32_t divisor_si = HConstant::cast(right)->Integer32Value();
if (divisor_si == 0) {
LOperand* dividend = UseRegister(instr->left());
return AssignEnvironment(DefineAsRegister(
new(zone()) LMathFloorOfDiv(dividend, divisor, NULL)));
} else if (IsPowerOf2(abs(divisor_si))) {
// use dividend as temp if divisor < 0 && divisor != -1
LOperand* dividend = divisor_si < -1 ? UseTempRegister(instr->left()) :
UseRegisterAtStart(instr->left());
LInstruction* result = DefineAsRegister(
new(zone()) LMathFloorOfDiv(dividend, divisor, NULL));
return divisor_si < 0 ? AssignEnvironment(result) : result;
} else {
// needs edx:eax, plus a temp
LOperand* dividend = UseFixed(instr->left(), eax);
LOperand* temp = TempRegister();
LInstruction* result = DefineFixed(
new(zone()) LMathFloorOfDiv(dividend, divisor, temp), edx);
return divisor_si < 0 ? AssignEnvironment(result) : result;
}
}
LInstruction* LChunkBuilder::DoMod(HMod* instr) {
HValue* left = instr->left();
HValue* right = instr->right();
if (instr->representation().IsSmiOrInteger32()) {
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
if (instr->HasPowerOf2Divisor()) {
ASSERT(!right->CanBeZero());
LModI* mod = new(zone()) LModI(UseRegisterAtStart(left),
UseOrConstant(right),
NULL);
LInstruction* result = DefineSameAsFirst(mod);
return (left->CanBeNegative() &&
instr->CheckFlag(HValue::kBailoutOnMinusZero))
? AssignEnvironment(result)
: result;
return AssignEnvironment(DefineSameAsFirst(mod));
} else {
// The temporary operand is necessary to ensure that right is not
// allocated into edx.
LModI* mod = new(zone()) LModI(UseFixed(left, eax),
UseRegister(right),
FixedTemp(edx));
LInstruction* result = DefineFixed(mod, edx);
return (right->CanBeZero() ||
(left->RangeCanInclude(kMinInt) &&
right->RangeCanInclude(-1) &&
instr->CheckFlag(HValue::kBailoutOnMinusZero)) ||
(left->CanBeNegative() &&
instr->CanBeZero() &&
instr->CheckFlag(HValue::kBailoutOnMinusZero)))
? AssignEnvironment(result)
: result;
}
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::MOD, instr);
} else {
return DoArithmeticT(Token::MOD, instr);
}
}
LInstruction* LChunkBuilder::DoMul(HMul* instr) {
if (instr->representation().IsSmiOrInteger32()) {
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand());
LOperand* right = UseOrConstant(instr->BetterRightOperand());
LOperand* temp = NULL;
if (instr->CheckFlag(HValue::kBailoutOnMinusZero)) {
temp = TempRegister();
}
LMulI* mul = new(zone()) LMulI(left, right, temp);
if (instr->CheckFlag(HValue::kCanOverflow) ||
instr->CheckFlag(HValue::kBailoutOnMinusZero)) {
AssignEnvironment(mul);
}
return DefineSameAsFirst(mul);
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::MUL, instr);
} else {
return DoArithmeticT(Token::MUL, instr);
}
}
LInstruction* LChunkBuilder::DoSub(HSub* instr) {
if (instr->representation().IsSmiOrInteger32()) {
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* right = UseOrConstantAtStart(instr->right());
LSubI* sub = new(zone()) LSubI(left, right);
LInstruction* result = DefineSameAsFirst(sub);
if (instr->CheckFlag(HValue::kCanOverflow)) {
result = AssignEnvironment(result);
}
return result;
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::SUB, instr);
} else {
return DoArithmeticT(Token::SUB, instr);
}
}
LInstruction* LChunkBuilder::DoAdd(HAdd* instr) {
if (instr->representation().IsSmiOrInteger32()) {
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
// Check to see if it would be advantageous to use an lea instruction rather
// than an add. This is the case when no overflow check is needed and there
// are multiple uses of the add's inputs, so using a 3-register add will
// preserve all input values for later uses.
bool use_lea = LAddI::UseLea(instr);
LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand());
HValue* right_candidate = instr->BetterRightOperand();
LOperand* right = use_lea
? UseRegisterOrConstantAtStart(right_candidate)
: UseOrConstantAtStart(right_candidate);
LAddI* add = new(zone()) LAddI(left, right);
bool can_overflow = instr->CheckFlag(HValue::kCanOverflow);
LInstruction* result = use_lea
? DefineAsRegister(add)
: DefineSameAsFirst(add);
if (can_overflow) {
result = AssignEnvironment(result);
}
return result;
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::ADD, instr);
} else if (instr->representation().IsExternal()) {
ASSERT(instr->left()->representation().IsExternal());
ASSERT(instr->right()->representation().IsInteger32());
ASSERT(!instr->CheckFlag(HValue::kCanOverflow));
bool use_lea = LAddI::UseLea(instr);
LOperand* left = UseRegisterAtStart(instr->left());
HValue* right_candidate = instr->right();
LOperand* right = use_lea
? UseRegisterOrConstantAtStart(right_candidate)
: UseOrConstantAtStart(right_candidate);
LAddI* add = new(zone()) LAddI(left, right);
LInstruction* result = use_lea
? DefineAsRegister(add)
: DefineSameAsFirst(add);
return result;
} else {
return DoArithmeticT(Token::ADD, instr);
}
}
LInstruction* LChunkBuilder::DoMathMinMax(HMathMinMax* instr) {
LOperand* left = NULL;
LOperand* right = NULL;
if (instr->representation().IsSmiOrInteger32()) {
ASSERT(instr->left()->representation().Equals(instr->representation()));
ASSERT(instr->right()->representation().Equals(instr->representation()));
left = UseRegisterAtStart(instr->BetterLeftOperand());
right = UseOrConstantAtStart(instr->BetterRightOperand());
} else {
ASSERT(instr->representation().IsDouble());
ASSERT(instr->left()->representation().IsDouble());
ASSERT(instr->right()->representation().IsDouble());
left = UseRegisterAtStart(instr->left());
right = UseRegisterAtStart(instr->right());
}
LMathMinMax* minmax = new(zone()) LMathMinMax(left, right);
return DefineSameAsFirst(minmax);
}
LInstruction* LChunkBuilder::DoPower(HPower* instr) {
ASSERT(instr->representation().IsDouble());
// We call a C function for double power. It can't trigger a GC.
// We need to use fixed result register for the call.
Representation exponent_type = instr->right()->representation();
ASSERT(instr->left()->representation().IsDouble());
LOperand* left = UseFixedDouble(instr->left(), xmm2);
LOperand* right = exponent_type.IsDouble() ?
UseFixedDouble(instr->right(), xmm1) :
UseFixed(instr->right(), eax);
LPower* result = new(zone()) LPower(left, right);
return MarkAsCall(DefineFixedDouble(result, xmm3), instr,
CAN_DEOPTIMIZE_EAGERLY);
}
LInstruction* LChunkBuilder::DoCompareGeneric(HCompareGeneric* instr) {
ASSERT(instr->left()->representation().IsSmiOrTagged());
ASSERT(instr->right()->representation().IsSmiOrTagged());
LOperand* context = UseFixed(instr->context(), esi);
LOperand* left = UseFixed(instr->left(), edx);
LOperand* right = UseFixed(instr->right(), eax);
LCmpT* result = new(zone()) LCmpT(context, left, right);
return MarkAsCall(DefineFixed(result, eax), instr);
}
LInstruction* LChunkBuilder::DoCompareNumericAndBranch(
HCompareNumericAndBranch* instr) {
Representation r = instr->representation();
if (r.IsSmiOrInteger32()) {
ASSERT(instr->left()->representation().Equals(r));
ASSERT(instr->right()->representation().Equals(r));
LOperand* left = UseRegisterOrConstantAtStart(instr->left());
LOperand* right = UseOrConstantAtStart(instr->right());
return new(zone()) LCompareNumericAndBranch(left, right);
} else {
ASSERT(r.IsDouble());
ASSERT(instr->left()->representation().IsDouble());
ASSERT(instr->right()->representation().IsDouble());
LOperand* left;
LOperand* right;
if (CanBeImmediateConstant(instr->left()) &&
CanBeImmediateConstant(instr->right())) {
// The code generator requires either both inputs to be constant
// operands, or neither.
left = UseConstant(instr->left());
right = UseConstant(instr->right());
} else {
left = UseRegisterAtStart(instr->left());
right = UseRegisterAtStart(instr->right());
}
return new(zone()) LCompareNumericAndBranch(left, right);
}
}
LInstruction* LChunkBuilder::DoCompareObjectEqAndBranch(
HCompareObjectEqAndBranch* instr) {
LInstruction* goto_instr = CheckElideControlInstruction(instr);
if (goto_instr != NULL) return goto_instr;
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* right = UseOrConstantAtStart(instr->right());
return new(zone()) LCmpObjectEqAndBranch(left, right);
}
LInstruction* LChunkBuilder::DoCompareHoleAndBranch(
HCompareHoleAndBranch* instr) {
LOperand* value = UseRegisterAtStart(instr->value());
return new(zone()) LCmpHoleAndBranch(value);
}
LInstruction* LChunkBuilder::DoCompareMinusZeroAndBranch(
HCompareMinusZeroAndBranch* instr) {
LInstruction* goto_instr = CheckElideControlInstruction(instr);
if (goto_instr != NULL) return goto_instr;
LOperand* value = UseRegister(instr->value());
LOperand* scratch = TempRegister();
return new(zone()) LCompareMinusZeroAndBranch(value, scratch);
}
LInstruction* LChunkBuilder::DoIsObjectAndBranch(HIsObjectAndBranch* instr) {
ASSERT(instr->value()->representation().IsSmiOrTagged());
LOperand* temp = TempRegister();
return new(zone()) LIsObjectAndBranch(UseRegister(instr->value()), temp);
}
LInstruction* LChunkBuilder::DoIsStringAndBranch(HIsStringAndBranch* instr) {
ASSERT(instr->value()->representation().IsTagged());
LOperand* temp = TempRegister();
return new(zone()) LIsStringAndBranch(UseRegister(instr->value()), temp);
}
LInstruction* LChunkBuilder::DoIsSmiAndBranch(HIsSmiAndBranch* instr) {
ASSERT(instr->value()->representation().IsTagged());
return new(zone()) LIsSmiAndBranch(Use(instr->value()));
}
LInstruction* LChunkBuilder::DoIsUndetectableAndBranch(
HIsUndetectableAndBranch* instr) {
ASSERT(instr->value()->representation().IsTagged());
return new(zone()) LIsUndetectableAndBranch(
UseRegisterAtStart(instr->value()), TempRegister());
}
LInstruction* LChunkBuilder::DoStringCompareAndBranch(
HStringCompareAndBranch* instr) {
ASSERT(instr->left()->representation().IsTagged());
ASSERT(instr->right()->representation().IsTagged());
LOperand* context = UseFixed(instr->context(), esi);
LOperand* left = UseFixed(instr->left(), edx);
LOperand* right = UseFixed(instr->right(), eax);
LStringCompareAndBranch* result = new(zone())
LStringCompareAndBranch(context, left, right);
return MarkAsCall(result, instr);
}
LInstruction* LChunkBuilder::DoHasInstanceTypeAndBranch(
HHasInstanceTypeAndBranch* instr) {
ASSERT(instr->value()->representation().IsTagged());
return new(zone()) LHasInstanceTypeAndBranch(
UseRegisterAtStart(instr->value()),
TempRegister());
}
LInstruction* LChunkBuilder::DoGetCachedArrayIndex(
HGetCachedArrayIndex* instr) {
ASSERT(instr->value()->representation().IsTagged());
LOperand* value = UseRegisterAtStart(instr->value());
return DefineAsRegister(new(zone()) LGetCachedArrayIndex(value));
}
LInstruction* LChunkBuilder::DoHasCachedArrayIndexAndBranch(
HHasCachedArrayIndexAndBranch* instr) {
ASSERT(instr->value()->representation().IsTagged());
return new(zone()) LHasCachedArrayIndexAndBranch(
UseRegisterAtStart(instr->value()));
}
LInstruction* LChunkBuilder::DoClassOfTestAndBranch(
HClassOfTestAndBranch* instr) {
ASSERT(instr->value()->representation().IsTagged());
return new(zone()) LClassOfTestAndBranch(UseRegister(instr->value()),
TempRegister(),
TempRegister());
}
LInstruction* LChunkBuilder::DoMapEnumLength(HMapEnumLength* instr) {
LOperand* map = UseRegisterAtStart(instr->value());
return DefineAsRegister(new(zone()) LMapEnumLength(map));
}
LInstruction* LChunkBuilder::DoElementsKind(HElementsKind* instr) {
LOperand* object = UseRegisterAtStart(instr->value());
return DefineAsRegister(new(zone()) LElementsKind(object));
}
LInstruction* LChunkBuilder::DoValueOf(HValueOf* instr) {
LOperand* object = UseRegister(instr->value());
LValueOf* result = new(zone()) LValueOf(object, TempRegister());
return DefineSameAsFirst(result);
}
LInstruction* LChunkBuilder::DoDateField(HDateField* instr) {
LOperand* date = UseFixed(instr->value(), eax);
LDateField* result =
new(zone()) LDateField(date, FixedTemp(ecx), instr->index());
return MarkAsCall(DefineFixed(result, eax), instr, CAN_DEOPTIMIZE_EAGERLY);
}
LInstruction* LChunkBuilder::DoSeqStringGetChar(HSeqStringGetChar* instr) {
LOperand* string = UseRegisterAtStart(instr->string());
LOperand* index = UseRegisterOrConstantAtStart(instr->index());
return DefineAsRegister(new(zone()) LSeqStringGetChar(string, index));
}
LOperand* LChunkBuilder::GetSeqStringSetCharOperand(HSeqStringSetChar* instr) {
if (instr->encoding() == String::ONE_BYTE_ENCODING) {
if (FLAG_debug_code) {
return UseFixed(instr->value(), eax);
} else {
return UseFixedOrConstant(instr->value(), eax);
}
} else {
if (FLAG_debug_code) {
return UseRegisterAtStart(instr->value());
} else {
return UseRegisterOrConstantAtStart(instr->value());
}
}
}
LInstruction* LChunkBuilder::DoSeqStringSetChar(HSeqStringSetChar* instr) {
LOperand* string = UseRegisterAtStart(instr->string());
LOperand* index = FLAG_debug_code
? UseRegisterAtStart(instr->index())
: UseRegisterOrConstantAtStart(instr->index());
LOperand* value = GetSeqStringSetCharOperand(instr);
LOperand* context = FLAG_debug_code ? UseFixed(instr->context(), esi) : NULL;
LInstruction* result = new(zone()) LSeqStringSetChar(context, string,
index, value);
if (FLAG_debug_code) {
result = MarkAsCall(result, instr);
}
return result;
}
LInstruction* LChunkBuilder::DoBoundsCheck(HBoundsCheck* instr) {
return AssignEnvironment(new(zone()) LBoundsCheck(
UseRegisterOrConstantAtStart(instr->index()),
UseAtStart(instr->length())));
}
LInstruction* LChunkBuilder::DoBoundsCheckBaseIndexInformation(
HBoundsCheckBaseIndexInformation* instr) {
UNREACHABLE();
return NULL;
}
LInstruction* LChunkBuilder::DoAbnormalExit(HAbnormalExit* instr) {
// The control instruction marking the end of a block that completed
// abruptly (e.g., threw an exception). There is nothing specific to do.
return NULL;
}
LInstruction* LChunkBuilder::DoThrow(HThrow* instr) {
LOperand* context = UseFixed(instr->context(), esi);
LOperand* value = UseFixed(instr->value(), eax);
return MarkAsCall(new(zone()) LThrow(context, value), instr);
}
LInstruction* LChunkBuilder::DoUseConst(HUseConst* instr) {
return NULL;
}
LInstruction* LChunkBuilder::DoForceRepresentation(HForceRepresentation* bad) {
// All HForceRepresentation instructions should be eliminated in the
// representation change phase of Hydrogen.
UNREACHABLE();
return NULL;
}
LInstruction* LChunkBuilder::DoChange(HChange* instr) {
Representation from = instr->from();
Representation to = instr->to();
if (from.IsSmi()) {
if (to.IsTagged()) {
LOperand* value = UseRegister(instr->value());
return DefineSameAsFirst(new(zone()) LDummyUse(value));
}
from = Representation::Tagged();
}
// Only mark conversions that might need to allocate as calling rather than
// all changes. This makes simple, non-allocating conversion not have to force
// building a stack frame.
if (from.IsTagged()) {
if (to.IsDouble()) {
LOperand* value = UseRegister(instr->value());
// Temp register only necessary for minus zero check.
LOperand* temp = TempRegister();
LNumberUntagD* res = new(zone()) LNumberUntagD(value, temp);
return AssignEnvironment(DefineAsRegister(res));
} else if (to.IsSmi()) {
HValue* val = instr->value();
LOperand* value = UseRegister(val);
if (val->type().IsSmi()) {
return DefineSameAsFirst(new(zone()) LDummyUse(value));
}
return AssignEnvironment(DefineSameAsFirst(new(zone()) LCheckSmi(value)));
} else {
ASSERT(to.IsInteger32());
HValue* val = instr->value();
if (val->type().IsSmi() || val->representation().IsSmi()) {
LOperand* value = UseRegister(val);
return DefineSameAsFirst(new(zone()) LSmiUntag(value, false));
} else {
bool truncating = instr->CanTruncateToInt32();
LOperand* xmm_temp =
(CpuFeatures::IsSafeForSnapshot(SSE2) && !truncating)
? FixedTemp(xmm1) : NULL;
LTaggedToI* res = new(zone()) LTaggedToI(UseRegister(val), xmm_temp);
return AssignEnvironment(DefineSameAsFirst(res));
}
}
} else if (from.IsDouble()) {
if (to.IsTagged()) {
info()->MarkAsDeferredCalling();
LOperand* value = UseRegisterAtStart(instr->value());
LOperand* temp = FLAG_inline_new ? TempRegister() : NULL;
// Make sure that temp and result_temp are different registers.
LUnallocated* result_temp = TempRegister();
LNumberTagD* result = new(zone()) LNumberTagD(value, temp);
return AssignPointerMap(Define(result, result_temp));
} else if (to.IsSmi()) {
LOperand* value = UseRegister(instr->value());
return AssignEnvironment(
DefineAsRegister(new(zone()) LDoubleToSmi(value)));
} else {
ASSERT(to.IsInteger32());
bool truncating = instr->CanTruncateToInt32();
bool needs_temp = CpuFeatures::IsSafeForSnapshot(SSE2) && !truncating;
LOperand* value = needs_temp ?
UseTempRegister(instr->value()) : UseRegister(instr->value());
LOperand* temp = needs_temp ? TempRegister() : NULL;
return AssignEnvironment(
DefineAsRegister(new(zone()) LDoubleToI(value, temp)));
}
} else if (from.IsInteger32()) {
info()->MarkAsDeferredCalling();
if (to.IsTagged()) {
HValue* val = instr->value();
LOperand* value = UseRegister(val);
if (val->HasRange() && val->range()->IsInSmiRange()) {
return DefineSameAsFirst(new(zone()) LSmiTag(value));
} else if (val->CheckFlag(HInstruction::kUint32)) {
LOperand* temp = CpuFeatures::IsSupported(SSE2) ? FixedTemp(xmm1)
: NULL;
LNumberTagU* result = new(zone()) LNumberTagU(value, temp);
return AssignEnvironment(AssignPointerMap(DefineSameAsFirst(result)));
} else {
LNumberTagI* result = new(zone()) LNumberTagI(value);
return AssignEnvironment(AssignPointerMap(DefineSameAsFirst(result)));
}
} else if (to.IsSmi()) {
HValue* val = instr->value();
LOperand* value = UseRegister(val);
LInstruction* result = val->CheckFlag(HInstruction::kUint32)
? DefineSameAsFirst(new(zone()) LUint32ToSmi(value))
: DefineSameAsFirst(new(zone()) LInteger32ToSmi(value));
if (val->HasRange() && val->range()->IsInSmiRange()) {
return result;
}
return AssignEnvironment(result);
} else {
ASSERT(to.IsDouble());
if (instr->value()->CheckFlag(HInstruction::kUint32)) {
LOperand* temp = FixedTemp(xmm1);
return DefineAsRegister(
new(zone()) LUint32ToDouble(UseRegister(instr->value()), temp));
} else {
return DefineAsRegister(
new(zone()) LInteger32ToDouble(Use(instr->value())));
}
}
}
UNREACHABLE();
return NULL;
}
LInstruction* LChunkBuilder::DoCheckHeapObject(HCheckHeapObject* instr) {
LOperand* value = UseAtStart(instr->value());
return AssignEnvironment(new(zone()) LCheckNonSmi(value));
}
LInstruction* LChunkBuilder::DoCheckSmi(HCheckSmi* instr) {
LOperand* value = UseRegisterAtStart(instr->value());
return AssignEnvironment(new(zone()) LCheckSmi(value));
}
LInstruction* LChunkBuilder::DoCheckInstanceType(HCheckInstanceType* instr) {
LOperand* value = UseRegisterAtStart(instr->value());
LOperand* temp = TempRegister();
LCheckInstanceType* result = new(zone()) LCheckInstanceType(value, temp);
return AssignEnvironment(result);
}
LInstruction* LChunkBuilder::DoCheckValue(HCheckValue* instr) {
// If the object is in new space, we'll emit a global cell compare and so
// want the value in a register. If the object gets promoted before we
// emit code, we will still get the register but will do an immediate
// compare instead of the cell compare. This is safe.
LOperand* value = instr->object_in_new_space()
? UseRegisterAtStart(instr->value()) : UseAtStart(instr->value());
return AssignEnvironment(new(zone()) LCheckValue(value));
}
LInstruction* LChunkBuilder::DoCheckMaps(HCheckMaps* instr) {
LOperand* value = NULL;
if (!instr->CanOmitMapChecks()) {
value = UseRegisterAtStart(instr->value());
if (instr->has_migration_target()) info()->MarkAsDeferredCalling();
}
LCheckMaps* result = new(zone()) LCheckMaps(value);
if (!instr->CanOmitMapChecks()) {
AssignEnvironment(result);
if (instr->has_migration_target()) return AssignPointerMap(result);
}
return result;
}
LInstruction* LChunkBuilder::DoClampToUint8(HClampToUint8* instr) {
HValue* value = instr->value();
Representation input_rep = value->representation();
if (input_rep.IsDouble()) {
LOperand* reg = UseRegister(value);
return DefineFixed(new(zone()) LClampDToUint8(reg), eax);
} else if (input_rep.IsInteger32()) {
LOperand* reg = UseFixed(value, eax);
return DefineFixed(new(zone()) LClampIToUint8(reg), eax);
} else {
ASSERT(input_rep.IsSmiOrTagged());
if (CpuFeatures::IsSupported(SSE2)) {
LOperand* reg = UseFixed(value, eax);
// Register allocator doesn't (yet) support allocation of double
// temps. Reserve xmm1 explicitly.
LOperand* temp = FixedTemp(xmm1);
LClampTToUint8* result = new(zone()) LClampTToUint8(reg, temp);
return AssignEnvironment(DefineFixed(result, eax));
} else {
LOperand* value = UseRegister(instr->value());
LClampTToUint8NoSSE2* res =
new(zone()) LClampTToUint8NoSSE2(value, TempRegister(),
TempRegister(), TempRegister());
return AssignEnvironment(DefineFixed(res, ecx));
}
}
}
LInstruction* LChunkBuilder::DoReturn(HReturn* instr) {
LOperand* context = info()->IsStub() ? UseFixed(instr->context(), esi) : NULL;
LOperand* parameter_count = UseRegisterOrConstant(instr->parameter_count());
return new(zone()) LReturn(
UseFixed(instr->value(), eax), context, parameter_count);
}
LInstruction* LChunkBuilder::DoConstant(HConstant* instr) {
Representation r = instr->representation();
if (r.IsSmi()) {
return DefineAsRegister(new(zone()) LConstantS);
} else if (r.IsInteger32()) {
return DefineAsRegister(new(zone()) LConstantI);
} else if (r.IsDouble()) {
double value = instr->DoubleValue();
bool value_is_zero = BitCast<uint64_t, double>(value) == 0;
LOperand* temp = value_is_zero ? NULL : TempRegister();
return DefineAsRegister(new(zone()) LConstantD(temp));
} else if (r.IsExternal()) {
return DefineAsRegister(new(zone()) LConstantE);
} else if (r.IsTagged()) {
return DefineAsRegister(new(zone()) LConstantT);
} else {
UNREACHABLE();
return NULL;
}
}
LInstruction* LChunkBuilder::DoLoadGlobalCell(HLoadGlobalCell* instr) {
LLoadGlobalCell* result = new(zone()) LLoadGlobalCell;
return instr->RequiresHoleCheck()
? AssignEnvironment(DefineAsRegister(result))
: DefineAsRegister(result);
}
LInstruction* LChunkBuilder::DoLoadGlobalGeneric(HLoadGlobalGeneric* instr) {
LOperand* context = UseFixed(instr->context(), esi);
LOperand* global_object = UseFixed(instr->global_object(), edx);
LLoadGlobalGeneric* result =
new(zone()) LLoadGlobalGeneric(context, global_object);
return MarkAsCall(DefineFixed(result, eax), instr);
}
LInstruction* LChunkBuilder::DoStoreGlobalCell(HStoreGlobalCell* instr) {
LStoreGlobalCell* result =
new(zone()) LStoreGlobalCell(UseRegister(instr->value()));
return instr->RequiresHoleCheck() ? AssignEnvironment(result) : result;
}
LInstruction* LChunkBuilder::DoStoreGlobalGeneric(HStoreGlobalGeneric* instr) {
LOperand* context = UseFixed(instr->context(), esi);
LOperand* global_object = UseFixed(instr->global_object(), edx);
LOperand* value = UseFixed(instr->value(), eax);
LStoreGlobalGeneric* result =
new(zone()) LStoreGlobalGeneric(context, global_object, value);
return MarkAsCall(result, instr);
}
LInstruction* LChunkBuilder::DoLoadContextSlot(HLoadContextSlot* instr) {
LOperand* context = UseRegisterAtStart(instr->value());
LInstruction* result =
DefineAsRegister(new(zone()) LLoadContextSlot(context));
return instr->RequiresHoleCheck() ? AssignEnvironment(result) : result;
}
LInstruction* LChunkBuilder::DoStoreContextSlot(HStoreContextSlot* instr) {
LOperand* value;
LOperand* temp;
LOperand* context = UseRegister(instr->context());
if (instr->NeedsWriteBarrier()) {
value = UseTempRegister(instr->value());
temp = TempRegister();
} else {
value = UseRegister(instr->value());
temp = NULL;
}
LInstruction* result = new(zone()) LStoreContextSlot(context, value, temp);
return instr->RequiresHoleCheck() ? AssignEnvironment(result) : result;
}
LInstruction* LChunkBuilder::DoLoadNamedField(HLoadNamedField* instr) {
LOperand* obj = (instr->access().IsExternalMemory() &&
instr->access().offset() == 0)
? UseRegisterOrConstantAtStart(instr->object())
: UseRegisterAtStart(instr->object());
return DefineAsRegister(new(zone()) LLoadNamedField(obj));
}
LInstruction* LChunkBuilder::DoLoadNamedGeneric(HLoadNamedGeneric* instr) {
LOperand* context = UseFixed(instr->context(), esi);
LOperand* object = UseFixed(instr->object(), edx);
LLoadNamedGeneric* result = new(zone()) LLoadNamedGeneric(context, object);
return MarkAsCall(DefineFixed(result, eax), instr);
}
LInstruction* LChunkBuilder::DoLoadFunctionPrototype(
HLoadFunctionPrototype* instr) {
return AssignEnvironment(DefineAsRegister(
new(zone()) LLoadFunctionPrototype(UseRegister(instr->function()),
TempRegister())));
}
LInstruction* LChunkBuilder::DoLoadRoot(HLoadRoot* instr) {
return DefineAsRegister(new(zone()) LLoadRoot);
}
LInstruction* LChunkBuilder::DoLoadExternalArrayPointer(
HLoadExternalArrayPointer* instr) {
LOperand* input = UseRegisterAtStart(instr->value());
return DefineAsRegister(new(zone()) LLoadExternalArrayPointer(input));
}
LInstruction* LChunkBuilder::DoLoadKeyed(HLoadKeyed* instr) {
ASSERT(instr->key()->representation().IsSmiOrInteger32());
ElementsKind elements_kind = instr->elements_kind();
bool clobbers_key = ExternalArrayOpRequiresTemp(
instr->key()->representation(), elements_kind);
LOperand* key = clobbers_key
? UseTempRegister(instr->key())
: UseRegisterOrConstantAtStart(instr->key());
LLoadKeyed* result = NULL;
if (!instr->is_external()) {
LOperand* obj = UseRegisterAtStart(instr->elements());
result = new(zone()) LLoadKeyed(obj, key);
} else {
ASSERT(
(instr->representation().IsInteger32() &&
(elements_kind != EXTERNAL_FLOAT_ELEMENTS) &&
(elements_kind != EXTERNAL_DOUBLE_ELEMENTS)) ||
(instr->representation().IsDouble() &&
((elements_kind == EXTERNAL_FLOAT_ELEMENTS) ||
(elements_kind == EXTERNAL_DOUBLE_ELEMENTS))));
LOperand* external_pointer = UseRegister(instr->elements());
result = new(zone()) LLoadKeyed(external_pointer, key);
}
DefineAsRegister(result);
bool can_deoptimize = instr->RequiresHoleCheck() ||
(elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS);
// An unsigned int array load might overflow and cause a deopt, make sure it
// has an environment.
return can_deoptimize ? AssignEnvironment(result) : result;
}
LInstruction* LChunkBuilder::DoLoadKeyedGeneric(HLoadKeyedGeneric* instr) {
LOperand* context = UseFixed(instr->context(), esi);
LOperand* object = UseFixed(instr->object(), edx);
LOperand* key = UseFixed(instr->key(), ecx);
LLoadKeyedGeneric* result =
new(zone()) LLoadKeyedGeneric(context, object, key);
return MarkAsCall(DefineFixed(result, eax), instr);
}
LOperand* LChunkBuilder::GetStoreKeyedValueOperand(HStoreKeyed* instr) {
ElementsKind elements_kind = instr->elements_kind();
// Determine if we need a byte register in this case for the value.
bool val_is_fixed_register =
elements_kind == EXTERNAL_BYTE_ELEMENTS ||
elements_kind == EXTERNAL_UNSIGNED_BYTE_ELEMENTS ||
elements_kind == EXTERNAL_PIXEL_ELEMENTS;
if (val_is_fixed_register) {
return UseFixed(instr->value(), eax);
}
if (!CpuFeatures::IsSafeForSnapshot(SSE2) &&
IsDoubleOrFloatElementsKind(elements_kind)) {
return UseRegisterAtStart(instr->value());
}
return UseRegister(instr->value());
}
LInstruction* LChunkBuilder::DoStoreKeyed(HStoreKeyed* instr) {
if (!instr->is_external()) {
ASSERT(instr->elements()->representation().IsTagged());
ASSERT(instr->key()->representation().IsInteger32() ||
instr->key()->representation().IsSmi());
if (instr->value()->representation().IsDouble()) {
LOperand* object = UseRegisterAtStart(instr->elements());
LOperand* val = NULL;
val = UseRegisterAtStart(instr->value());
LOperand* key = UseRegisterOrConstantAtStart(instr->key());
return new(zone()) LStoreKeyed(object, key, val);
} else {
ASSERT(instr->value()->representation().IsSmiOrTagged());
bool needs_write_barrier = instr->NeedsWriteBarrier();
LOperand* obj = UseRegister(instr->elements());
LOperand* val;
LOperand* key;
if (needs_write_barrier) {
val = UseTempRegister(instr->value());
key = UseTempRegister(instr->key());
} else {
val = UseRegisterOrConstantAtStart(instr->value());
key = UseRegisterOrConstantAtStart(instr->key());
}
return new(zone()) LStoreKeyed(obj, key, val);
}
}
ElementsKind elements_kind = instr->elements_kind();
ASSERT(
(instr->value()->representation().IsInteger32() &&
(elements_kind != EXTERNAL_FLOAT_ELEMENTS) &&
(elements_kind != EXTERNAL_DOUBLE_ELEMENTS)) ||
(instr->value()->representation().IsDouble() &&
((elements_kind == EXTERNAL_FLOAT_ELEMENTS) ||
(elements_kind == EXTERNAL_DOUBLE_ELEMENTS))));
ASSERT(instr->elements()->representation().IsExternal());
LOperand* external_pointer = UseRegister(instr->elements());
LOperand* val = GetStoreKeyedValueOperand(instr);
bool clobbers_key = ExternalArrayOpRequiresTemp(
instr->key()->representation(), elements_kind);
LOperand* key = clobbers_key
? UseTempRegister(instr->key())
: UseRegisterOrConstantAtStart(instr->key());
return new(zone()) LStoreKeyed(external_pointer,
key,
val);
}
LInstruction* LChunkBuilder::DoStoreKeyedGeneric(HStoreKeyedGeneric* instr) {
LOperand* context = UseFixed(instr->context(), esi);
LOperand* object = UseFixed(instr->object(), edx);
LOperand* key = UseFixed(instr->key(), ecx);
LOperand* value = UseFixed(instr->value(), eax);
ASSERT(instr->object()->representation().IsTagged());
ASSERT(instr->key()->representation().IsTagged());
ASSERT(instr->value()->representation().IsTagged());
LStoreKeyedGeneric* result =
new(zone()) LStoreKeyedGeneric(context, object, key, value);
return MarkAsCall(result, instr);
}
LInstruction* LChunkBuilder::DoTransitionElementsKind(
HTransitionElementsKind* instr) {
LOperand* object = UseRegister(instr->object());
if (IsSimpleMapChangeTransition(instr->from_kind(), instr->to_kind())) {
LOperand* object = UseRegister(instr->object());
LOperand* new_map_reg = TempRegister();
LOperand* temp_reg = TempRegister();
LTransitionElementsKind* result =
new(zone()) LTransitionElementsKind(object, NULL,
new_map_reg, temp_reg);
return result;
} else {
LOperand* context = UseFixed(instr->context(), esi);
LTransitionElementsKind* result =
new(zone()) LTransitionElementsKind(object, context, NULL, NULL);
return AssignPointerMap(result);
}
}
LInstruction* LChunkBuilder