blob: a057a1e713675f1d417595b6bc80537a06f96b56 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/instruction-selector-impl.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties-inl.h"
namespace v8 {
namespace internal {
namespace compiler {
// Adds IA32-specific methods for generating operands.
class IA32OperandGenerator V8_FINAL : public OperandGenerator {
public:
explicit IA32OperandGenerator(InstructionSelector* selector)
: OperandGenerator(selector) {}
InstructionOperand* UseByteRegister(Node* node) {
// TODO(dcarney): relax constraint.
return UseFixed(node, edx);
}
bool CanBeImmediate(Node* node) {
switch (node->opcode()) {
case IrOpcode::kInt32Constant:
case IrOpcode::kNumberConstant:
case IrOpcode::kExternalConstant:
return true;
case IrOpcode::kHeapConstant: {
// Constants in new space cannot be used as immediates in V8 because
// the GC does not scan code objects when collecting the new generation.
Handle<HeapObject> value = ValueOf<Handle<HeapObject> >(node->op());
return !isolate()->heap()->InNewSpace(*value);
}
default:
return false;
}
}
};
void InstructionSelector::VisitLoad(Node* node) {
MachineType rep = OpParameter<MachineType>(node);
IA32OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
InstructionOperand* output = rep == kMachineFloat64
? g.DefineAsDoubleRegister(node)
: g.DefineAsRegister(node);
ArchOpcode opcode;
switch (rep) {
case kMachineFloat64:
opcode = kSSELoad;
break;
case kMachineWord8:
opcode = kIA32LoadWord8;
break;
case kMachineWord16:
opcode = kIA32LoadWord16;
break;
case kMachineTagged: // Fall through.
case kMachineWord32:
opcode = kIA32LoadWord32;
break;
default:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(base)) {
if (Int32Matcher(index).Is(0)) { // load [#base + #0]
Emit(opcode | AddressingModeField::encode(kMode_MI), output,
g.UseImmediate(base));
} else { // load [#base + %index]
Emit(opcode | AddressingModeField::encode(kMode_MRI), output,
g.UseRegister(index), g.UseImmediate(base));
}
} else if (g.CanBeImmediate(index)) { // load [%base + #index]
Emit(opcode | AddressingModeField::encode(kMode_MRI), output,
g.UseRegister(base), g.UseImmediate(index));
} else { // load [%base + %index + K]
Emit(opcode | AddressingModeField::encode(kMode_MR1I), output,
g.UseRegister(base), g.UseRegister(index));
}
// TODO(turbofan): addressing modes [r+r*{2,4,8}+K]
}
void InstructionSelector::VisitStore(Node* node) {
IA32OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
StoreRepresentation store_rep = OpParameter<StoreRepresentation>(node);
MachineType rep = store_rep.rep;
if (store_rep.write_barrier_kind == kFullWriteBarrier) {
DCHECK_EQ(kMachineTagged, rep);
// TODO(dcarney): refactor RecordWrite function to take temp registers
// and pass them here instead of using fixed regs
// TODO(dcarney): handle immediate indices.
InstructionOperand* temps[] = {g.TempRegister(ecx), g.TempRegister(edx)};
Emit(kIA32StoreWriteBarrier, NULL, g.UseFixed(base, ebx),
g.UseFixed(index, ecx), g.UseFixed(value, edx), ARRAY_SIZE(temps),
temps);
return;
}
DCHECK_EQ(kNoWriteBarrier, store_rep.write_barrier_kind);
bool is_immediate = false;
InstructionOperand* val;
if (rep == kMachineFloat64) {
val = g.UseDoubleRegister(value);
} else {
is_immediate = g.CanBeImmediate(value);
if (is_immediate) {
val = g.UseImmediate(value);
} else if (rep == kMachineWord8) {
val = g.UseByteRegister(value);
} else {
val = g.UseRegister(value);
}
}
ArchOpcode opcode;
switch (rep) {
case kMachineFloat64:
opcode = kSSEStore;
break;
case kMachineWord8:
opcode = is_immediate ? kIA32StoreWord8I : kIA32StoreWord8;
break;
case kMachineWord16:
opcode = is_immediate ? kIA32StoreWord16I : kIA32StoreWord16;
break;
case kMachineTagged: // Fall through.
case kMachineWord32:
opcode = is_immediate ? kIA32StoreWord32I : kIA32StoreWord32;
break;
default:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(base)) {
if (Int32Matcher(index).Is(0)) { // store [#base], %|#value
Emit(opcode | AddressingModeField::encode(kMode_MI), NULL,
g.UseImmediate(base), val);
} else { // store [#base + %index], %|#value
Emit(opcode | AddressingModeField::encode(kMode_MRI), NULL,
g.UseRegister(index), g.UseImmediate(base), val);
}
} else if (g.CanBeImmediate(index)) { // store [%base + #index], %|#value
Emit(opcode | AddressingModeField::encode(kMode_MRI), NULL,
g.UseRegister(base), g.UseImmediate(index), val);
} else { // store [%base + %index], %|#value
Emit(opcode | AddressingModeField::encode(kMode_MR1I), NULL,
g.UseRegister(base), g.UseRegister(index), val);
}
// TODO(turbofan): addressing modes [r+r*{2,4,8}+K]
}
// Shared routine for multiple binary operations.
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
IA32OperandGenerator g(selector);
Int32BinopMatcher m(node);
InstructionOperand* inputs[4];
size_t input_count = 0;
InstructionOperand* outputs[2];
size_t output_count = 0;
// TODO(turbofan): match complex addressing modes.
// TODO(turbofan): if commutative, pick the non-live-in operand as the left as
// this might be the last use and therefore its register can be reused.
if (g.CanBeImmediate(m.right().node())) {
inputs[input_count++] = g.Use(m.left().node());
inputs[input_count++] = g.UseImmediate(m.right().node());
} else {
inputs[input_count++] = g.UseRegister(m.left().node());
inputs[input_count++] = g.Use(m.right().node());
}
if (cont->IsBranch()) {
inputs[input_count++] = g.Label(cont->true_block());
inputs[input_count++] = g.Label(cont->false_block());
}
outputs[output_count++] = g.DefineSameAsFirst(node);
if (cont->IsSet()) {
// TODO(turbofan): Use byte register here.
outputs[output_count++] = g.DefineAsRegister(cont->result());
}
DCHECK_NE(0, input_count);
DCHECK_NE(0, output_count);
DCHECK_GE(ARRAY_SIZE(inputs), input_count);
DCHECK_GE(ARRAY_SIZE(outputs), output_count);
Instruction* instr = selector->Emit(cont->Encode(opcode), output_count,
outputs, input_count, inputs);
if (cont->IsBranch()) instr->MarkAsControl();
}
// Shared routine for multiple binary operations.
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
FlagsContinuation cont;
VisitBinop(selector, node, opcode, &cont);
}
void InstructionSelector::VisitWord32And(Node* node) {
VisitBinop(this, node, kIA32And);
}
void InstructionSelector::VisitWord32Or(Node* node) {
VisitBinop(this, node, kIA32Or);
}
void InstructionSelector::VisitWord32Xor(Node* node) {
IA32OperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.right().Is(-1)) {
Emit(kIA32Not, g.DefineSameAsFirst(node), g.Use(m.left().node()));
} else {
VisitBinop(this, node, kIA32Xor);
}
}
// Shared routine for multiple shift operations.
static inline void VisitShift(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
IA32OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
// TODO(turbofan): assembler only supports some addressing modes for shifts.
if (g.CanBeImmediate(right)) {
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseImmediate(right));
} else {
Int32BinopMatcher m(node);
if (m.right().IsWord32And()) {
Int32BinopMatcher mright(right);
if (mright.right().Is(0x1F)) {
right = mright.left().node();
}
}
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseFixed(right, ecx));
}
}
void InstructionSelector::VisitWord32Shl(Node* node) {
VisitShift(this, node, kIA32Shl);
}
void InstructionSelector::VisitWord32Shr(Node* node) {
VisitShift(this, node, kIA32Shr);
}
void InstructionSelector::VisitWord32Sar(Node* node) {
VisitShift(this, node, kIA32Sar);
}
void InstructionSelector::VisitInt32Add(Node* node) {
VisitBinop(this, node, kIA32Add);
}
void InstructionSelector::VisitInt32Sub(Node* node) {
IA32OperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.left().Is(0)) {
Emit(kIA32Neg, g.DefineSameAsFirst(node), g.Use(m.right().node()));
} else {
VisitBinop(this, node, kIA32Sub);
}
}
void InstructionSelector::VisitInt32Mul(Node* node) {
IA32OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (g.CanBeImmediate(right)) {
Emit(kIA32Imul, g.DefineAsRegister(node), g.Use(left),
g.UseImmediate(right));
} else if (g.CanBeImmediate(left)) {
Emit(kIA32Imul, g.DefineAsRegister(node), g.Use(right),
g.UseImmediate(left));
} else {
// TODO(turbofan): select better left operand.
Emit(kIA32Imul, g.DefineSameAsFirst(node), g.UseRegister(left),
g.Use(right));
}
}
static inline void VisitDiv(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
IA32OperandGenerator g(selector);
InstructionOperand* temps[] = {g.TempRegister(edx)};
size_t temp_count = ARRAY_SIZE(temps);
selector->Emit(opcode, g.DefineAsFixed(node, eax),
g.UseFixed(node->InputAt(0), eax),
g.UseUnique(node->InputAt(1)), temp_count, temps);
}
void InstructionSelector::VisitInt32Div(Node* node) {
VisitDiv(this, node, kIA32Idiv);
}
void InstructionSelector::VisitInt32UDiv(Node* node) {
VisitDiv(this, node, kIA32Udiv);
}
static inline void VisitMod(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
IA32OperandGenerator g(selector);
InstructionOperand* temps[] = {g.TempRegister(eax), g.TempRegister(edx)};
size_t temp_count = ARRAY_SIZE(temps);
selector->Emit(opcode, g.DefineAsFixed(node, edx),
g.UseFixed(node->InputAt(0), eax),
g.UseUnique(node->InputAt(1)), temp_count, temps);
}
void InstructionSelector::VisitInt32Mod(Node* node) {
VisitMod(this, node, kIA32Idiv);
}
void InstructionSelector::VisitInt32UMod(Node* node) {
VisitMod(this, node, kIA32Udiv);
}
void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) {
IA32OperandGenerator g(this);
Emit(kSSEInt32ToFloat64, g.DefineAsDoubleRegister(node),
g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) {
IA32OperandGenerator g(this);
// TODO(turbofan): IA32 SSE LoadUint32() should take an operand.
Emit(kSSEUint32ToFloat64, g.DefineAsDoubleRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) {
IA32OperandGenerator g(this);
Emit(kSSEFloat64ToInt32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) {
IA32OperandGenerator g(this);
// TODO(turbofan): IA32 SSE subsd() should take an operand.
Emit(kSSEFloat64ToUint32, g.DefineAsRegister(node),
g.UseDoubleRegister(node->InputAt(0)));
}
void InstructionSelector::VisitFloat64Add(Node* node) {
IA32OperandGenerator g(this);
Emit(kSSEFloat64Add, g.DefineSameAsFirst(node),
g.UseDoubleRegister(node->InputAt(0)),
g.UseDoubleRegister(node->InputAt(1)));
}
void InstructionSelector::VisitFloat64Sub(Node* node) {
IA32OperandGenerator g(this);
Emit(kSSEFloat64Sub, g.DefineSameAsFirst(node),
g.UseDoubleRegister(node->InputAt(0)),
g.UseDoubleRegister(node->InputAt(1)));
}
void InstructionSelector::VisitFloat64Mul(Node* node) {
IA32OperandGenerator g(this);
Emit(kSSEFloat64Mul, g.DefineSameAsFirst(node),
g.UseDoubleRegister(node->InputAt(0)),
g.UseDoubleRegister(node->InputAt(1)));
}
void InstructionSelector::VisitFloat64Div(Node* node) {
IA32OperandGenerator g(this);
Emit(kSSEFloat64Div, g.DefineSameAsFirst(node),
g.UseDoubleRegister(node->InputAt(0)),
g.UseDoubleRegister(node->InputAt(1)));
}
void InstructionSelector::VisitFloat64Mod(Node* node) {
IA32OperandGenerator g(this);
InstructionOperand* temps[] = {g.TempRegister(eax)};
Emit(kSSEFloat64Mod, g.DefineSameAsFirst(node),
g.UseDoubleRegister(node->InputAt(0)),
g.UseDoubleRegister(node->InputAt(1)), 1, temps);
}
void InstructionSelector::VisitInt32AddWithOverflow(Node* node,
FlagsContinuation* cont) {
VisitBinop(this, node, kIA32Add, cont);
}
void InstructionSelector::VisitInt32SubWithOverflow(Node* node,
FlagsContinuation* cont) {
VisitBinop(this, node, kIA32Sub, cont);
}
// Shared routine for multiple compare operations.
static inline void VisitCompare(InstructionSelector* selector,
InstructionCode opcode,
InstructionOperand* left,
InstructionOperand* right,
FlagsContinuation* cont) {
IA32OperandGenerator g(selector);
if (cont->IsBranch()) {
selector->Emit(cont->Encode(opcode), NULL, left, right,
g.Label(cont->true_block()),
g.Label(cont->false_block()))->MarkAsControl();
} else {
DCHECK(cont->IsSet());
// TODO(titzer): Needs byte register.
selector->Emit(cont->Encode(opcode), g.DefineAsRegister(cont->result()),
left, right);
}
}
// Shared routine for multiple word compare operations.
static inline void VisitWordCompare(InstructionSelector* selector, Node* node,
InstructionCode opcode,
FlagsContinuation* cont, bool commutative) {
IA32OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
// Match immediates on left or right side of comparison.
if (g.CanBeImmediate(right)) {
VisitCompare(selector, opcode, g.Use(left), g.UseImmediate(right), cont);
} else if (g.CanBeImmediate(left)) {
if (!commutative) cont->Commute();
VisitCompare(selector, opcode, g.Use(right), g.UseImmediate(left), cont);
} else {
VisitCompare(selector, opcode, g.UseRegister(left), g.Use(right), cont);
}
}
void InstructionSelector::VisitWord32Test(Node* node, FlagsContinuation* cont) {
switch (node->opcode()) {
case IrOpcode::kInt32Sub:
return VisitWordCompare(this, node, kIA32Cmp, cont, false);
case IrOpcode::kWord32And:
return VisitWordCompare(this, node, kIA32Test, cont, true);
default:
break;
}
IA32OperandGenerator g(this);
VisitCompare(this, kIA32Test, g.Use(node), g.TempImmediate(-1), cont);
}
void InstructionSelector::VisitWord32Compare(Node* node,
FlagsContinuation* cont) {
VisitWordCompare(this, node, kIA32Cmp, cont, false);
}
void InstructionSelector::VisitFloat64Compare(Node* node,
FlagsContinuation* cont) {
IA32OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
VisitCompare(this, kSSEFloat64Cmp, g.UseDoubleRegister(left), g.Use(right),
cont);
}
void InstructionSelector::VisitCall(Node* call, BasicBlock* continuation,
BasicBlock* deoptimization) {
IA32OperandGenerator g(this);
CallDescriptor* descriptor = OpParameter<CallDescriptor*>(call);
CallBuffer buffer(zone(), descriptor);
// Compute InstructionOperands for inputs and outputs.
InitializeCallBuffer(call, &buffer, true, true, continuation, deoptimization);
// Push any stack arguments.
for (int i = buffer.pushed_count - 1; i >= 0; --i) {
Node* input = buffer.pushed_nodes[i];
// TODO(titzer): handle pushing double parameters.
Emit(kIA32Push, NULL,
g.CanBeImmediate(input) ? g.UseImmediate(input) : g.Use(input));
}
// Select the appropriate opcode based on the call type.
InstructionCode opcode;
switch (descriptor->kind()) {
case CallDescriptor::kCallCodeObject: {
bool lazy_deopt = descriptor->CanLazilyDeoptimize();
opcode = kIA32CallCodeObject | MiscField::encode(lazy_deopt ? 1 : 0);
break;
}
case CallDescriptor::kCallAddress:
opcode = kIA32CallAddress;
break;
case CallDescriptor::kCallJSFunction:
opcode = kIA32CallJSFunction;
break;
default:
UNREACHABLE();
return;
}
// Emit the call instruction.
Instruction* call_instr =
Emit(opcode, buffer.output_count, buffer.outputs,
buffer.fixed_and_control_count(), buffer.fixed_and_control_args);
call_instr->MarkAsCall();
if (deoptimization != NULL) {
DCHECK(continuation != NULL);
call_instr->MarkAsControl();
}
// Caller clean up of stack for C-style calls.
if (descriptor->kind() == CallDescriptor::kCallAddress &&
buffer.pushed_count > 0) {
DCHECK(deoptimization == NULL && continuation == NULL);
Emit(kPopStack | MiscField::encode(buffer.pushed_count), NULL);
}
}
} // namespace compiler
} // namespace internal
} // namespace v8