blob: 4294d344fe9b33ffe949eebea1f01f30ea64d779 [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_COMPILER_OPERATOR_H_
#define V8_COMPILER_OPERATOR_H_
#include "src/v8.h"
#include "src/assembler.h"
#include "src/ostreams.h"
#include "src/unique.h"
namespace v8 {
namespace internal {
namespace compiler {
// An operator represents description of the "computation" of a node in the
// compiler IR. A computation takes values (i.e. data) as input and produces
// zero or more values as output. The side-effects of a computation must be
// captured by additional control and data dependencies which are part of the
// IR graph.
// Operators are immutable and describe the statically-known parts of a
// computation. Thus they can be safely shared by many different nodes in the
// IR graph, or even globally between graphs. Operators can have "static
// parameters" which are compile-time constant parameters to the operator, such
// as the name for a named field access, the ID of a runtime function, etc.
// Static parameters are private to the operator and only semantically
// meaningful to the operator itself.
class Operator : public ZoneObject {
public:
Operator(uint8_t opcode, uint16_t properties)
: opcode_(opcode), properties_(properties) {}
virtual ~Operator() {}
// Properties inform the operator-independent optimizer about legal
// transformations for nodes that have this operator.
enum Property {
kNoProperties = 0,
kReducible = 1 << 0, // Participates in strength reduction.
kCommutative = 1 << 1, // OP(a, b) == OP(b, a) for all inputs.
kAssociative = 1 << 2, // OP(a, OP(b,c)) == OP(OP(a,b), c) for all inputs.
kIdempotent = 1 << 3, // OP(a); OP(a) == OP(a).
kNoRead = 1 << 4, // Has no scheduling dependency on Effects
kNoWrite = 1 << 5, // Does not modify any Effects and thereby
// create new scheduling dependencies.
kNoThrow = 1 << 6, // Can never generate an exception.
kFoldable = kNoRead | kNoWrite,
kEliminatable = kNoWrite | kNoThrow,
kPure = kNoRead | kNoWrite | kNoThrow | kIdempotent
};
// A small integer unique to all instances of a particular kind of operator,
// useful for quick matching for specific kinds of operators. For fast access
// the opcode is stored directly in the operator object.
inline uint8_t opcode() const { return opcode_; }
// Returns a constant string representing the mnemonic of the operator,
// without the static parameters. Useful for debugging.
virtual const char* mnemonic() = 0;
// Check if this operator equals another operator. Equivalent operators can
// be merged, and nodes with equivalent operators and equivalent inputs
// can be merged.
virtual bool Equals(Operator* other) = 0;
// Compute a hashcode to speed up equivalence-set checking.
// Equal operators should always have equal hashcodes, and unequal operators
// should have unequal hashcodes with high probability.
virtual int HashCode() = 0;
// Check whether this operator has the given property.
inline bool HasProperty(Property property) const {
return (properties_ & static_cast<int>(property)) == property;
}
// Number of data inputs to the operator, for verifying graph structure.
virtual int InputCount() = 0;
// Number of data outputs from the operator, for verifying graph structure.
virtual int OutputCount() = 0;
inline Property properties() { return static_cast<Property>(properties_); }
// TODO(titzer): API for input and output types, for typechecking graph.
private:
// Print the full operator into the given stream, including any
// static parameters. Useful for debugging and visualizing the IR.
virtual OStream& PrintTo(OStream& os) const = 0; // NOLINT
friend OStream& operator<<(OStream& os, const Operator& op);
uint8_t opcode_;
uint16_t properties_;
};
OStream& operator<<(OStream& os, const Operator& op);
// An implementation of Operator that has no static parameters. Such operators
// have just a name, an opcode, and a fixed number of inputs and outputs.
// They can represented by singletons and shared globally.
class SimpleOperator : public Operator {
public:
SimpleOperator(uint8_t opcode, uint16_t properties, int input_count,
int output_count, const char* mnemonic)
: Operator(opcode, properties),
input_count_(input_count),
output_count_(output_count),
mnemonic_(mnemonic) {}
virtual const char* mnemonic() { return mnemonic_; }
virtual bool Equals(Operator* that) { return opcode() == that->opcode(); }
virtual int HashCode() { return opcode(); }
virtual int InputCount() { return input_count_; }
virtual int OutputCount() { return output_count_; }
private:
virtual OStream& PrintTo(OStream& os) const { // NOLINT
return os << mnemonic_;
}
int input_count_;
int output_count_;
const char* mnemonic_;
};
// Template specialization implements a kind of type class for dealing with the
// static parameters of Operator1 automatically.
template <typename T>
struct StaticParameterTraits {
static OStream& PrintTo(OStream& os, T val) { // NOLINT
return os << "??";
}
static int HashCode(T a) { return 0; }
static bool Equals(T a, T b) {
return false; // Not every T has a ==. By default, be conservative.
}
};
template <>
struct StaticParameterTraits<ExternalReference> {
static OStream& PrintTo(OStream& os, ExternalReference val) { // NOLINT
os << val.address();
const Runtime::Function* function =
Runtime::FunctionForEntry(val.address());
if (function != NULL) {
os << " <" << function->name << ".entry>";
}
return os;
}
static int HashCode(ExternalReference a) {
return reinterpret_cast<intptr_t>(a.address()) & 0xFFFFFFFF;
}
static bool Equals(ExternalReference a, ExternalReference b) {
return a == b;
}
};
// Specialization for static parameters of type {int}.
template <>
struct StaticParameterTraits<int> {
static OStream& PrintTo(OStream& os, int val) { // NOLINT
return os << val;
}
static int HashCode(int a) { return a; }
static bool Equals(int a, int b) { return a == b; }
};
// Specialization for static parameters of type {double}.
template <>
struct StaticParameterTraits<double> {
static OStream& PrintTo(OStream& os, double val) { // NOLINT
return os << val;
}
static int HashCode(double a) {
return static_cast<int>(BitCast<int64_t>(a));
}
static bool Equals(double a, double b) {
return BitCast<int64_t>(a) == BitCast<int64_t>(b);
}
};
// Specialization for static parameters of type {PrintableUnique<Object>}.
template <>
struct StaticParameterTraits<PrintableUnique<Object> > {
static OStream& PrintTo(OStream& os, PrintableUnique<Object> val) { // NOLINT
return os << val.string();
}
static int HashCode(PrintableUnique<Object> a) {
return static_cast<int>(a.Hashcode());
}
static bool Equals(PrintableUnique<Object> a, PrintableUnique<Object> b) {
return a == b;
}
};
// Specialization for static parameters of type {PrintableUnique<Name>}.
template <>
struct StaticParameterTraits<PrintableUnique<Name> > {
static OStream& PrintTo(OStream& os, PrintableUnique<Name> val) { // NOLINT
return os << val.string();
}
static int HashCode(PrintableUnique<Name> a) {
return static_cast<int>(a.Hashcode());
}
static bool Equals(PrintableUnique<Name> a, PrintableUnique<Name> b) {
return a == b;
}
};
#if DEBUG
// Specialization for static parameters of type {Handle<Object>} to prevent any
// direct usage of Handles in constants.
template <>
struct StaticParameterTraits<Handle<Object> > {
static OStream& PrintTo(OStream& os, Handle<Object> val) { // NOLINT
UNREACHABLE(); // Should use PrintableUnique<Object> instead
return os;
}
static int HashCode(Handle<Object> a) {
UNREACHABLE(); // Should use PrintableUnique<Object> instead
return 0;
}
static bool Equals(Handle<Object> a, Handle<Object> b) {
UNREACHABLE(); // Should use PrintableUnique<Object> instead
return false;
}
};
#endif
// A templatized implementation of Operator that has one static parameter of
// type {T}. If a specialization of StaticParameterTraits<{T}> exists, then
// operators of this kind can automatically be hashed, compared, and printed.
template <typename T>
class Operator1 : public Operator {
public:
Operator1(uint8_t opcode, uint16_t properties, int input_count,
int output_count, const char* mnemonic, T parameter)
: Operator(opcode, properties),
input_count_(input_count),
output_count_(output_count),
mnemonic_(mnemonic),
parameter_(parameter) {}
const T& parameter() const { return parameter_; }
virtual const char* mnemonic() { return mnemonic_; }
virtual bool Equals(Operator* other) {
if (opcode() != other->opcode()) return false;
Operator1<T>* that = static_cast<Operator1<T>*>(other);
T temp1 = this->parameter_;
T temp2 = that->parameter_;
return StaticParameterTraits<T>::Equals(temp1, temp2);
}
virtual int HashCode() {
return opcode() + 33 * StaticParameterTraits<T>::HashCode(this->parameter_);
}
virtual int InputCount() { return input_count_; }
virtual int OutputCount() { return output_count_; }
virtual OStream& PrintParameter(OStream& os) const { // NOLINT
return StaticParameterTraits<T>::PrintTo(os << "[", parameter_) << "]";
}
private:
virtual OStream& PrintTo(OStream& os) const { // NOLINT
return PrintParameter(os << mnemonic_);
}
int input_count_;
int output_count_;
const char* mnemonic_;
T parameter_;
};
// Type definitions for operators with specific types of parameters.
typedef Operator1<PrintableUnique<Name> > NameOperator;
}
}
} // namespace v8::internal::compiler
#endif // V8_COMPILER_OPERATOR_H_