blob: 9f2a87b4683a1a3e3967858527c17f5e4a252ca5 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_STUB_CACHE_H_
#define V8_STUB_CACHE_H_
#include "src/allocation.h"
#include "src/arguments.h"
#include "src/code-stubs.h"
#include "src/ic-inl.h"
#include "src/macro-assembler.h"
#include "src/objects.h"
#include "src/zone-inl.h"
namespace v8 {
namespace internal {
// The stub cache is used for megamorphic calls and property accesses.
// It maps (map, name, type)->Code*
// The design of the table uses the inline cache stubs used for
// mono-morphic calls. The beauty of this, we do not have to
// invalidate the cache whenever a prototype map is changed. The stub
// validates the map chain as in the mono-morphic case.
class CallOptimization;
class SmallMapList;
class StubCache;
class SCTableReference {
public:
Address address() const { return address_; }
private:
explicit SCTableReference(Address address) : address_(address) {}
Address address_;
friend class StubCache;
};
class StubCache {
public:
struct Entry {
Name* key;
Code* value;
Map* map;
};
void Initialize();
Handle<JSObject> StubHolder(Handle<JSObject> receiver,
Handle<JSObject> holder);
Handle<Code> FindIC(Handle<Name> name,
Handle<Map> stub_holder_map,
Code::Kind kind,
ExtraICState extra_state = kNoExtraICState,
InlineCacheHolderFlag cache_holder = OWN_MAP);
Handle<Code> FindHandler(Handle<Name> name,
Handle<Map> map,
Code::Kind kind,
InlineCacheHolderFlag cache_holder,
Code::StubType type);
Handle<Code> ComputeMonomorphicIC(Code::Kind kind,
Handle<Name> name,
Handle<HeapType> type,
Handle<Code> handler,
ExtraICState extra_ic_state);
Handle<Code> ComputeLoadNonexistent(Handle<Name> name, Handle<HeapType> type);
Handle<Code> ComputeKeyedLoadElement(Handle<Map> receiver_map);
Handle<Code> ComputeKeyedStoreElement(Handle<Map> receiver_map,
StrictMode strict_mode,
KeyedAccessStoreMode store_mode);
// ---
Handle<Code> ComputeLoad(InlineCacheState ic_state, ExtraICState extra_state);
Handle<Code> ComputeStore(InlineCacheState ic_state,
ExtraICState extra_state);
// ---
Handle<Code> ComputeCompareNil(Handle<Map> receiver_map,
CompareNilICStub* stub);
// ---
Handle<Code> ComputeLoadElementPolymorphic(MapHandleList* receiver_maps);
Handle<Code> ComputeStoreElementPolymorphic(MapHandleList* receiver_maps,
KeyedAccessStoreMode store_mode,
StrictMode strict_mode);
Handle<Code> ComputePolymorphicIC(Code::Kind kind,
TypeHandleList* types,
CodeHandleList* handlers,
int number_of_valid_maps,
Handle<Name> name,
ExtraICState extra_ic_state);
// Finds the Code object stored in the Heap::non_monomorphic_cache().
Code* FindPreMonomorphicIC(Code::Kind kind, ExtraICState extra_ic_state);
// Update cache for entry hash(name, map).
Code* Set(Name* name, Map* map, Code* code);
// Clear the lookup table (@ mark compact collection).
void Clear();
// Collect all maps that match the name and flags.
void CollectMatchingMaps(SmallMapList* types,
Handle<Name> name,
Code::Flags flags,
Handle<Context> native_context,
Zone* zone);
// Generate code for probing the stub cache table.
// Arguments extra, extra2 and extra3 may be used to pass additional scratch
// registers. Set to no_reg if not needed.
void GenerateProbe(MacroAssembler* masm,
Code::Flags flags,
Register receiver,
Register name,
Register scratch,
Register extra,
Register extra2 = no_reg,
Register extra3 = no_reg);
enum Table {
kPrimary,
kSecondary
};
SCTableReference key_reference(StubCache::Table table) {
return SCTableReference(
reinterpret_cast<Address>(&first_entry(table)->key));
}
SCTableReference map_reference(StubCache::Table table) {
return SCTableReference(
reinterpret_cast<Address>(&first_entry(table)->map));
}
SCTableReference value_reference(StubCache::Table table) {
return SCTableReference(
reinterpret_cast<Address>(&first_entry(table)->value));
}
StubCache::Entry* first_entry(StubCache::Table table) {
switch (table) {
case StubCache::kPrimary: return StubCache::primary_;
case StubCache::kSecondary: return StubCache::secondary_;
}
UNREACHABLE();
return NULL;
}
Isolate* isolate() { return isolate_; }
Heap* heap() { return isolate()->heap(); }
Factory* factory() { return isolate()->factory(); }
// These constants describe the structure of the interceptor arguments on the
// stack. The arguments are pushed by the (platform-specific)
// PushInterceptorArguments and read by LoadPropertyWithInterceptorOnly and
// LoadWithInterceptor.
static const int kInterceptorArgsNameIndex = 0;
static const int kInterceptorArgsInfoIndex = 1;
static const int kInterceptorArgsThisIndex = 2;
static const int kInterceptorArgsHolderIndex = 3;
static const int kInterceptorArgsLength = 4;
private:
explicit StubCache(Isolate* isolate);
// The stub cache has a primary and secondary level. The two levels have
// different hashing algorithms in order to avoid simultaneous collisions
// in both caches. Unlike a probing strategy (quadratic or otherwise) the
// update strategy on updates is fairly clear and simple: Any existing entry
// in the primary cache is moved to the secondary cache, and secondary cache
// entries are overwritten.
// Hash algorithm for the primary table. This algorithm is replicated in
// assembler for every architecture. Returns an index into the table that
// is scaled by 1 << kHeapObjectTagSize.
static int PrimaryOffset(Name* name, Code::Flags flags, Map* map) {
// This works well because the heap object tag size and the hash
// shift are equal. Shifting down the length field to get the
// hash code would effectively throw away two bits of the hash
// code.
STATIC_ASSERT(kHeapObjectTagSize == Name::kHashShift);
// Compute the hash of the name (use entire hash field).
ASSERT(name->HasHashCode());
uint32_t field = name->hash_field();
// Using only the low bits in 64-bit mode is unlikely to increase the
// risk of collision even if the heap is spread over an area larger than
// 4Gb (and not at all if it isn't).
uint32_t map_low32bits =
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(map));
// We always set the in_loop bit to zero when generating the lookup code
// so do it here too so the hash codes match.
uint32_t iflags =
(static_cast<uint32_t>(flags) & ~Code::kFlagsNotUsedInLookup);
// Base the offset on a simple combination of name, flags, and map.
uint32_t key = (map_low32bits + field) ^ iflags;
return key & ((kPrimaryTableSize - 1) << kHeapObjectTagSize);
}
// Hash algorithm for the secondary table. This algorithm is replicated in
// assembler for every architecture. Returns an index into the table that
// is scaled by 1 << kHeapObjectTagSize.
static int SecondaryOffset(Name* name, Code::Flags flags, int seed) {
// Use the seed from the primary cache in the secondary cache.
uint32_t name_low32bits =
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name));
// We always set the in_loop bit to zero when generating the lookup code
// so do it here too so the hash codes match.
uint32_t iflags =
(static_cast<uint32_t>(flags) & ~Code::kFlagsNotUsedInLookup);
uint32_t key = (seed - name_low32bits) + iflags;
return key & ((kSecondaryTableSize - 1) << kHeapObjectTagSize);
}
// Compute the entry for a given offset in exactly the same way as
// we do in generated code. We generate an hash code that already
// ends in Name::kHashShift 0s. Then we multiply it so it is a multiple
// of sizeof(Entry). This makes it easier to avoid making mistakes
// in the hashed offset computations.
static Entry* entry(Entry* table, int offset) {
const int multiplier = sizeof(*table) >> Name::kHashShift;
return reinterpret_cast<Entry*>(
reinterpret_cast<Address>(table) + offset * multiplier);
}
static const int kPrimaryTableBits = 11;
static const int kPrimaryTableSize = (1 << kPrimaryTableBits);
static const int kSecondaryTableBits = 9;
static const int kSecondaryTableSize = (1 << kSecondaryTableBits);
Entry primary_[kPrimaryTableSize];
Entry secondary_[kSecondaryTableSize];
Isolate* isolate_;
friend class Isolate;
friend class SCTableReference;
DISALLOW_COPY_AND_ASSIGN(StubCache);
};
// ------------------------------------------------------------------------
// Support functions for IC stubs for callbacks.
DECLARE_RUNTIME_FUNCTION(StoreCallbackProperty);
// Support functions for IC stubs for interceptors.
DECLARE_RUNTIME_FUNCTION(LoadPropertyWithInterceptorOnly);
DECLARE_RUNTIME_FUNCTION(LoadPropertyWithInterceptor);
DECLARE_RUNTIME_FUNCTION(StoreInterceptorProperty);
DECLARE_RUNTIME_FUNCTION(KeyedLoadPropertyWithInterceptor);
enum PrototypeCheckType { CHECK_ALL_MAPS, SKIP_RECEIVER };
enum IcCheckType { ELEMENT, PROPERTY };
// The stub compilers compile stubs for the stub cache.
class StubCompiler BASE_EMBEDDED {
public:
explicit StubCompiler(Isolate* isolate,
ExtraICState extra_ic_state = kNoExtraICState)
: isolate_(isolate), extra_ic_state_(extra_ic_state),
masm_(isolate, NULL, 256) { }
Handle<Code> CompileLoadInitialize(Code::Flags flags);
Handle<Code> CompileLoadPreMonomorphic(Code::Flags flags);
Handle<Code> CompileLoadMegamorphic(Code::Flags flags);
Handle<Code> CompileStoreInitialize(Code::Flags flags);
Handle<Code> CompileStorePreMonomorphic(Code::Flags flags);
Handle<Code> CompileStoreGeneric(Code::Flags flags);
Handle<Code> CompileStoreMegamorphic(Code::Flags flags);
// Static functions for generating parts of stubs.
static void GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm,
int index,
Register prototype);
// Helper function used to check that the dictionary doesn't contain
// the property. This function may return false negatives, so miss_label
// must always call a backup property check that is complete.
// This function is safe to call if the receiver has fast properties.
// Name must be unique and receiver must be a heap object.
static void GenerateDictionaryNegativeLookup(MacroAssembler* masm,
Label* miss_label,
Register receiver,
Handle<Name> name,
Register r0,
Register r1);
// Generates prototype loading code that uses the objects from the
// context we were in when this function was called. If the context
// has changed, a jump to miss is performed. This ties the generated
// code to a particular context and so must not be used in cases
// where the generated code is not allowed to have references to
// objects from a context.
static void GenerateDirectLoadGlobalFunctionPrototype(MacroAssembler* masm,
int index,
Register prototype,
Label* miss);
static void GenerateFastPropertyLoad(MacroAssembler* masm,
Register dst,
Register src,
bool inobject,
int index,
Representation representation);
static void GenerateLoadArrayLength(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* miss_label);
static void GenerateLoadFunctionPrototype(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss_label);
// Generate code to check that a global property cell is empty. Create
// the property cell at compilation time if no cell exists for the
// property.
static void GenerateCheckPropertyCell(MacroAssembler* masm,
Handle<JSGlobalObject> global,
Handle<Name> name,
Register scratch,
Label* miss);
static void TailCallBuiltin(MacroAssembler* masm, Builtins::Name name);
// Generates code that verifies that the property holder has not changed
// (checking maps of objects in the prototype chain for fast and global
// objects or doing negative lookup for slow objects, ensures that the
// property cells for global objects are still empty) and checks that the map
// of the holder has not changed. If necessary the function also generates
// code for security check in case of global object holders. Helps to make
// sure that the current IC is still valid.
//
// The scratch and holder registers are always clobbered, but the object
// register is only clobbered if it the same as the holder register. The
// function returns a register containing the holder - either object_reg or
// holder_reg.
Register CheckPrototypes(Handle<HeapType> type,
Register object_reg,
Handle<JSObject> holder,
Register holder_reg,
Register scratch1,
Register scratch2,
Handle<Name> name,
Label* miss,
PrototypeCheckType check = CHECK_ALL_MAPS);
static void GenerateFastApiCall(MacroAssembler* masm,
const CallOptimization& optimization,
Handle<Map> receiver_map,
Register receiver,
Register scratch,
bool is_store,
int argc,
Register* values);
protected:
Handle<Code> GetCodeWithFlags(Code::Flags flags, const char* name);
Handle<Code> GetCodeWithFlags(Code::Flags flags, Handle<Name> name);
ExtraICState extra_state() { return extra_ic_state_; }
MacroAssembler* masm() { return &masm_; }
static void LookupPostInterceptor(Handle<JSObject> holder,
Handle<Name> name,
LookupResult* lookup);
Isolate* isolate() { return isolate_; }
Heap* heap() { return isolate()->heap(); }
Factory* factory() { return isolate()->factory(); }
static void GenerateTailCall(MacroAssembler* masm, Handle<Code> code);
private:
Isolate* isolate_;
const ExtraICState extra_ic_state_;
MacroAssembler masm_;
};
enum FrontendCheckType { PERFORM_INITIAL_CHECKS, SKIP_INITIAL_CHECKS };
class BaseLoadStoreStubCompiler: public StubCompiler {
public:
BaseLoadStoreStubCompiler(Isolate* isolate,
Code::Kind kind,
ExtraICState extra_ic_state = kNoExtraICState,
InlineCacheHolderFlag cache_holder = OWN_MAP)
: StubCompiler(isolate, extra_ic_state),
kind_(kind),
cache_holder_(cache_holder) {
InitializeRegisters();
}
virtual ~BaseLoadStoreStubCompiler() { }
Handle<Code> CompileMonomorphicIC(Handle<HeapType> type,
Handle<Code> handler,
Handle<Name> name);
Handle<Code> CompilePolymorphicIC(TypeHandleList* types,
CodeHandleList* handlers,
Handle<Name> name,
Code::StubType type,
IcCheckType check);
static Builtins::Name MissBuiltin(Code::Kind kind) {
switch (kind) {
case Code::LOAD_IC: return Builtins::kLoadIC_Miss;
case Code::STORE_IC: return Builtins::kStoreIC_Miss;
case Code::KEYED_LOAD_IC: return Builtins::kKeyedLoadIC_Miss;
case Code::KEYED_STORE_IC: return Builtins::kKeyedStoreIC_Miss;
default: UNREACHABLE();
}
return Builtins::kLoadIC_Miss;
}
protected:
virtual Register HandlerFrontendHeader(Handle<HeapType> type,
Register object_reg,
Handle<JSObject> holder,
Handle<Name> name,
Label* miss) = 0;
virtual void HandlerFrontendFooter(Handle<Name> name, Label* miss) = 0;
Register HandlerFrontend(Handle<HeapType> type,
Register object_reg,
Handle<JSObject> holder,
Handle<Name> name);
Handle<Code> GetCode(Code::Kind kind,
Code::StubType type,
Handle<Name> name);
Handle<Code> GetICCode(Code::Kind kind,
Code::StubType type,
Handle<Name> name,
InlineCacheState state = MONOMORPHIC);
Code::Kind kind() { return kind_; }
Logger::LogEventsAndTags log_kind(Handle<Code> code) {
if (!code->is_inline_cache_stub()) return Logger::STUB_TAG;
if (kind_ == Code::LOAD_IC) {
return code->ic_state() == MONOMORPHIC
? Logger::LOAD_IC_TAG : Logger::LOAD_POLYMORPHIC_IC_TAG;
} else if (kind_ == Code::KEYED_LOAD_IC) {
return code->ic_state() == MONOMORPHIC
? Logger::KEYED_LOAD_IC_TAG : Logger::KEYED_LOAD_POLYMORPHIC_IC_TAG;
} else if (kind_ == Code::STORE_IC) {
return code->ic_state() == MONOMORPHIC
? Logger::STORE_IC_TAG : Logger::STORE_POLYMORPHIC_IC_TAG;
} else {
return code->ic_state() == MONOMORPHIC
? Logger::KEYED_STORE_IC_TAG : Logger::KEYED_STORE_POLYMORPHIC_IC_TAG;
}
}
void JitEvent(Handle<Name> name, Handle<Code> code);
Register receiver() { return registers_[0]; }
Register name() { return registers_[1]; }
Register scratch1() { return registers_[2]; }
Register scratch2() { return registers_[3]; }
Register scratch3() { return registers_[4]; }
void InitializeRegisters();
bool IncludesNumberType(TypeHandleList* types);
Code::Kind kind_;
InlineCacheHolderFlag cache_holder_;
Register* registers_;
};
class LoadStubCompiler: public BaseLoadStoreStubCompiler {
public:
LoadStubCompiler(Isolate* isolate,
ExtraICState extra_ic_state = kNoExtraICState,
InlineCacheHolderFlag cache_holder = OWN_MAP,
Code::Kind kind = Code::LOAD_IC)
: BaseLoadStoreStubCompiler(isolate, kind, extra_ic_state,
cache_holder) { }
virtual ~LoadStubCompiler() { }
Handle<Code> CompileLoadField(Handle<HeapType> type,
Handle<JSObject> holder,
Handle<Name> name,
FieldIndex index,
Representation representation);
Handle<Code> CompileLoadCallback(Handle<HeapType> type,
Handle<JSObject> holder,
Handle<Name> name,
Handle<ExecutableAccessorInfo> callback);
Handle<Code> CompileLoadCallback(Handle<HeapType> type,
Handle<JSObject> holder,
Handle<Name> name,
const CallOptimization& call_optimization);
Handle<Code> CompileLoadConstant(Handle<HeapType> type,
Handle<JSObject> holder,
Handle<Name> name,
Handle<Object> value);
Handle<Code> CompileLoadInterceptor(Handle<HeapType> type,
Handle<JSObject> holder,
Handle<Name> name);
Handle<Code> CompileLoadViaGetter(Handle<HeapType> type,
Handle<JSObject> holder,
Handle<Name> name,
Handle<JSFunction> getter);
static void GenerateLoadViaGetter(MacroAssembler* masm,
Handle<HeapType> type,
Register receiver,
Handle<JSFunction> getter);
static void GenerateLoadViaGetterForDeopt(MacroAssembler* masm) {
GenerateLoadViaGetter(
masm, Handle<HeapType>::null(), no_reg, Handle<JSFunction>());
}
Handle<Code> CompileLoadNonexistent(Handle<HeapType> type,
Handle<JSObject> last,
Handle<Name> name);
Handle<Code> CompileLoadGlobal(Handle<HeapType> type,
Handle<GlobalObject> holder,
Handle<PropertyCell> cell,
Handle<Name> name,
bool is_dont_delete);
protected:
ContextualMode contextual_mode() {
return LoadIC::GetContextualMode(extra_state());
}
virtual Register HandlerFrontendHeader(Handle<HeapType> type,
Register object_reg,
Handle<JSObject> holder,
Handle<Name> name,
Label* miss);
virtual void HandlerFrontendFooter(Handle<Name> name, Label* miss);
Register CallbackHandlerFrontend(Handle<HeapType> type,
Register object_reg,
Handle<JSObject> holder,
Handle<Name> name,
Handle<Object> callback);
void NonexistentHandlerFrontend(Handle<HeapType> type,
Handle<JSObject> last,
Handle<Name> name);
void GenerateLoadField(Register reg,
Handle<JSObject> holder,
FieldIndex field,
Representation representation);
void GenerateLoadConstant(Handle<Object> value);
void GenerateLoadCallback(Register reg,
Handle<ExecutableAccessorInfo> callback);
void GenerateLoadCallback(const CallOptimization& call_optimization,
Handle<Map> receiver_map);
void GenerateLoadInterceptor(Register holder_reg,
Handle<Object> object,
Handle<JSObject> holder,
LookupResult* lookup,
Handle<Name> name);
void GenerateLoadPostInterceptor(Register reg,
Handle<JSObject> interceptor_holder,
Handle<Name> name,
LookupResult* lookup);
private:
static Register* registers();
Register scratch4() { return registers_[5]; }
friend class BaseLoadStoreStubCompiler;
};
class KeyedLoadStubCompiler: public LoadStubCompiler {
public:
KeyedLoadStubCompiler(Isolate* isolate,
ExtraICState extra_ic_state = kNoExtraICState,
InlineCacheHolderFlag cache_holder = OWN_MAP)
: LoadStubCompiler(isolate, extra_ic_state, cache_holder,
Code::KEYED_LOAD_IC) { }
Handle<Code> CompileLoadElement(Handle<Map> receiver_map);
void CompileElementHandlers(MapHandleList* receiver_maps,
CodeHandleList* handlers);
static void GenerateLoadDictionaryElement(MacroAssembler* masm);
private:
static Register* registers();
friend class BaseLoadStoreStubCompiler;
};
class StoreStubCompiler: public BaseLoadStoreStubCompiler {
public:
StoreStubCompiler(Isolate* isolate,
ExtraICState extra_ic_state,
Code::Kind kind = Code::STORE_IC)
: BaseLoadStoreStubCompiler(isolate, kind, extra_ic_state) {}
virtual ~StoreStubCompiler() { }
Handle<Code> CompileStoreTransition(Handle<JSObject> object,
LookupResult* lookup,
Handle<Map> transition,
Handle<Name> name);
Handle<Code> CompileStoreField(Handle<JSObject> object,
LookupResult* lookup,
Handle<Name> name);
Handle<Code> CompileStoreArrayLength(Handle<JSObject> object,
LookupResult* lookup,
Handle<Name> name);
void GenerateStoreArrayLength();
void GenerateNegativeHolderLookup(MacroAssembler* masm,
Handle<JSObject> holder,
Register holder_reg,
Handle<Name> name,
Label* miss);
void GenerateStoreTransition(MacroAssembler* masm,
Handle<JSObject> object,
LookupResult* lookup,
Handle<Map> transition,
Handle<Name> name,
Register receiver_reg,
Register name_reg,
Register value_reg,
Register scratch1,
Register scratch2,
Register scratch3,
Label* miss_label,
Label* slow);
void GenerateStoreField(MacroAssembler* masm,
Handle<JSObject> object,
LookupResult* lookup,
Register receiver_reg,
Register name_reg,
Register value_reg,
Register scratch1,
Register scratch2,
Label* miss_label);
Handle<Code> CompileStoreCallback(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
Handle<ExecutableAccessorInfo> callback);
Handle<Code> CompileStoreCallback(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
const CallOptimization& call_optimization);
static void GenerateStoreViaSetter(MacroAssembler* masm,
Handle<HeapType> type,
Register receiver,
Handle<JSFunction> setter);
static void GenerateStoreViaSetterForDeopt(MacroAssembler* masm) {
GenerateStoreViaSetter(
masm, Handle<HeapType>::null(), no_reg, Handle<JSFunction>());
}
Handle<Code> CompileStoreViaSetter(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
Handle<JSFunction> setter);
Handle<Code> CompileStoreInterceptor(Handle<JSObject> object,
Handle<Name> name);
static Builtins::Name SlowBuiltin(Code::Kind kind) {
switch (kind) {
case Code::STORE_IC: return Builtins::kStoreIC_Slow;
case Code::KEYED_STORE_IC: return Builtins::kKeyedStoreIC_Slow;
default: UNREACHABLE();
}
return Builtins::kStoreIC_Slow;
}
protected:
virtual Register HandlerFrontendHeader(Handle<HeapType> type,
Register object_reg,
Handle<JSObject> holder,
Handle<Name> name,
Label* miss);
virtual void HandlerFrontendFooter(Handle<Name> name, Label* miss);
void GenerateRestoreName(MacroAssembler* masm,
Label* label,
Handle<Name> name);
private:
static Register* registers();
static Register value();
friend class BaseLoadStoreStubCompiler;
};
class KeyedStoreStubCompiler: public StoreStubCompiler {
public:
KeyedStoreStubCompiler(Isolate* isolate,
ExtraICState extra_ic_state)
: StoreStubCompiler(isolate, extra_ic_state, Code::KEYED_STORE_IC) {}
Handle<Code> CompileStoreElement(Handle<Map> receiver_map);
Handle<Code> CompileStorePolymorphic(MapHandleList* receiver_maps,
CodeHandleList* handler_stubs,
MapHandleList* transitioned_maps);
Handle<Code> CompileStoreElementPolymorphic(MapHandleList* receiver_maps);
static void GenerateStoreDictionaryElement(MacroAssembler* masm);
private:
static Register* registers();
KeyedAccessStoreMode store_mode() {
return KeyedStoreIC::GetKeyedAccessStoreMode(extra_state());
}
Register transition_map() { return scratch1(); }
friend class BaseLoadStoreStubCompiler;
};
// Holds information about possible function call optimizations.
class CallOptimization BASE_EMBEDDED {
public:
explicit CallOptimization(LookupResult* lookup);
explicit CallOptimization(Handle<JSFunction> function);
bool is_constant_call() const {
return !constant_function_.is_null();
}
Handle<JSFunction> constant_function() const {
ASSERT(is_constant_call());
return constant_function_;
}
bool is_simple_api_call() const {
return is_simple_api_call_;
}
Handle<FunctionTemplateInfo> expected_receiver_type() const {
ASSERT(is_simple_api_call());
return expected_receiver_type_;
}
Handle<CallHandlerInfo> api_call_info() const {
ASSERT(is_simple_api_call());
return api_call_info_;
}
enum HolderLookup {
kHolderNotFound,
kHolderIsReceiver,
kHolderFound
};
Handle<JSObject> LookupHolderOfExpectedType(
Handle<Map> receiver_map,
HolderLookup* holder_lookup) const;
// Check if the api holder is between the receiver and the holder.
bool IsCompatibleReceiver(Handle<Object> receiver,
Handle<JSObject> holder) const;
private:
void Initialize(Handle<JSFunction> function);
// Determines whether the given function can be called using the
// fast api call builtin.
void AnalyzePossibleApiFunction(Handle<JSFunction> function);
Handle<JSFunction> constant_function_;
bool is_simple_api_call_;
Handle<FunctionTemplateInfo> expected_receiver_type_;
Handle<CallHandlerInfo> api_call_info_;
};
} } // namespace v8::internal
#endif // V8_STUB_CACHE_H_