blob: 3b581ae0cd2c023e8f733eaf265d3979efbd3021 [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_COMPILER_COMMON_OPERATOR_H_
#define V8_COMPILER_COMMON_OPERATOR_H_
#include "src/v8.h"
#include "src/assembler.h"
#include "src/compiler/linkage.h"
#include "src/compiler/opcodes.h"
#include "src/compiler/operator.h"
#include "src/unique.h"
namespace v8 {
namespace internal {
class OStream;
namespace compiler {
class ControlOperator : public Operator1<int> {
public:
ControlOperator(IrOpcode::Value opcode, uint16_t properties, int inputs,
int outputs, int controls, const char* mnemonic)
: Operator1<int>(opcode, properties, inputs, outputs, mnemonic,
controls) {}
virtual OStream& PrintParameter(OStream& os) const { return os; } // NOLINT
int ControlInputCount() const { return parameter(); }
};
class CallOperator : public Operator1<CallDescriptor*> {
public:
CallOperator(CallDescriptor* descriptor, const char* mnemonic)
: Operator1<CallDescriptor*>(
IrOpcode::kCall, descriptor->properties(), descriptor->InputCount(),
descriptor->ReturnCount(), mnemonic, descriptor) {}
virtual OStream& PrintParameter(OStream& os) const { // NOLINT
return os << "[" << *parameter() << "]";
}
};
// Interface for building common operators that can be used at any level of IR,
// including JavaScript, mid-level, and low-level.
// TODO(titzer): Move the mnemonics into SimpleOperator and Operator1 classes.
class CommonOperatorBuilder {
public:
explicit CommonOperatorBuilder(Zone* zone) : zone_(zone) {}
#define CONTROL_OP(name, inputs, controls) \
return new (zone_) ControlOperator(IrOpcode::k##name, Operator::kFoldable, \
inputs, 0, controls, #name);
Operator* Start(int num_formal_parameters) {
// Outputs are formal parameters, plus context, receiver, and JSFunction.
int outputs = num_formal_parameters + 3;
return new (zone_) ControlOperator(IrOpcode::kStart, Operator::kFoldable, 0,
outputs, 0, "Start");
}
Operator* Dead() { CONTROL_OP(Dead, 0, 0); }
Operator* End() { CONTROL_OP(End, 0, 1); }
Operator* Branch() { CONTROL_OP(Branch, 1, 1); }
Operator* IfTrue() { CONTROL_OP(IfTrue, 0, 1); }
Operator* IfFalse() { CONTROL_OP(IfFalse, 0, 1); }
Operator* Throw() { CONTROL_OP(Throw, 1, 1); }
Operator* LazyDeoptimization() { CONTROL_OP(LazyDeoptimization, 0, 1); }
Operator* Continuation() { CONTROL_OP(Continuation, 0, 1); }
Operator* Deoptimize() {
return new (zone_)
ControlOperator(IrOpcode::kDeoptimize, 0, 1, 0, 1, "Deoptimize");
}
Operator* Return() {
return new (zone_) ControlOperator(IrOpcode::kReturn, 0, 1, 0, 1, "Return");
}
Operator* Merge(int controls) {
return new (zone_) ControlOperator(IrOpcode::kMerge, Operator::kFoldable, 0,
0, controls, "Merge");
}
Operator* Loop(int controls) {
return new (zone_) ControlOperator(IrOpcode::kLoop, Operator::kFoldable, 0,
0, controls, "Loop");
}
Operator* Parameter(int index) {
return new (zone_) Operator1<int>(IrOpcode::kParameter, Operator::kPure, 1,
1, "Parameter", index);
}
Operator* Int32Constant(int32_t value) {
return new (zone_) Operator1<int>(IrOpcode::kInt32Constant, Operator::kPure,
0, 1, "Int32Constant", value);
}
Operator* Int64Constant(int64_t value) {
return new (zone_)
Operator1<int64_t>(IrOpcode::kInt64Constant, Operator::kPure, 0, 1,
"Int64Constant", value);
}
Operator* Float64Constant(double value) {
return new (zone_)
Operator1<double>(IrOpcode::kFloat64Constant, Operator::kPure, 0, 1,
"Float64Constant", value);
}
Operator* ExternalConstant(ExternalReference value) {
return new (zone_) Operator1<ExternalReference>(IrOpcode::kExternalConstant,
Operator::kPure, 0, 1,
"ExternalConstant", value);
}
Operator* NumberConstant(double value) {
return new (zone_)
Operator1<double>(IrOpcode::kNumberConstant, Operator::kPure, 0, 1,
"NumberConstant", value);
}
Operator* HeapConstant(PrintableUnique<Object> value) {
return new (zone_) Operator1<PrintableUnique<Object> >(
IrOpcode::kHeapConstant, Operator::kPure, 0, 1, "HeapConstant", value);
}
Operator* Phi(int arguments) {
DCHECK(arguments > 0); // Disallow empty phis.
return new (zone_) Operator1<int>(IrOpcode::kPhi, Operator::kPure,
arguments, 1, "Phi", arguments);
}
Operator* EffectPhi(int arguments) {
DCHECK(arguments > 0); // Disallow empty phis.
return new (zone_) Operator1<int>(IrOpcode::kEffectPhi, Operator::kPure, 0,
0, "EffectPhi", arguments);
}
Operator* StateValues(int arguments) {
return new (zone_) Operator1<int>(IrOpcode::kStateValues, Operator::kPure,
arguments, 1, "StateValues", arguments);
}
Operator* FrameState(BailoutId ast_id) {
return new (zone_) Operator1<BailoutId>(
IrOpcode::kFrameState, Operator::kPure, 3, 1, "FrameState", ast_id);
}
Operator* Call(CallDescriptor* descriptor) {
return new (zone_) CallOperator(descriptor, "Call");
}
Operator* Projection(int index) {
return new (zone_) Operator1<int>(IrOpcode::kProjection, Operator::kPure, 1,
1, "Projection", index);
}
private:
Zone* zone_;
};
template <typename T>
struct CommonOperatorTraits {
static inline bool Equals(T a, T b);
static inline bool HasValue(Operator* op);
static inline T ValueOf(Operator* op);
};
template <>
struct CommonOperatorTraits<int32_t> {
static inline bool Equals(int32_t a, int32_t b) { return a == b; }
static inline bool HasValue(Operator* op) {
return op->opcode() == IrOpcode::kInt32Constant ||
op->opcode() == IrOpcode::kNumberConstant;
}
static inline int32_t ValueOf(Operator* op) {
if (op->opcode() == IrOpcode::kNumberConstant) {
// TODO(titzer): cache the converted int32 value in NumberConstant.
return FastD2I(reinterpret_cast<Operator1<double>*>(op)->parameter());
}
CHECK_EQ(IrOpcode::kInt32Constant, op->opcode());
return static_cast<Operator1<int32_t>*>(op)->parameter();
}
};
template <>
struct CommonOperatorTraits<uint32_t> {
static inline bool Equals(uint32_t a, uint32_t b) { return a == b; }
static inline bool HasValue(Operator* op) {
return CommonOperatorTraits<int32_t>::HasValue(op);
}
static inline uint32_t ValueOf(Operator* op) {
if (op->opcode() == IrOpcode::kNumberConstant) {
// TODO(titzer): cache the converted uint32 value in NumberConstant.
return FastD2UI(reinterpret_cast<Operator1<double>*>(op)->parameter());
}
return static_cast<uint32_t>(CommonOperatorTraits<int32_t>::ValueOf(op));
}
};
template <>
struct CommonOperatorTraits<int64_t> {
static inline bool Equals(int64_t a, int64_t b) { return a == b; }
static inline bool HasValue(Operator* op) {
return op->opcode() == IrOpcode::kInt32Constant ||
op->opcode() == IrOpcode::kInt64Constant ||
op->opcode() == IrOpcode::kNumberConstant;
}
static inline int64_t ValueOf(Operator* op) {
if (op->opcode() == IrOpcode::kInt32Constant) {
return static_cast<int64_t>(CommonOperatorTraits<int32_t>::ValueOf(op));
}
CHECK_EQ(IrOpcode::kInt64Constant, op->opcode());
return static_cast<Operator1<int64_t>*>(op)->parameter();
}
};
template <>
struct CommonOperatorTraits<uint64_t> {
static inline bool Equals(uint64_t a, uint64_t b) { return a == b; }
static inline bool HasValue(Operator* op) {
return CommonOperatorTraits<int64_t>::HasValue(op);
}
static inline uint64_t ValueOf(Operator* op) {
return static_cast<uint64_t>(CommonOperatorTraits<int64_t>::ValueOf(op));
}
};
template <>
struct CommonOperatorTraits<double> {
static inline bool Equals(double a, double b) {
return DoubleRepresentation(a).bits == DoubleRepresentation(b).bits;
}
static inline bool HasValue(Operator* op) {
return op->opcode() == IrOpcode::kFloat64Constant ||
op->opcode() == IrOpcode::kInt32Constant ||
op->opcode() == IrOpcode::kNumberConstant;
}
static inline double ValueOf(Operator* op) {
if (op->opcode() == IrOpcode::kFloat64Constant ||
op->opcode() == IrOpcode::kNumberConstant) {
return reinterpret_cast<Operator1<double>*>(op)->parameter();
}
return static_cast<double>(CommonOperatorTraits<int32_t>::ValueOf(op));
}
};
template <>
struct CommonOperatorTraits<ExternalReference> {
static inline bool Equals(ExternalReference a, ExternalReference b) {
return a == b;
}
static inline bool HasValue(Operator* op) {
return op->opcode() == IrOpcode::kExternalConstant;
}
static inline ExternalReference ValueOf(Operator* op) {
CHECK_EQ(IrOpcode::kExternalConstant, op->opcode());
return static_cast<Operator1<ExternalReference>*>(op)->parameter();
}
};
template <typename T>
struct CommonOperatorTraits<PrintableUnique<T> > {
static inline bool HasValue(Operator* op) {
return op->opcode() == IrOpcode::kHeapConstant;
}
static inline PrintableUnique<T> ValueOf(Operator* op) {
CHECK_EQ(IrOpcode::kHeapConstant, op->opcode());
return static_cast<Operator1<PrintableUnique<T> >*>(op)->parameter();
}
};
template <typename T>
struct CommonOperatorTraits<Handle<T> > {
static inline bool HasValue(Operator* op) {
return CommonOperatorTraits<PrintableUnique<T> >::HasValue(op);
}
static inline Handle<T> ValueOf(Operator* op) {
return CommonOperatorTraits<PrintableUnique<T> >::ValueOf(op).handle();
}
};
template <typename T>
inline T ValueOf(Operator* op) {
return CommonOperatorTraits<T>::ValueOf(op);
}
}
}
} // namespace v8::internal::compiler
#endif // V8_COMPILER_COMMON_OPERATOR_H_