blob: 2aa18699dda81545bab87292ba373c6e8d538dab [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/graph-inl.h"
#include "src/compiler/js-operator.h"
#include "src/compiler/node.h"
#include "src/compiler/node-properties-inl.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/simplified-operator.h"
#include "src/compiler/typer.h"
namespace v8 {
namespace internal {
namespace compiler {
Typer::Typer(Zone* zone) : zone_(zone) {
Type* number = Type::Number(zone);
Type* signed32 = Type::Signed32(zone);
Type* unsigned32 = Type::Unsigned32(zone);
Type* integral32 = Type::Integral32(zone);
Type* object = Type::Object(zone);
Type* undefined = Type::Undefined(zone);
number_fun0_ = Type::Function(number, zone);
number_fun1_ = Type::Function(number, number, zone);
number_fun2_ = Type::Function(number, number, number, zone);
imul_fun_ = Type::Function(signed32, integral32, integral32, zone);
#define NATIVE_TYPE(sem, rep) \
Type::Intersect(Type::sem(zone), Type::rep(zone), zone)
// TODO(rossberg): Use range types for more precision, once we have them.
Type* int8 = NATIVE_TYPE(SignedSmall, UntaggedInt8);
Type* int16 = NATIVE_TYPE(SignedSmall, UntaggedInt16);
Type* int32 = NATIVE_TYPE(Signed32, UntaggedInt32);
Type* uint8 = NATIVE_TYPE(UnsignedSmall, UntaggedInt8);
Type* uint16 = NATIVE_TYPE(UnsignedSmall, UntaggedInt16);
Type* uint32 = NATIVE_TYPE(Unsigned32, UntaggedInt32);
Type* float32 = NATIVE_TYPE(Number, UntaggedFloat32);
Type* float64 = NATIVE_TYPE(Number, UntaggedFloat64);
#undef NATIVE_TYPE
Type* buffer = Type::Buffer(zone);
Type* int8_array = Type::Array(int8, zone);
Type* int16_array = Type::Array(int16, zone);
Type* int32_array = Type::Array(int32, zone);
Type* uint8_array = Type::Array(uint8, zone);
Type* uint16_array = Type::Array(uint16, zone);
Type* uint32_array = Type::Array(uint32, zone);
Type* float32_array = Type::Array(float32, zone);
Type* float64_array = Type::Array(float64, zone);
Type* arg1 = Type::Union(unsigned32, object, zone);
Type* arg2 = Type::Union(unsigned32, undefined, zone);
Type* arg3 = arg2;
array_buffer_fun_ = Type::Function(buffer, unsigned32, zone);
int8_array_fun_ = Type::Function(int8_array, arg1, arg2, arg3, zone);
int16_array_fun_ = Type::Function(int16_array, arg1, arg2, arg3, zone);
int32_array_fun_ = Type::Function(int32_array, arg1, arg2, arg3, zone);
uint8_array_fun_ = Type::Function(uint8_array, arg1, arg2, arg3, zone);
uint16_array_fun_ = Type::Function(uint16_array, arg1, arg2, arg3, zone);
uint32_array_fun_ = Type::Function(uint32_array, arg1, arg2, arg3, zone);
float32_array_fun_ = Type::Function(float32_array, arg1, arg2, arg3, zone);
float64_array_fun_ = Type::Function(float64_array, arg1, arg2, arg3, zone);
}
class Typer::Visitor : public NullNodeVisitor {
public:
Visitor(Typer* typer, MaybeHandle<Context> context)
: typer_(typer), context_(context) {}
Bounds TypeNode(Node* node) {
switch (node->opcode()) {
#define DECLARE_CASE(x) case IrOpcode::k##x: return Type##x(node);
VALUE_OP_LIST(DECLARE_CASE)
#undef DECLARE_CASE
#define DECLARE_CASE(x) case IrOpcode::k##x:
CONTROL_OP_LIST(DECLARE_CASE)
#undef DECLARE_CASE
break;
}
return Bounds(Type::None(zone()));
}
Type* TypeConstant(Handle<Object> value);
protected:
#define DECLARE_METHOD(x) inline Bounds Type##x(Node* node);
VALUE_OP_LIST(DECLARE_METHOD)
#undef DECLARE_METHOD
Bounds OperandType(Node* node, int i) {
return NodeProperties::GetBounds(NodeProperties::GetValueInput(node, i));
}
Type* ContextType(Node* node) {
Bounds result =
NodeProperties::GetBounds(NodeProperties::GetContextInput(node));
DCHECK(result.upper->Is(Type::Internal()));
DCHECK(result.lower->Equals(result.upper));
return result.upper;
}
Zone* zone() { return typer_->zone(); }
Isolate* isolate() { return typer_->isolate(); }
MaybeHandle<Context> context() { return context_; }
private:
Typer* typer_;
MaybeHandle<Context> context_;
};
class Typer::RunVisitor : public Typer::Visitor {
public:
RunVisitor(Typer* typer, MaybeHandle<Context> context)
: Visitor(typer, context),
phis(NodeSet::key_compare(), NodeSet::allocator_type(typer->zone())) {}
GenericGraphVisit::Control Pre(Node* node) {
return NodeProperties::IsControl(node)
&& node->opcode() != IrOpcode::kEnd
&& node->opcode() != IrOpcode::kMerge
&& node->opcode() != IrOpcode::kReturn
? GenericGraphVisit::SKIP : GenericGraphVisit::CONTINUE;
}
GenericGraphVisit::Control Post(Node* node) {
Bounds bounds = TypeNode(node);
if (node->opcode() == IrOpcode::kPhi) {
// Remember phis for least fixpoint iteration.
phis.insert(node);
} else {
NodeProperties::SetBounds(node, bounds);
}
return GenericGraphVisit::CONTINUE;
}
NodeSet phis;
};
class Typer::NarrowVisitor : public Typer::Visitor {
public:
NarrowVisitor(Typer* typer, MaybeHandle<Context> context)
: Visitor(typer, context) {}
GenericGraphVisit::Control Pre(Node* node) {
Bounds previous = NodeProperties::GetBounds(node);
Bounds bounds = TypeNode(node);
NodeProperties::SetBounds(node, Bounds::Both(bounds, previous, zone()));
DCHECK(bounds.Narrows(previous));
// Stop when nothing changed (but allow reentry in case it does later).
return previous.Narrows(bounds)
? GenericGraphVisit::DEFER : GenericGraphVisit::REENTER;
}
GenericGraphVisit::Control Post(Node* node) {
return GenericGraphVisit::REENTER;
}
};
class Typer::WidenVisitor : public Typer::Visitor {
public:
WidenVisitor(Typer* typer, MaybeHandle<Context> context)
: Visitor(typer, context) {}
GenericGraphVisit::Control Pre(Node* node) {
Bounds previous = NodeProperties::GetBounds(node);
Bounds bounds = TypeNode(node);
DCHECK(previous.lower->Is(bounds.lower));
DCHECK(previous.upper->Is(bounds.upper));
NodeProperties::SetBounds(node, bounds); // TODO(rossberg): Either?
// Stop when nothing changed (but allow reentry in case it does later).
return bounds.Narrows(previous)
? GenericGraphVisit::DEFER : GenericGraphVisit::REENTER;
}
GenericGraphVisit::Control Post(Node* node) {
return GenericGraphVisit::REENTER;
}
};
void Typer::Run(Graph* graph, MaybeHandle<Context> context) {
RunVisitor typing(this, context);
graph->VisitNodeInputsFromEnd(&typing);
// Find least fixpoint.
for (NodeSetIter i = typing.phis.begin(); i != typing.phis.end(); ++i) {
Widen(graph, *i, context);
}
}
void Typer::Narrow(Graph* graph, Node* start, MaybeHandle<Context> context) {
NarrowVisitor typing(this, context);
graph->VisitNodeUsesFrom(start, &typing);
}
void Typer::Widen(Graph* graph, Node* start, MaybeHandle<Context> context) {
WidenVisitor typing(this, context);
graph->VisitNodeUsesFrom(start, &typing);
}
void Typer::Init(Node* node) {
Visitor typing(this, MaybeHandle<Context>());
Bounds bounds = typing.TypeNode(node);
NodeProperties::SetBounds(node, bounds);
}
// Common operators.
Bounds Typer::Visitor::TypeParameter(Node* node) {
return Bounds::Unbounded(zone());
}
Bounds Typer::Visitor::TypeInt32Constant(Node* node) {
// TODO(titzer): only call Type::Of() if the type is not already known.
return Bounds(Type::Of(ValueOf<int32_t>(node->op()), zone()));
}
Bounds Typer::Visitor::TypeInt64Constant(Node* node) {
// TODO(titzer): only call Type::Of() if the type is not already known.
return Bounds(
Type::Of(static_cast<double>(ValueOf<int64_t>(node->op())), zone()));
}
Bounds Typer::Visitor::TypeFloat64Constant(Node* node) {
// TODO(titzer): only call Type::Of() if the type is not already known.
return Bounds(Type::Of(ValueOf<double>(node->op()), zone()));
}
Bounds Typer::Visitor::TypeNumberConstant(Node* node) {
// TODO(titzer): only call Type::Of() if the type is not already known.
return Bounds(Type::Of(ValueOf<double>(node->op()), zone()));
}
Bounds Typer::Visitor::TypeHeapConstant(Node* node) {
return Bounds(TypeConstant(ValueOf<Handle<Object> >(node->op())));
}
Bounds Typer::Visitor::TypeExternalConstant(Node* node) {
return Bounds(Type::Internal(zone()));
}
Bounds Typer::Visitor::TypePhi(Node* node) {
int arity = OperatorProperties::GetValueInputCount(node->op());
Bounds bounds = OperandType(node, 0);
for (int i = 1; i < arity; ++i) {
bounds = Bounds::Either(bounds, OperandType(node, i), zone());
}
return bounds;
}
Bounds Typer::Visitor::TypeEffectPhi(Node* node) {
return Bounds(Type::None(zone()));
}
Bounds Typer::Visitor::TypeFrameState(Node* node) {
return Bounds(Type::None(zone()));
}
Bounds Typer::Visitor::TypeStateValues(Node* node) {
return Bounds(Type::None(zone()));
}
Bounds Typer::Visitor::TypeCall(Node* node) {
return Bounds::Unbounded(zone());
}
Bounds Typer::Visitor::TypeProjection(Node* node) {
// TODO(titzer): use the output type of the input to determine the bounds.
return Bounds::Unbounded(zone());
}
// JS comparison operators.
#define DEFINE_METHOD(x) \
Bounds Typer::Visitor::Type##x(Node* node) { \
return Bounds(Type::Boolean(zone())); \
}
JS_COMPARE_BINOP_LIST(DEFINE_METHOD)
#undef DEFINE_METHOD
// JS bitwise operators.
Bounds Typer::Visitor::TypeJSBitwiseOr(Node* node) {
Bounds left = OperandType(node, 0);
Bounds right = OperandType(node, 1);
Type* upper = Type::Union(left.upper, right.upper, zone());
if (!upper->Is(Type::Signed32())) upper = Type::Signed32(zone());
Type* lower = Type::Intersect(Type::SignedSmall(zone()), upper, zone());
return Bounds(lower, upper);
}
Bounds Typer::Visitor::TypeJSBitwiseAnd(Node* node) {
Bounds left = OperandType(node, 0);
Bounds right = OperandType(node, 1);
Type* upper = Type::Union(left.upper, right.upper, zone());
if (!upper->Is(Type::Signed32())) upper = Type::Signed32(zone());
Type* lower = Type::Intersect(Type::SignedSmall(zone()), upper, zone());
return Bounds(lower, upper);
}
Bounds Typer::Visitor::TypeJSBitwiseXor(Node* node) {
return Bounds(Type::SignedSmall(zone()), Type::Signed32(zone()));
}
Bounds Typer::Visitor::TypeJSShiftLeft(Node* node) {
return Bounds(Type::SignedSmall(zone()), Type::Signed32(zone()));
}
Bounds Typer::Visitor::TypeJSShiftRight(Node* node) {
return Bounds(Type::SignedSmall(zone()), Type::Signed32(zone()));
}
Bounds Typer::Visitor::TypeJSShiftRightLogical(Node* node) {
return Bounds(Type::UnsignedSmall(zone()), Type::Unsigned32(zone()));
}
// JS arithmetic operators.
Bounds Typer::Visitor::TypeJSAdd(Node* node) {
Bounds left = OperandType(node, 0);
Bounds right = OperandType(node, 1);
Type* lower =
left.lower->Is(Type::None()) || right.lower->Is(Type::None()) ?
Type::None(zone()) :
left.lower->Is(Type::Number()) && right.lower->Is(Type::Number()) ?
Type::SignedSmall(zone()) :
left.lower->Is(Type::String()) || right.lower->Is(Type::String()) ?
Type::String(zone()) : Type::None(zone());
Type* upper =
left.upper->Is(Type::None()) && right.upper->Is(Type::None()) ?
Type::None(zone()) :
left.upper->Is(Type::Number()) && right.upper->Is(Type::Number()) ?
Type::Number(zone()) :
left.upper->Is(Type::String()) || right.upper->Is(Type::String()) ?
Type::String(zone()) : Type::NumberOrString(zone());
return Bounds(lower, upper);
}
Bounds Typer::Visitor::TypeJSSubtract(Node* node) {
return Bounds(Type::SignedSmall(zone()), Type::Number(zone()));
}
Bounds Typer::Visitor::TypeJSMultiply(Node* node) {
return Bounds(Type::SignedSmall(zone()), Type::Number(zone()));
}
Bounds Typer::Visitor::TypeJSDivide(Node* node) {
return Bounds(Type::SignedSmall(zone()), Type::Number(zone()));
}
Bounds Typer::Visitor::TypeJSModulus(Node* node) {
return Bounds(Type::SignedSmall(zone()), Type::Number(zone()));
}
// JS unary operators.
Bounds Typer::Visitor::TypeJSUnaryNot(Node* node) {
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeJSTypeOf(Node* node) {
return Bounds(Type::InternalizedString(zone()));
}
// JS conversion operators.
Bounds Typer::Visitor::TypeJSToBoolean(Node* node) {
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeJSToNumber(Node* node) {
return Bounds(Type::SignedSmall(zone()), Type::Number(zone()));
}
Bounds Typer::Visitor::TypeJSToString(Node* node) {
return Bounds(Type::None(zone()), Type::String(zone()));
}
Bounds Typer::Visitor::TypeJSToName(Node* node) {
return Bounds(Type::None(zone()), Type::Name(zone()));
}
Bounds Typer::Visitor::TypeJSToObject(Node* node) {
return Bounds(Type::None(zone()), Type::Object(zone()));
}
// JS object operators.
Bounds Typer::Visitor::TypeJSCreate(Node* node) {
return Bounds(Type::None(zone()), Type::Object(zone()));
}
Bounds Typer::Visitor::TypeJSLoadProperty(Node* node) {
Bounds object = OperandType(node, 0);
Bounds name = OperandType(node, 1);
Bounds result = Bounds::Unbounded(zone());
// TODO(rossberg): Use range types and sized array types to filter undefined.
if (object.lower->IsArray() && name.lower->Is(Type::Integral32())) {
result.lower = Type::Union(
object.lower->AsArray()->Element(), Type::Undefined(zone()), zone());
}
if (object.upper->IsArray() && name.upper->Is(Type::Integral32())) {
result.upper = Type::Union(
object.upper->AsArray()->Element(), Type::Undefined(zone()), zone());
}
return result;
}
Bounds Typer::Visitor::TypeJSLoadNamed(Node* node) {
return Bounds::Unbounded(zone());
}
Bounds Typer::Visitor::TypeJSStoreProperty(Node* node) {
return Bounds(Type::None(zone()));
}
Bounds Typer::Visitor::TypeJSStoreNamed(Node* node) {
return Bounds(Type::None(zone()));
}
Bounds Typer::Visitor::TypeJSDeleteProperty(Node* node) {
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeJSHasProperty(Node* node) {
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeJSInstanceOf(Node* node) {
return Bounds(Type::Boolean(zone()));
}
// JS context operators.
Bounds Typer::Visitor::TypeJSLoadContext(Node* node) {
Bounds outer = OperandType(node, 0);
DCHECK(outer.upper->Is(Type::Internal()));
DCHECK(outer.lower->Equals(outer.upper));
ContextAccess access = OpParameter<ContextAccess>(node);
Type* context_type = outer.upper;
MaybeHandle<Context> context;
if (context_type->IsConstant()) {
context = Handle<Context>::cast(context_type->AsConstant()->Value());
}
// Walk context chain (as far as known), mirroring dynamic lookup.
// Since contexts are mutable, the information is only useful as a lower
// bound.
// TODO(rossberg): Could use scope info to fix upper bounds for constant
// bindings if we know that this code is never shared.
for (int i = access.depth(); i > 0; --i) {
if (context_type->IsContext()) {
context_type = context_type->AsContext()->Outer();
if (context_type->IsConstant()) {
context = Handle<Context>::cast(context_type->AsConstant()->Value());
}
} else {
context = handle(context.ToHandleChecked()->previous(), isolate());
}
}
if (context.is_null()) {
return Bounds::Unbounded(zone());
} else {
Handle<Object> value =
handle(context.ToHandleChecked()->get(access.index()), isolate());
Type* lower = TypeConstant(value);
return Bounds(lower, Type::Any(zone()));
}
}
Bounds Typer::Visitor::TypeJSStoreContext(Node* node) {
return Bounds(Type::None(zone()));
}
Bounds Typer::Visitor::TypeJSCreateFunctionContext(Node* node) {
Type* outer = ContextType(node);
return Bounds(Type::Context(outer, zone()));
}
Bounds Typer::Visitor::TypeJSCreateCatchContext(Node* node) {
Type* outer = ContextType(node);
return Bounds(Type::Context(outer, zone()));
}
Bounds Typer::Visitor::TypeJSCreateWithContext(Node* node) {
Type* outer = ContextType(node);
return Bounds(Type::Context(outer, zone()));
}
Bounds Typer::Visitor::TypeJSCreateBlockContext(Node* node) {
Type* outer = ContextType(node);
return Bounds(Type::Context(outer, zone()));
}
Bounds Typer::Visitor::TypeJSCreateModuleContext(Node* node) {
// TODO(rossberg): this is probably incorrect
Type* outer = ContextType(node);
return Bounds(Type::Context(outer, zone()));
}
Bounds Typer::Visitor::TypeJSCreateGlobalContext(Node* node) {
Type* outer = ContextType(node);
return Bounds(Type::Context(outer, zone()));
}
// JS other operators.
Bounds Typer::Visitor::TypeJSYield(Node* node) {
return Bounds::Unbounded(zone());
}
Bounds Typer::Visitor::TypeJSCallConstruct(Node* node) {
return Bounds(Type::None(zone()), Type::Receiver(zone()));
}
Bounds Typer::Visitor::TypeJSCallFunction(Node* node) {
Bounds fun = OperandType(node, 0);
Type* lower = fun.lower->IsFunction()
? fun.lower->AsFunction()->Result() : Type::None(zone());
Type* upper = fun.upper->IsFunction()
? fun.upper->AsFunction()->Result() : Type::Any(zone());
return Bounds(lower, upper);
}
Bounds Typer::Visitor::TypeJSCallRuntime(Node* node) {
return Bounds::Unbounded(zone());
}
Bounds Typer::Visitor::TypeJSDebugger(Node* node) {
return Bounds::Unbounded(zone());
}
// Simplified operators.
Bounds Typer::Visitor::TypeBooleanNot(Node* node) {
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeNumberEqual(Node* node) {
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeNumberLessThan(Node* node) {
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeNumberLessThanOrEqual(Node* node) {
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeNumberAdd(Node* node) {
return Bounds(Type::Number(zone()));
}
Bounds Typer::Visitor::TypeNumberSubtract(Node* node) {
return Bounds(Type::Number(zone()));
}
Bounds Typer::Visitor::TypeNumberMultiply(Node* node) {
return Bounds(Type::Number(zone()));
}
Bounds Typer::Visitor::TypeNumberDivide(Node* node) {
return Bounds(Type::Number(zone()));
}
Bounds Typer::Visitor::TypeNumberModulus(Node* node) {
return Bounds(Type::Number(zone()));
}
Bounds Typer::Visitor::TypeNumberToInt32(Node* node) {
Bounds arg = OperandType(node, 0);
Type* s32 = Type::Signed32(zone());
Type* lower = arg.lower->Is(s32) ? arg.lower : s32;
Type* upper = arg.upper->Is(s32) ? arg.upper : s32;
return Bounds(lower, upper);
}
Bounds Typer::Visitor::TypeNumberToUint32(Node* node) {
Bounds arg = OperandType(node, 0);
Type* u32 = Type::Unsigned32(zone());
Type* lower = arg.lower->Is(u32) ? arg.lower : u32;
Type* upper = arg.upper->Is(u32) ? arg.upper : u32;
return Bounds(lower, upper);
}
Bounds Typer::Visitor::TypeReferenceEqual(Node* node) {
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeStringEqual(Node* node) {
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeStringLessThan(Node* node) {
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeStringLessThanOrEqual(Node* node) {
return Bounds(Type::Boolean(zone()));
}
Bounds Typer::Visitor::TypeStringAdd(Node* node) {
return Bounds(Type::String(zone()));
}
Bounds Typer::Visitor::TypeChangeTaggedToInt32(Node* node) {
// TODO(titzer): type is type of input, representation is Word32.
return Bounds(Type::Integral32());
}
Bounds Typer::Visitor::TypeChangeTaggedToUint32(Node* node) {
return Bounds(Type::Integral32()); // TODO(titzer): add appropriate rep
}
Bounds Typer::Visitor::TypeChangeTaggedToFloat64(Node* node) {
// TODO(titzer): type is type of input, representation is Float64.
return Bounds(Type::Number());
}
Bounds Typer::Visitor::TypeChangeInt32ToTagged(Node* node) {
// TODO(titzer): type is type of input, representation is Tagged.
return Bounds(Type::Integral32());
}
Bounds Typer::Visitor::TypeChangeUint32ToTagged(Node* node) {
// TODO(titzer): type is type of input, representation is Tagged.
return Bounds(Type::Unsigned32());
}
Bounds Typer::Visitor::TypeChangeFloat64ToTagged(Node* node) {
// TODO(titzer): type is type of input, representation is Tagged.
return Bounds(Type::Number());
}
Bounds Typer::Visitor::TypeChangeBoolToBit(Node* node) {
// TODO(titzer): type is type of input, representation is Bit.
return Bounds(Type::Boolean());
}
Bounds Typer::Visitor::TypeChangeBitToBool(Node* node) {
// TODO(titzer): type is type of input, representation is Tagged.
return Bounds(Type::Boolean());
}
Bounds Typer::Visitor::TypeLoadField(Node* node) {
return Bounds(FieldAccessOf(node->op()).type);
}
Bounds Typer::Visitor::TypeLoadElement(Node* node) {
return Bounds(ElementAccessOf(node->op()).type);
}
Bounds Typer::Visitor::TypeStoreField(Node* node) {
return Bounds(Type::None());
}
Bounds Typer::Visitor::TypeStoreElement(Node* node) {
return Bounds(Type::None());
}
// Machine operators.
// TODO(rossberg): implement
#define DEFINE_METHOD(x) \
Bounds Typer::Visitor::Type##x(Node* node) { return Bounds(Type::None()); }
MACHINE_OP_LIST(DEFINE_METHOD)
#undef DEFINE_METHOD
// Heap constants.
Type* Typer::Visitor::TypeConstant(Handle<Object> value) {
if (value->IsJSFunction() && JSFunction::cast(*value)->IsBuiltin() &&
!context().is_null()) {
Handle<Context> native =
handle(context().ToHandleChecked()->native_context(), isolate());
if (*value == native->math_abs_fun()) {
return typer_->number_fun1_; // TODO(rossberg): can't express overloading
} else if (*value == native->math_acos_fun()) {
return typer_->number_fun1_;
} else if (*value == native->math_asin_fun()) {
return typer_->number_fun1_;
} else if (*value == native->math_atan_fun()) {
return typer_->number_fun1_;
} else if (*value == native->math_atan2_fun()) {
return typer_->number_fun2_;
} else if (*value == native->math_ceil_fun()) {
return typer_->number_fun1_;
} else if (*value == native->math_cos_fun()) {
return typer_->number_fun1_;
} else if (*value == native->math_exp_fun()) {
return typer_->number_fun1_;
} else if (*value == native->math_floor_fun()) {
return typer_->number_fun1_;
} else if (*value == native->math_imul_fun()) {
return typer_->imul_fun_;
} else if (*value == native->math_log_fun()) {
return typer_->number_fun1_;
} else if (*value == native->math_pow_fun()) {
return typer_->number_fun2_;
} else if (*value == native->math_random_fun()) {
return typer_->number_fun0_;
} else if (*value == native->math_round_fun()) {
return typer_->number_fun1_;
} else if (*value == native->math_sin_fun()) {
return typer_->number_fun1_;
} else if (*value == native->math_sqrt_fun()) {
return typer_->number_fun1_;
} else if (*value == native->math_tan_fun()) {
return typer_->number_fun1_;
} else if (*value == native->array_buffer_fun()) {
return typer_->array_buffer_fun_;
} else if (*value == native->int8_array_fun()) {
return typer_->int8_array_fun_;
} else if (*value == native->int16_array_fun()) {
return typer_->int16_array_fun_;
} else if (*value == native->int32_array_fun()) {
return typer_->int32_array_fun_;
} else if (*value == native->uint8_array_fun()) {
return typer_->uint8_array_fun_;
} else if (*value == native->uint16_array_fun()) {
return typer_->uint16_array_fun_;
} else if (*value == native->uint32_array_fun()) {
return typer_->uint32_array_fun_;
} else if (*value == native->float32_array_fun()) {
return typer_->float32_array_fun_;
} else if (*value == native->float64_array_fun()) {
return typer_->float64_array_fun_;
}
}
return Type::Constant(value, zone());
}
namespace {
class TyperDecorator : public GraphDecorator {
public:
explicit TyperDecorator(Typer* typer) : typer_(typer) {}
virtual void Decorate(Node* node) { typer_->Init(node); }
private:
Typer* typer_;
};
}
void Typer::DecorateGraph(Graph* graph) {
graph->AddDecorator(new (zone()) TyperDecorator(this));
}
}
}
} // namespace v8::internal::compiler