blob: df2f7821139088c6a5691d9c7d583bd76cc47ffe [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_MARK_COMPACT_H_
#define V8_MARK_COMPACT_H_
#include "compiler-intrinsics.h"
#include "spaces.h"
namespace v8 {
namespace internal {
// Callback function, returns whether an object is alive. The heap size
// of the object is returned in size. It optionally updates the offset
// to the first live object in the page (only used for old and map objects).
typedef bool (*IsAliveFunction)(HeapObject* obj, int* size, int* offset);
// Forward declarations.
class CodeFlusher;
class GCTracer;
class MarkCompactCollector;
class MarkingVisitor;
class RootMarkingVisitor;
class Marking {
public:
explicit Marking(Heap* heap)
: heap_(heap) {
}
INLINE(static MarkBit MarkBitFrom(Address addr));
INLINE(static MarkBit MarkBitFrom(HeapObject* obj)) {
return MarkBitFrom(reinterpret_cast<Address>(obj));
}
// Impossible markbits: 01
static const char* kImpossibleBitPattern;
INLINE(static bool IsImpossible(MarkBit mark_bit)) {
return !mark_bit.Get() && mark_bit.Next().Get();
}
// Black markbits: 10 - this is required by the sweeper.
static const char* kBlackBitPattern;
INLINE(static bool IsBlack(MarkBit mark_bit)) {
return mark_bit.Get() && !mark_bit.Next().Get();
}
// White markbits: 00 - this is required by the mark bit clearer.
static const char* kWhiteBitPattern;
INLINE(static bool IsWhite(MarkBit mark_bit)) {
return !mark_bit.Get();
}
// Grey markbits: 11
static const char* kGreyBitPattern;
INLINE(static bool IsGrey(MarkBit mark_bit)) {
return mark_bit.Get() && mark_bit.Next().Get();
}
INLINE(static void MarkBlack(MarkBit mark_bit)) {
mark_bit.Set();
mark_bit.Next().Clear();
}
INLINE(static void BlackToGrey(MarkBit markbit)) {
markbit.Next().Set();
}
INLINE(static void WhiteToGrey(MarkBit markbit)) {
markbit.Set();
markbit.Next().Set();
}
INLINE(static void GreyToBlack(MarkBit markbit)) {
markbit.Next().Clear();
}
INLINE(static void BlackToGrey(HeapObject* obj)) {
BlackToGrey(MarkBitFrom(obj));
}
INLINE(static void AnyToGrey(MarkBit markbit)) {
markbit.Set();
markbit.Next().Set();
}
// Returns true if the the object whose mark is transferred is marked black.
bool TransferMark(Address old_start, Address new_start);
#ifdef DEBUG
enum ObjectColor {
BLACK_OBJECT,
WHITE_OBJECT,
GREY_OBJECT,
IMPOSSIBLE_COLOR
};
static const char* ColorName(ObjectColor color) {
switch (color) {
case BLACK_OBJECT: return "black";
case WHITE_OBJECT: return "white";
case GREY_OBJECT: return "grey";
case IMPOSSIBLE_COLOR: return "impossible";
}
return "error";
}
static ObjectColor Color(HeapObject* obj) {
return Color(Marking::MarkBitFrom(obj));
}
static ObjectColor Color(MarkBit mark_bit) {
if (IsBlack(mark_bit)) return BLACK_OBJECT;
if (IsWhite(mark_bit)) return WHITE_OBJECT;
if (IsGrey(mark_bit)) return GREY_OBJECT;
UNREACHABLE();
return IMPOSSIBLE_COLOR;
}
#endif
// Returns true if the transferred color is black.
INLINE(static bool TransferColor(HeapObject* from,
HeapObject* to)) {
MarkBit from_mark_bit = MarkBitFrom(from);
MarkBit to_mark_bit = MarkBitFrom(to);
bool is_black = false;
if (from_mark_bit.Get()) {
to_mark_bit.Set();
is_black = true; // Looks black so far.
}
if (from_mark_bit.Next().Get()) {
to_mark_bit.Next().Set();
is_black = false; // Was actually gray.
}
return is_black;
}
private:
Heap* heap_;
};
// ----------------------------------------------------------------------------
// Marking deque for tracing live objects.
class MarkingDeque {
public:
MarkingDeque()
: array_(NULL), top_(0), bottom_(0), mask_(0), overflowed_(false) { }
void Initialize(Address low, Address high) {
HeapObject** obj_low = reinterpret_cast<HeapObject**>(low);
HeapObject** obj_high = reinterpret_cast<HeapObject**>(high);
array_ = obj_low;
mask_ = RoundDownToPowerOf2(static_cast<int>(obj_high - obj_low)) - 1;
top_ = bottom_ = 0;
overflowed_ = false;
}
inline bool IsFull() { return ((top_ + 1) & mask_) == bottom_; }
inline bool IsEmpty() { return top_ == bottom_; }
bool overflowed() const { return overflowed_; }
void ClearOverflowed() { overflowed_ = false; }
void SetOverflowed() { overflowed_ = true; }
// Push the (marked) object on the marking stack if there is room,
// otherwise mark the object as overflowed and wait for a rescan of the
// heap.
INLINE(void PushBlack(HeapObject* object)) {
ASSERT(object->IsHeapObject());
if (IsFull()) {
Marking::BlackToGrey(object);
MemoryChunk::IncrementLiveBytesFromGC(object->address(), -object->Size());
SetOverflowed();
} else {
array_[top_] = object;
top_ = ((top_ + 1) & mask_);
}
}
INLINE(void PushGrey(HeapObject* object)) {
ASSERT(object->IsHeapObject());
if (IsFull()) {
SetOverflowed();
} else {
array_[top_] = object;
top_ = ((top_ + 1) & mask_);
}
}
INLINE(HeapObject* Pop()) {
ASSERT(!IsEmpty());
top_ = ((top_ - 1) & mask_);
HeapObject* object = array_[top_];
ASSERT(object->IsHeapObject());
return object;
}
INLINE(void UnshiftGrey(HeapObject* object)) {
ASSERT(object->IsHeapObject());
if (IsFull()) {
SetOverflowed();
} else {
bottom_ = ((bottom_ - 1) & mask_);
array_[bottom_] = object;
}
}
HeapObject** array() { return array_; }
int bottom() { return bottom_; }
int top() { return top_; }
int mask() { return mask_; }
void set_top(int top) { top_ = top; }
private:
HeapObject** array_;
// array_[(top - 1) & mask_] is the top element in the deque. The Deque is
// empty when top_ == bottom_. It is full when top_ + 1 == bottom
// (mod mask + 1).
int top_;
int bottom_;
int mask_;
bool overflowed_;
DISALLOW_COPY_AND_ASSIGN(MarkingDeque);
};
class SlotsBufferAllocator {
public:
SlotsBuffer* AllocateBuffer(SlotsBuffer* next_buffer);
void DeallocateBuffer(SlotsBuffer* buffer);
void DeallocateChain(SlotsBuffer** buffer_address);
};
// SlotsBuffer records a sequence of slots that has to be updated
// after live objects were relocated from evacuation candidates.
// All slots are either untyped or typed:
// - Untyped slots are expected to contain a tagged object pointer.
// They are recorded by an address.
// - Typed slots are expected to contain an encoded pointer to a heap
// object where the way of encoding depends on the type of the slot.
// They are recorded as a pair (SlotType, slot address).
// We assume that zero-page is never mapped this allows us to distinguish
// untyped slots from typed slots during iteration by a simple comparison:
// if element of slots buffer is less than NUMBER_OF_SLOT_TYPES then it
// is the first element of typed slot's pair.
class SlotsBuffer {
public:
typedef Object** ObjectSlot;
explicit SlotsBuffer(SlotsBuffer* next_buffer)
: idx_(0), chain_length_(1), next_(next_buffer) {
if (next_ != NULL) {
chain_length_ = next_->chain_length_ + 1;
}
}
~SlotsBuffer() {
}
void Add(ObjectSlot slot) {
ASSERT(0 <= idx_ && idx_ < kNumberOfElements);
slots_[idx_++] = slot;
}
enum SlotType {
EMBEDDED_OBJECT_SLOT,
RELOCATED_CODE_OBJECT,
CODE_TARGET_SLOT,
CODE_ENTRY_SLOT,
DEBUG_TARGET_SLOT,
JS_RETURN_SLOT,
NUMBER_OF_SLOT_TYPES
};
static const char* SlotTypeToString(SlotType type) {
switch (type) {
case EMBEDDED_OBJECT_SLOT:
return "EMBEDDED_OBJECT_SLOT";
case RELOCATED_CODE_OBJECT:
return "RELOCATED_CODE_OBJECT";
case CODE_TARGET_SLOT:
return "CODE_TARGET_SLOT";
case CODE_ENTRY_SLOT:
return "CODE_ENTRY_SLOT";
case DEBUG_TARGET_SLOT:
return "DEBUG_TARGET_SLOT";
case JS_RETURN_SLOT:
return "JS_RETURN_SLOT";
case NUMBER_OF_SLOT_TYPES:
return "NUMBER_OF_SLOT_TYPES";
}
return "UNKNOWN SlotType";
}
void UpdateSlots(Heap* heap);
void UpdateSlotsWithFilter(Heap* heap);
SlotsBuffer* next() { return next_; }
static int SizeOfChain(SlotsBuffer* buffer) {
if (buffer == NULL) return 0;
return static_cast<int>(buffer->idx_ +
(buffer->chain_length_ - 1) * kNumberOfElements);
}
inline bool IsFull() {
return idx_ == kNumberOfElements;
}
inline bool HasSpaceForTypedSlot() {
return idx_ < kNumberOfElements - 1;
}
static void UpdateSlotsRecordedIn(Heap* heap,
SlotsBuffer* buffer,
bool code_slots_filtering_required) {
while (buffer != NULL) {
if (code_slots_filtering_required) {
buffer->UpdateSlotsWithFilter(heap);
} else {
buffer->UpdateSlots(heap);
}
buffer = buffer->next();
}
}
enum AdditionMode {
FAIL_ON_OVERFLOW,
IGNORE_OVERFLOW
};
static bool ChainLengthThresholdReached(SlotsBuffer* buffer) {
return buffer != NULL && buffer->chain_length_ >= kChainLengthThreshold;
}
INLINE(static bool AddTo(SlotsBufferAllocator* allocator,
SlotsBuffer** buffer_address,
ObjectSlot slot,
AdditionMode mode)) {
SlotsBuffer* buffer = *buffer_address;
if (buffer == NULL || buffer->IsFull()) {
if (mode == FAIL_ON_OVERFLOW && ChainLengthThresholdReached(buffer)) {
allocator->DeallocateChain(buffer_address);
return false;
}
buffer = allocator->AllocateBuffer(buffer);
*buffer_address = buffer;
}
buffer->Add(slot);
return true;
}
static bool IsTypedSlot(ObjectSlot slot);
static bool AddTo(SlotsBufferAllocator* allocator,
SlotsBuffer** buffer_address,
SlotType type,
Address addr,
AdditionMode mode);
static const int kNumberOfElements = 1021;
private:
static const int kChainLengthThreshold = 15;
intptr_t idx_;
intptr_t chain_length_;
SlotsBuffer* next_;
ObjectSlot slots_[kNumberOfElements];
};
// CodeFlusher collects candidates for code flushing during marking and
// processes those candidates after marking has completed in order to
// reset those functions referencing code objects that would otherwise
// be unreachable. Code objects can be referenced in three ways:
// - SharedFunctionInfo references unoptimized code.
// - JSFunction references either unoptimized or optimized code.
// - OptimizedCodeMap references optimized code.
// We are not allowed to flush unoptimized code for functions that got
// optimized or inlined into optimized code, because we might bailout
// into the unoptimized code again during deoptimization.
class CodeFlusher {
public:
explicit CodeFlusher(Isolate* isolate)
: isolate_(isolate),
jsfunction_candidates_head_(NULL),
shared_function_info_candidates_head_(NULL),
optimized_code_map_holder_head_(NULL) {}
void AddCandidate(SharedFunctionInfo* shared_info) {
if (GetNextCandidate(shared_info) == NULL) {
SetNextCandidate(shared_info, shared_function_info_candidates_head_);
shared_function_info_candidates_head_ = shared_info;
}
}
void AddCandidate(JSFunction* function) {
ASSERT(function->code() == function->shared()->code());
if (GetNextCandidate(function)->IsUndefined()) {
SetNextCandidate(function, jsfunction_candidates_head_);
jsfunction_candidates_head_ = function;
}
}
void AddOptimizedCodeMap(SharedFunctionInfo* code_map_holder) {
if (GetNextCodeMap(code_map_holder)->IsUndefined()) {
SetNextCodeMap(code_map_holder, optimized_code_map_holder_head_);
optimized_code_map_holder_head_ = code_map_holder;
}
}
void EvictOptimizedCodeMap(SharedFunctionInfo* code_map_holder);
void EvictCandidate(SharedFunctionInfo* shared_info);
void EvictCandidate(JSFunction* function);
void ProcessCandidates() {
ProcessOptimizedCodeMaps();
ProcessSharedFunctionInfoCandidates();
ProcessJSFunctionCandidates();
}
void EvictAllCandidates() {
EvictOptimizedCodeMaps();
EvictJSFunctionCandidates();
EvictSharedFunctionInfoCandidates();
}
void IteratePointersToFromSpace(ObjectVisitor* v);
private:
void ProcessOptimizedCodeMaps();
void ProcessJSFunctionCandidates();
void ProcessSharedFunctionInfoCandidates();
void EvictOptimizedCodeMaps();
void EvictJSFunctionCandidates();
void EvictSharedFunctionInfoCandidates();
static JSFunction** GetNextCandidateSlot(JSFunction* candidate) {
return reinterpret_cast<JSFunction**>(
HeapObject::RawField(candidate, JSFunction::kNextFunctionLinkOffset));
}
static JSFunction* GetNextCandidate(JSFunction* candidate) {
Object* next_candidate = candidate->next_function_link();
return reinterpret_cast<JSFunction*>(next_candidate);
}
static void SetNextCandidate(JSFunction* candidate,
JSFunction* next_candidate) {
candidate->set_next_function_link(next_candidate);
}
static void ClearNextCandidate(JSFunction* candidate, Object* undefined) {
ASSERT(undefined->IsUndefined());
candidate->set_next_function_link(undefined, SKIP_WRITE_BARRIER);
}
static SharedFunctionInfo* GetNextCandidate(SharedFunctionInfo* candidate) {
Object* next_candidate = candidate->code()->gc_metadata();
return reinterpret_cast<SharedFunctionInfo*>(next_candidate);
}
static void SetNextCandidate(SharedFunctionInfo* candidate,
SharedFunctionInfo* next_candidate) {
candidate->code()->set_gc_metadata(next_candidate);
}
static void ClearNextCandidate(SharedFunctionInfo* candidate) {
candidate->code()->set_gc_metadata(NULL, SKIP_WRITE_BARRIER);
}
static SharedFunctionInfo* GetNextCodeMap(SharedFunctionInfo* holder) {
FixedArray* code_map = FixedArray::cast(holder->optimized_code_map());
Object* next_map = code_map->get(SharedFunctionInfo::kNextMapIndex);
return reinterpret_cast<SharedFunctionInfo*>(next_map);
}
static void SetNextCodeMap(SharedFunctionInfo* holder,
SharedFunctionInfo* next_holder) {
FixedArray* code_map = FixedArray::cast(holder->optimized_code_map());
code_map->set(SharedFunctionInfo::kNextMapIndex, next_holder);
}
static void ClearNextCodeMap(SharedFunctionInfo* holder) {
FixedArray* code_map = FixedArray::cast(holder->optimized_code_map());
code_map->set_undefined(SharedFunctionInfo::kNextMapIndex);
}
Isolate* isolate_;
JSFunction* jsfunction_candidates_head_;
SharedFunctionInfo* shared_function_info_candidates_head_;
SharedFunctionInfo* optimized_code_map_holder_head_;
DISALLOW_COPY_AND_ASSIGN(CodeFlusher);
};
// Defined in isolate.h.
class ThreadLocalTop;
// -------------------------------------------------------------------------
// Mark-Compact collector
class MarkCompactCollector {
public:
// Type of functions to compute forwarding addresses of objects in
// compacted spaces. Given an object and its size, return a (non-failure)
// Object* that will be the object after forwarding. There is a separate
// allocation function for each (compactable) space based on the location
// of the object before compaction.
typedef MaybeObject* (*AllocationFunction)(Heap* heap,
HeapObject* object,
int object_size);
// Type of functions to encode the forwarding address for an object.
// Given the object, its size, and the new (non-failure) object it will be
// forwarded to, encode the forwarding address. For paged spaces, the
// 'offset' input/output parameter contains the offset of the forwarded
// object from the forwarding address of the previous live object in the
// page as input, and is updated to contain the offset to be used for the
// next live object in the same page. For spaces using a different
// encoding (i.e., contiguous spaces), the offset parameter is ignored.
typedef void (*EncodingFunction)(Heap* heap,
HeapObject* old_object,
int object_size,
Object* new_object,
int* offset);
// Type of functions to process non-live objects.
typedef void (*ProcessNonLiveFunction)(HeapObject* object, Isolate* isolate);
// Pointer to member function, used in IterateLiveObjects.
typedef int (MarkCompactCollector::*LiveObjectCallback)(HeapObject* obj);
// Set the global flags, it must be called before Prepare to take effect.
inline void SetFlags(int flags);
static void Initialize();
void TearDown();
void CollectEvacuationCandidates(PagedSpace* space);
void AddEvacuationCandidate(Page* p);
// Prepares for GC by resetting relocation info in old and map spaces and
// choosing spaces to compact.
void Prepare(GCTracer* tracer);
// Performs a global garbage collection.
void CollectGarbage();
enum CompactionMode {
INCREMENTAL_COMPACTION,
NON_INCREMENTAL_COMPACTION
};
bool StartCompaction(CompactionMode mode);
void AbortCompaction();
// During a full GC, there is a stack-allocated GCTracer that is used for
// bookkeeping information. Return a pointer to that tracer.
GCTracer* tracer() { return tracer_; }
#ifdef DEBUG
// Checks whether performing mark-compact collection.
bool in_use() { return state_ > PREPARE_GC; }
bool are_map_pointers_encoded() { return state_ == UPDATE_POINTERS; }
#endif
// Determine type of object and emit deletion log event.
static void ReportDeleteIfNeeded(HeapObject* obj, Isolate* isolate);
// Distinguishable invalid map encodings (for single word and multiple words)
// that indicate free regions.
static const uint32_t kSingleFreeEncoding = 0;
static const uint32_t kMultiFreeEncoding = 1;
static inline bool IsMarked(Object* obj);
inline Heap* heap() const { return heap_; }
inline Isolate* isolate() const;
CodeFlusher* code_flusher() { return code_flusher_; }
inline bool is_code_flushing_enabled() const { return code_flusher_ != NULL; }
void EnableCodeFlushing(bool enable);
enum SweeperType {
CONSERVATIVE,
LAZY_CONSERVATIVE,
PARALLEL_CONSERVATIVE,
CONCURRENT_CONSERVATIVE,
PRECISE
};
enum SweepingParallelism {
SWEEP_SEQUENTIALLY,
SWEEP_IN_PARALLEL
};
#ifdef VERIFY_HEAP
void VerifyMarkbitsAreClean();
static void VerifyMarkbitsAreClean(PagedSpace* space);
static void VerifyMarkbitsAreClean(NewSpace* space);
void VerifyWeakEmbeddedMapsInOptimizedCode();
void VerifyOmittedMapChecks();
#endif
// Sweep a single page from the given space conservatively.
// Return a number of reclaimed bytes.
template<SweepingParallelism type>
static intptr_t SweepConservatively(PagedSpace* space,
FreeList* free_list,
Page* p);
INLINE(static bool ShouldSkipEvacuationSlotRecording(Object** anchor)) {
return Page::FromAddress(reinterpret_cast<Address>(anchor))->
ShouldSkipEvacuationSlotRecording();
}
INLINE(static bool ShouldSkipEvacuationSlotRecording(Object* host)) {
return Page::FromAddress(reinterpret_cast<Address>(host))->
ShouldSkipEvacuationSlotRecording();
}
INLINE(static bool IsOnEvacuationCandidate(Object* obj)) {
return Page::FromAddress(reinterpret_cast<Address>(obj))->
IsEvacuationCandidate();
}
INLINE(void EvictEvacuationCandidate(Page* page)) {
if (FLAG_trace_fragmentation) {
PrintF("Page %p is too popular. Disabling evacuation.\n",
reinterpret_cast<void*>(page));
}
// TODO(gc) If all evacuation candidates are too popular we
// should stop slots recording entirely.
page->ClearEvacuationCandidate();
// We were not collecting slots on this page that point
// to other evacuation candidates thus we have to
// rescan the page after evacuation to discover and update all
// pointers to evacuated objects.
if (page->owner()->identity() == OLD_DATA_SPACE) {
evacuation_candidates_.RemoveElement(page);
} else {
page->SetFlag(Page::RESCAN_ON_EVACUATION);
}
}
void RecordRelocSlot(RelocInfo* rinfo, Object* target);
void RecordCodeEntrySlot(Address slot, Code* target);
void RecordCodeTargetPatch(Address pc, Code* target);
INLINE(void RecordSlot(Object** anchor_slot, Object** slot, Object* object));
void MigrateObject(Address dst,
Address src,
int size,
AllocationSpace to_old_space);
bool TryPromoteObject(HeapObject* object, int object_size);
inline Object* encountered_weak_collections() {
return encountered_weak_collections_;
}
inline void set_encountered_weak_collections(Object* weak_collection) {
encountered_weak_collections_ = weak_collection;
}
void InvalidateCode(Code* code);
void ClearMarkbits();
bool abort_incremental_marking() const { return abort_incremental_marking_; }
bool is_compacting() const { return compacting_; }
MarkingParity marking_parity() { return marking_parity_; }
// Concurrent and parallel sweeping support.
void SweepInParallel(PagedSpace* space,
FreeList* private_free_list,
FreeList* free_list);
void WaitUntilSweepingCompleted();
intptr_t StealMemoryFromSweeperThreads(PagedSpace* space);
bool AreSweeperThreadsActivated();
bool IsConcurrentSweepingInProgress();
void set_sequential_sweeping(bool sequential_sweeping) {
sequential_sweeping_ = sequential_sweeping;
}
bool sequential_sweeping() const {
return sequential_sweeping_;
}
// Parallel marking support.
void MarkInParallel();
void WaitUntilMarkingCompleted();
private:
MarkCompactCollector();
~MarkCompactCollector();
bool MarkInvalidatedCode();
bool WillBeDeoptimized(Code* code);
void RemoveDeadInvalidatedCode();
void ProcessInvalidatedCode(ObjectVisitor* visitor);
void UnlinkEvacuationCandidates();
void ReleaseEvacuationCandidates();
void StartSweeperThreads();
#ifdef DEBUG
enum CollectorState {
IDLE,
PREPARE_GC,
MARK_LIVE_OBJECTS,
SWEEP_SPACES,
ENCODE_FORWARDING_ADDRESSES,
UPDATE_POINTERS,
RELOCATE_OBJECTS
};
// The current stage of the collector.
CollectorState state_;
#endif
// Global flag that forces sweeping to be precise, so we can traverse the
// heap.
bool sweep_precisely_;
bool reduce_memory_footprint_;
bool abort_incremental_marking_;
MarkingParity marking_parity_;
// True if we are collecting slots to perform evacuation from evacuation
// candidates.
bool compacting_;
bool was_marked_incrementally_;
// True if concurrent or parallel sweeping is currently in progress.
bool sweeping_pending_;
bool sequential_sweeping_;
// A pointer to the current stack-allocated GC tracer object during a full
// collection (NULL before and after).
GCTracer* tracer_;
SlotsBufferAllocator slots_buffer_allocator_;
SlotsBuffer* migration_slots_buffer_;
// Finishes GC, performs heap verification if enabled.
void Finish();
// -----------------------------------------------------------------------
// Phase 1: Marking live objects.
//
// Before: The heap has been prepared for garbage collection by
// MarkCompactCollector::Prepare() and is otherwise in its
// normal state.
//
// After: Live objects are marked and non-live objects are unmarked.
friend class RootMarkingVisitor;
friend class MarkingVisitor;
friend class MarkCompactMarkingVisitor;
friend class CodeMarkingVisitor;
friend class SharedFunctionInfoMarkingVisitor;
// Mark code objects that are active on the stack to prevent them
// from being flushed.
void PrepareThreadForCodeFlushing(Isolate* isolate, ThreadLocalTop* top);
void PrepareForCodeFlushing();
// Marking operations for objects reachable from roots.
void MarkLiveObjects();
void AfterMarking();
// Marks the object black and pushes it on the marking stack.
// This is for non-incremental marking only.
INLINE(void MarkObject(HeapObject* obj, MarkBit mark_bit));
// Marks the object black assuming that it is not yet marked.
// This is for non-incremental marking only.
INLINE(void SetMark(HeapObject* obj, MarkBit mark_bit));
// Mark the heap roots and all objects reachable from them.
void MarkRoots(RootMarkingVisitor* visitor);
// Mark the string table specially. References to internalized strings from
// the string table are weak.
void MarkStringTable(RootMarkingVisitor* visitor);
// Mark objects in implicit references groups if their parent object
// is marked.
void MarkImplicitRefGroups();
// Mark objects reachable (transitively) from objects in the marking stack
// or overflowed in the heap.
void ProcessMarkingDeque();
// Mark objects reachable (transitively) from objects in the marking stack
// or overflowed in the heap. This respects references only considered in
// the final atomic marking pause including the following:
// - Processing of objects reachable through Harmony WeakMaps.
// - Objects reachable due to host application logic like object groups
// or implicit references' groups.
void ProcessEphemeralMarking(ObjectVisitor* visitor);
// If the call-site of the top optimized code was not prepared for
// deoptimization, then treat the maps in the code as strong pointers,
// otherwise a map can die and deoptimize the code.
void ProcessTopOptimizedFrame(ObjectVisitor* visitor);
// Mark objects reachable (transitively) from objects in the marking
// stack. This function empties the marking stack, but may leave
// overflowed objects in the heap, in which case the marking stack's
// overflow flag will be set.
void EmptyMarkingDeque();
// Refill the marking stack with overflowed objects from the heap. This
// function either leaves the marking stack full or clears the overflow
// flag on the marking stack.
void RefillMarkingDeque();
// After reachable maps have been marked process per context object
// literal map caches removing unmarked entries.
void ProcessMapCaches();
// Callback function for telling whether the object *p is an unmarked
// heap object.
static bool IsUnmarkedHeapObject(Object** p);
static bool IsUnmarkedHeapObjectWithHeap(Heap* heap, Object** p);
// Map transitions from a live map to a dead map must be killed.
// We replace them with a null descriptor, with the same key.
void ClearNonLiveReferences();
void ClearNonLivePrototypeTransitions(Map* map);
void ClearNonLiveMapTransitions(Map* map, MarkBit map_mark);
void ClearAndDeoptimizeDependentCode(Map* map);
void ClearNonLiveDependentCode(DependentCode* dependent_code);
// Marking detaches initial maps from SharedFunctionInfo objects
// to make this reference weak. We need to reattach initial maps
// back after collection. This is either done during
// ClearNonLiveTransitions pass or by calling this function.
void ReattachInitialMaps();
// Mark all values associated with reachable keys in weak collections
// encountered so far. This might push new object or even new weak maps onto
// the marking stack.
void ProcessWeakCollections();
// After all reachable objects have been marked those weak map entries
// with an unreachable key are removed from all encountered weak maps.
// The linked list of all encountered weak maps is destroyed.
void ClearWeakCollections();
// -----------------------------------------------------------------------
// Phase 2: Sweeping to clear mark bits and free non-live objects for
// a non-compacting collection.
//
// Before: Live objects are marked and non-live objects are unmarked.
//
// After: Live objects are unmarked, non-live regions have been added to
// their space's free list. Active eden semispace is compacted by
// evacuation.
//
// If we are not compacting the heap, we simply sweep the spaces except
// for the large object space, clearing mark bits and adding unmarked
// regions to each space's free list.
void SweepSpaces();
int DiscoverAndPromoteBlackObjectsOnPage(NewSpace* new_space,
NewSpacePage* p);
void EvacuateNewSpace();
void EvacuateLiveObjectsFromPage(Page* p);
void EvacuatePages();
void EvacuateNewSpaceAndCandidates();
void SweepSpace(PagedSpace* space, SweeperType sweeper);
#ifdef DEBUG
friend class MarkObjectVisitor;
static void VisitObject(HeapObject* obj);
friend class UnmarkObjectVisitor;
static void UnmarkObject(HeapObject* obj);
#endif
Heap* heap_;
MarkingDeque marking_deque_;
CodeFlusher* code_flusher_;
Object* encountered_weak_collections_;
bool have_code_to_deoptimize_;
List<Page*> evacuation_candidates_;
List<Code*> invalidated_code_;
friend class Heap;
};
class MarkBitCellIterator BASE_EMBEDDED {
public:
explicit MarkBitCellIterator(MemoryChunk* chunk)
: chunk_(chunk) {
last_cell_index_ = Bitmap::IndexToCell(
Bitmap::CellAlignIndex(
chunk_->AddressToMarkbitIndex(chunk_->area_end())));
cell_base_ = chunk_->area_start();
cell_index_ = Bitmap::IndexToCell(
Bitmap::CellAlignIndex(
chunk_->AddressToMarkbitIndex(cell_base_)));
cells_ = chunk_->markbits()->cells();
}
inline bool Done() { return cell_index_ == last_cell_index_; }
inline bool HasNext() { return cell_index_ < last_cell_index_ - 1; }
inline MarkBit::CellType* CurrentCell() {
ASSERT(cell_index_ == Bitmap::IndexToCell(Bitmap::CellAlignIndex(
chunk_->AddressToMarkbitIndex(cell_base_))));
return &cells_[cell_index_];
}
inline Address CurrentCellBase() {
ASSERT(cell_index_ == Bitmap::IndexToCell(Bitmap::CellAlignIndex(
chunk_->AddressToMarkbitIndex(cell_base_))));
return cell_base_;
}
inline void Advance() {
cell_index_++;
cell_base_ += 32 * kPointerSize;
}
private:
MemoryChunk* chunk_;
MarkBit::CellType* cells_;
unsigned int last_cell_index_;
unsigned int cell_index_;
Address cell_base_;
};
class SequentialSweepingScope BASE_EMBEDDED {
public:
explicit SequentialSweepingScope(MarkCompactCollector *collector) :
collector_(collector) {
collector_->set_sequential_sweeping(true);
}
~SequentialSweepingScope() {
collector_->set_sequential_sweeping(false);
}
private:
MarkCompactCollector* collector_;
};
const char* AllocationSpaceName(AllocationSpace space);
} } // namespace v8::internal
#endif // V8_MARK_COMPACT_H_