blob: 3016b451d29f785fed74c144c2332bf36a59195c [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_ARM_LITHIUM_CODEGEN_ARM_H_
#define V8_ARM_LITHIUM_CODEGEN_ARM_H_
#include "arm/lithium-arm.h"
#include "arm/lithium-gap-resolver-arm.h"
#include "deoptimizer.h"
#include "safepoint-table.h"
#include "scopes.h"
#include "v8utils.h"
namespace v8 {
namespace internal {
// Forward declarations.
class LDeferredCode;
class SafepointGenerator;
class LCodeGen V8_FINAL BASE_EMBEDDED {
public:
LCodeGen(LChunk* chunk, MacroAssembler* assembler, CompilationInfo* info)
: zone_(info->zone()),
chunk_(static_cast<LPlatformChunk*>(chunk)),
masm_(assembler),
info_(info),
current_block_(-1),
current_instruction_(-1),
instructions_(chunk->instructions()),
deoptimizations_(4, info->zone()),
deopt_jump_table_(4, info->zone()),
deoptimization_literals_(8, info->zone()),
inlined_function_count_(0),
scope_(info->scope()),
status_(UNUSED),
translations_(info->zone()),
deferred_(8, info->zone()),
osr_pc_offset_(-1),
last_lazy_deopt_pc_(0),
frame_is_built_(false),
safepoints_(info->zone()),
resolver_(this),
expected_safepoint_kind_(Safepoint::kSimple),
old_position_(RelocInfo::kNoPosition) {
PopulateDeoptimizationLiteralsWithInlinedFunctions();
}
// Simple accessors.
MacroAssembler* masm() const { return masm_; }
CompilationInfo* info() const { return info_; }
Isolate* isolate() const { return info_->isolate(); }
Factory* factory() const { return isolate()->factory(); }
Heap* heap() const { return isolate()->heap(); }
Zone* zone() const { return zone_; }
int LookupDestination(int block_id) const {
return chunk()->LookupDestination(block_id);
}
bool IsNextEmittedBlock(int block_id) const {
return LookupDestination(block_id) == GetNextEmittedBlock();
}
bool NeedsEagerFrame() const {
return GetStackSlotCount() > 0 ||
info()->is_non_deferred_calling() ||
!info()->IsStub() ||
info()->requires_frame();
}
bool NeedsDeferredFrame() const {
return !NeedsEagerFrame() && info()->is_deferred_calling();
}
LinkRegisterStatus GetLinkRegisterState() const {
return frame_is_built_ ? kLRHasBeenSaved : kLRHasNotBeenSaved;
}
// Support for converting LOperands to assembler types.
// LOperand must be a register.
Register ToRegister(LOperand* op) const;
// LOperand is loaded into scratch, unless already a register.
Register EmitLoadRegister(LOperand* op, Register scratch);
// LOperand must be a double register.
DwVfpRegister ToDoubleRegister(LOperand* op) const;
// LOperand is loaded into dbl_scratch, unless already a double register.
DwVfpRegister EmitLoadDoubleRegister(LOperand* op,
SwVfpRegister flt_scratch,
DwVfpRegister dbl_scratch);
int32_t ToRepresentation(LConstantOperand* op, const Representation& r) const;
int32_t ToInteger32(LConstantOperand* op) const;
Smi* ToSmi(LConstantOperand* op) const;
double ToDouble(LConstantOperand* op) const;
Operand ToOperand(LOperand* op);
MemOperand ToMemOperand(LOperand* op) const;
// Returns a MemOperand pointing to the high word of a DoubleStackSlot.
MemOperand ToHighMemOperand(LOperand* op) const;
bool IsInteger32(LConstantOperand* op) const;
bool IsSmi(LConstantOperand* op) const;
Handle<Object> ToHandle(LConstantOperand* op) const;
// Try to generate code for the entire chunk, but it may fail if the
// chunk contains constructs we cannot handle. Returns true if the
// code generation attempt succeeded.
bool GenerateCode();
// Finish the code by setting stack height, safepoint, and bailout
// information on it.
void FinishCode(Handle<Code> code);
// Deferred code support.
void DoDeferredNumberTagD(LNumberTagD* instr);
enum IntegerSignedness { SIGNED_INT32, UNSIGNED_INT32 };
void DoDeferredNumberTagI(LInstruction* instr,
LOperand* value,
IntegerSignedness signedness);
void DoDeferredTaggedToI(LTaggedToI* instr);
void DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr);
void DoDeferredStackCheck(LStackCheck* instr);
void DoDeferredStringCharCodeAt(LStringCharCodeAt* instr);
void DoDeferredStringCharFromCode(LStringCharFromCode* instr);
void DoDeferredAllocate(LAllocate* instr);
void DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
Label* map_check);
void DoDeferredInstanceMigration(LCheckMaps* instr, Register object);
// Parallel move support.
void DoParallelMove(LParallelMove* move);
void DoGap(LGap* instr);
MemOperand PrepareKeyedOperand(Register key,
Register base,
bool key_is_constant,
int constant_key,
int element_size,
int shift_size,
int additional_index,
int additional_offset);
// Emit frame translation commands for an environment.
void WriteTranslation(LEnvironment* environment, Translation* translation);
// Declare methods that deal with the individual node types.
#define DECLARE_DO(type) void Do##type(L##type* node);
LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_DO)
#undef DECLARE_DO
private:
enum Status {
UNUSED,
GENERATING,
DONE,
ABORTED
};
bool is_unused() const { return status_ == UNUSED; }
bool is_generating() const { return status_ == GENERATING; }
bool is_done() const { return status_ == DONE; }
bool is_aborted() const { return status_ == ABORTED; }
StrictModeFlag strict_mode_flag() const {
return info()->is_classic_mode() ? kNonStrictMode : kStrictMode;
}
LPlatformChunk* chunk() const { return chunk_; }
Scope* scope() const { return scope_; }
HGraph* graph() const { return chunk()->graph(); }
Register scratch0() { return r9; }
LowDwVfpRegister double_scratch0() { return kScratchDoubleReg; }
int GetNextEmittedBlock() const;
LInstruction* GetNextInstruction();
void EmitClassOfTest(Label* if_true,
Label* if_false,
Handle<String> class_name,
Register input,
Register temporary,
Register temporary2);
int GetStackSlotCount() const { return chunk()->spill_slot_count(); }
void Abort(BailoutReason reason);
void FPRINTF_CHECKING Comment(const char* format, ...);
void AddDeferredCode(LDeferredCode* code) { deferred_.Add(code, zone()); }
// Code generation passes. Returns true if code generation should
// continue.
bool GeneratePrologue();
bool GenerateBody();
bool GenerateDeferredCode();
bool GenerateDeoptJumpTable();
bool GenerateSafepointTable();
// Generates the custom OSR entrypoint and sets the osr_pc_offset.
void GenerateOsrPrologue();
enum SafepointMode {
RECORD_SIMPLE_SAFEPOINT,
RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS
};
void CallCode(
Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr,
TargetAddressStorageMode storage_mode = CAN_INLINE_TARGET_ADDRESS);
void CallCodeGeneric(
Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr,
SafepointMode safepoint_mode,
TargetAddressStorageMode storage_mode = CAN_INLINE_TARGET_ADDRESS);
void CallRuntime(const Runtime::Function* function,
int num_arguments,
LInstruction* instr);
void CallRuntime(Runtime::FunctionId id,
int num_arguments,
LInstruction* instr) {
const Runtime::Function* function = Runtime::FunctionForId(id);
CallRuntime(function, num_arguments, instr);
}
void LoadContextFromDeferred(LOperand* context);
void CallRuntimeFromDeferred(Runtime::FunctionId id,
int argc,
LInstruction* instr,
LOperand* context);
enum R1State {
R1_UNINITIALIZED,
R1_CONTAINS_TARGET
};
// Generate a direct call to a known function. Expects the function
// to be in r1.
void CallKnownFunction(Handle<JSFunction> function,
int formal_parameter_count,
int arity,
LInstruction* instr,
CallKind call_kind,
R1State r1_state);
void LoadHeapObject(Register result, Handle<HeapObject> object);
void RecordSafepointWithLazyDeopt(LInstruction* instr,
SafepointMode safepoint_mode);
void RegisterEnvironmentForDeoptimization(LEnvironment* environment,
Safepoint::DeoptMode mode);
void DeoptimizeIf(Condition condition,
LEnvironment* environment,
Deoptimizer::BailoutType bailout_type);
void DeoptimizeIf(Condition condition, LEnvironment* environment);
void ApplyCheckIf(Condition condition, LBoundsCheck* check);
void AddToTranslation(LEnvironment* environment,
Translation* translation,
LOperand* op,
bool is_tagged,
bool is_uint32,
int* object_index_pointer,
int* dematerialized_index_pointer);
void RegisterDependentCodeForEmbeddedMaps(Handle<Code> code);
void PopulateDeoptimizationData(Handle<Code> code);
int DefineDeoptimizationLiteral(Handle<Object> literal);
void PopulateDeoptimizationLiteralsWithInlinedFunctions();
Register ToRegister(int index) const;
DwVfpRegister ToDoubleRegister(int index) const;
void EmitIntegerMathAbs(LMathAbs* instr);
// Support for recording safepoint and position information.
void RecordSafepoint(LPointerMap* pointers,
Safepoint::Kind kind,
int arguments,
Safepoint::DeoptMode mode);
void RecordSafepoint(LPointerMap* pointers, Safepoint::DeoptMode mode);
void RecordSafepoint(Safepoint::DeoptMode mode);
void RecordSafepointWithRegisters(LPointerMap* pointers,
int arguments,
Safepoint::DeoptMode mode);
void RecordSafepointWithRegistersAndDoubles(LPointerMap* pointers,
int arguments,
Safepoint::DeoptMode mode);
void RecordPosition(int position);
void RecordAndUpdatePosition(int position);
static Condition TokenToCondition(Token::Value op, bool is_unsigned);
void EmitGoto(int block);
template<class InstrType>
void EmitBranch(InstrType instr, Condition condition);
template<class InstrType>
void EmitFalseBranch(InstrType instr, Condition condition);
void EmitNumberUntagD(Register input,
DwVfpRegister result,
bool allow_undefined_as_nan,
bool deoptimize_on_minus_zero,
LEnvironment* env,
NumberUntagDMode mode);
// Emits optimized code for typeof x == "y". Modifies input register.
// Returns the condition on which a final split to
// true and false label should be made, to optimize fallthrough.
Condition EmitTypeofIs(Label* true_label,
Label* false_label,
Register input,
Handle<String> type_name);
// Emits optimized code for %_IsObject(x). Preserves input register.
// Returns the condition on which a final split to
// true and false label should be made, to optimize fallthrough.
Condition EmitIsObject(Register input,
Register temp1,
Label* is_not_object,
Label* is_object);
// Emits optimized code for %_IsString(x). Preserves input register.
// Returns the condition on which a final split to
// true and false label should be made, to optimize fallthrough.
Condition EmitIsString(Register input,
Register temp1,
Label* is_not_string,
SmiCheck check_needed);
// Emits optimized code for %_IsConstructCall().
// Caller should branch on equal condition.
void EmitIsConstructCall(Register temp1, Register temp2);
// Emits optimized code to deep-copy the contents of statically known
// object graphs (e.g. object literal boilerplate).
void EmitDeepCopy(Handle<JSObject> object,
Register result,
Register source,
int* offset,
AllocationSiteMode mode);
// Emit optimized code for integer division.
// Inputs are signed.
// All registers are clobbered.
// If 'remainder' is no_reg, it is not computed.
void EmitSignedIntegerDivisionByConstant(Register result,
Register dividend,
int32_t divisor,
Register remainder,
Register scratch,
LEnvironment* environment);
void EnsureSpaceForLazyDeopt();
void DoLoadKeyedExternalArray(LLoadKeyed* instr);
void DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr);
void DoLoadKeyedFixedArray(LLoadKeyed* instr);
void DoStoreKeyedExternalArray(LStoreKeyed* instr);
void DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr);
void DoStoreKeyedFixedArray(LStoreKeyed* instr);
Zone* zone_;
LPlatformChunk* const chunk_;
MacroAssembler* const masm_;
CompilationInfo* const info_;
int current_block_;
int current_instruction_;
const ZoneList<LInstruction*>* instructions_;
ZoneList<LEnvironment*> deoptimizations_;
ZoneList<Deoptimizer::JumpTableEntry> deopt_jump_table_;
ZoneList<Handle<Object> > deoptimization_literals_;
int inlined_function_count_;
Scope* const scope_;
Status status_;
TranslationBuffer translations_;
ZoneList<LDeferredCode*> deferred_;
int osr_pc_offset_;
int last_lazy_deopt_pc_;
bool frame_is_built_;
// Builder that keeps track of safepoints in the code. The table
// itself is emitted at the end of the generated code.
SafepointTableBuilder safepoints_;
// Compiler from a set of parallel moves to a sequential list of moves.
LGapResolver resolver_;
Safepoint::Kind expected_safepoint_kind_;
int old_position_;
class PushSafepointRegistersScope V8_FINAL BASE_EMBEDDED {
public:
PushSafepointRegistersScope(LCodeGen* codegen,
Safepoint::Kind kind)
: codegen_(codegen) {
ASSERT(codegen_->info()->is_calling());
ASSERT(codegen_->expected_safepoint_kind_ == Safepoint::kSimple);
codegen_->expected_safepoint_kind_ = kind;
switch (codegen_->expected_safepoint_kind_) {
case Safepoint::kWithRegisters:
codegen_->masm_->PushSafepointRegisters();
break;
case Safepoint::kWithRegistersAndDoubles:
codegen_->masm_->PushSafepointRegistersAndDoubles();
break;
default:
UNREACHABLE();
}
}
~PushSafepointRegistersScope() {
Safepoint::Kind kind = codegen_->expected_safepoint_kind_;
ASSERT((kind & Safepoint::kWithRegisters) != 0);
switch (kind) {
case Safepoint::kWithRegisters:
codegen_->masm_->PopSafepointRegisters();
break;
case Safepoint::kWithRegistersAndDoubles:
codegen_->masm_->PopSafepointRegistersAndDoubles();
break;
default:
UNREACHABLE();
}
codegen_->expected_safepoint_kind_ = Safepoint::kSimple;
}
private:
LCodeGen* codegen_;
};
friend class LDeferredCode;
friend class LEnvironment;
friend class SafepointGenerator;
DISALLOW_COPY_AND_ASSIGN(LCodeGen);
};
class LDeferredCode : public ZoneObject {
public:
explicit LDeferredCode(LCodeGen* codegen)
: codegen_(codegen),
external_exit_(NULL),
instruction_index_(codegen->current_instruction_) {
codegen->AddDeferredCode(this);
}
virtual ~LDeferredCode() {}
virtual void Generate() = 0;
virtual LInstruction* instr() = 0;
void SetExit(Label* exit) { external_exit_ = exit; }
Label* entry() { return &entry_; }
Label* exit() { return external_exit_ != NULL ? external_exit_ : &exit_; }
int instruction_index() const { return instruction_index_; }
protected:
LCodeGen* codegen() const { return codegen_; }
MacroAssembler* masm() const { return codegen_->masm(); }
private:
LCodeGen* codegen_;
Label entry_;
Label exit_;
Label* external_exit_;
int instruction_index_;
};
} } // namespace v8::internal
#endif // V8_ARM_LITHIUM_CODEGEN_ARM_H_