blob: a264ac477c83557dfa00a36b44d4982af0092827 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if V8_TARGET_ARCH_MIPS
#include "codegen.h"
#include "macro-assembler.h"
#include "simulator-mips.h"
namespace v8 {
namespace internal {
UnaryMathFunction CreateTranscendentalFunction(TranscendentalCache::Type type) {
switch (type) {
case TranscendentalCache::SIN: return &sin;
case TranscendentalCache::COS: return &cos;
case TranscendentalCache::TAN: return &tan;
case TranscendentalCache::LOG: return &log;
default: UNIMPLEMENTED();
}
return NULL;
}
#define __ masm.
#if defined(USE_SIMULATOR)
byte* fast_exp_mips_machine_code = NULL;
double fast_exp_simulator(double x) {
return Simulator::current(Isolate::Current())->CallFP(
fast_exp_mips_machine_code, x, 0);
}
#endif
UnaryMathFunction CreateExpFunction() {
if (!FLAG_fast_math) return &exp;
size_t actual_size;
byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB, &actual_size, true));
if (buffer == NULL) return &exp;
ExternalReference::InitializeMathExpData();
MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));
{
DoubleRegister input = f12;
DoubleRegister result = f0;
DoubleRegister double_scratch1 = f4;
DoubleRegister double_scratch2 = f6;
Register temp1 = t0;
Register temp2 = t1;
Register temp3 = t2;
if (!IsMipsSoftFloatABI) {
// Input value is in f12 anyway, nothing to do.
} else {
__ Move(input, a0, a1);
}
__ Push(temp3, temp2, temp1);
MathExpGenerator::EmitMathExp(
&masm, input, result, double_scratch1, double_scratch2,
temp1, temp2, temp3);
__ Pop(temp3, temp2, temp1);
if (!IsMipsSoftFloatABI) {
// Result is already in f0, nothing to do.
} else {
__ Move(v0, v1, result);
}
__ Ret();
}
CodeDesc desc;
masm.GetCode(&desc);
ASSERT(!RelocInfo::RequiresRelocation(desc));
CPU::FlushICache(buffer, actual_size);
OS::ProtectCode(buffer, actual_size);
#if !defined(USE_SIMULATOR)
return FUNCTION_CAST<UnaryMathFunction>(buffer);
#else
fast_exp_mips_machine_code = buffer;
return &fast_exp_simulator;
#endif
}
#undef __
UnaryMathFunction CreateSqrtFunction() {
return &sqrt;
}
// -------------------------------------------------------------------------
// Platform-specific RuntimeCallHelper functions.
void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
masm->EnterFrame(StackFrame::INTERNAL);
ASSERT(!masm->has_frame());
masm->set_has_frame(true);
}
void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
masm->LeaveFrame(StackFrame::INTERNAL);
ASSERT(masm->has_frame());
masm->set_has_frame(false);
}
// -------------------------------------------------------------------------
// Code generators
#define __ ACCESS_MASM(masm)
void ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
MacroAssembler* masm, AllocationSiteMode mode,
Label* allocation_memento_found) {
// ----------- S t a t e -------------
// -- a0 : value
// -- a1 : key
// -- a2 : receiver
// -- ra : return address
// -- a3 : target map, scratch for subsequent call
// -- t0 : scratch (elements)
// -----------------------------------
if (mode == TRACK_ALLOCATION_SITE) {
ASSERT(allocation_memento_found != NULL);
masm->TestJSArrayForAllocationMemento(a2, t0, eq,
allocation_memento_found);
}
// Set transitioned map.
__ sw(a3, FieldMemOperand(a2, HeapObject::kMapOffset));
__ RecordWriteField(a2,
HeapObject::kMapOffset,
a3,
t5,
kRAHasNotBeenSaved,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
}
void ElementsTransitionGenerator::GenerateSmiToDouble(
MacroAssembler* masm, AllocationSiteMode mode, Label* fail) {
// ----------- S t a t e -------------
// -- a0 : value
// -- a1 : key
// -- a2 : receiver
// -- ra : return address
// -- a3 : target map, scratch for subsequent call
// -- t0 : scratch (elements)
// -----------------------------------
Label loop, entry, convert_hole, gc_required, only_change_map, done;
Register scratch = t6;
if (mode == TRACK_ALLOCATION_SITE) {
masm->TestJSArrayForAllocationMemento(a2, t0, eq, fail);
}
// Check for empty arrays, which only require a map transition and no changes
// to the backing store.
__ lw(t0, FieldMemOperand(a2, JSObject::kElementsOffset));
__ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
__ Branch(&only_change_map, eq, at, Operand(t0));
__ push(ra);
__ lw(t1, FieldMemOperand(t0, FixedArray::kLengthOffset));
// t0: source FixedArray
// t1: number of elements (smi-tagged)
// Allocate new FixedDoubleArray.
__ sll(scratch, t1, 2);
__ Addu(scratch, scratch, FixedDoubleArray::kHeaderSize);
__ Allocate(scratch, t2, t3, t5, &gc_required, DOUBLE_ALIGNMENT);
// t2: destination FixedDoubleArray, not tagged as heap object
// Set destination FixedDoubleArray's length and map.
__ LoadRoot(t5, Heap::kFixedDoubleArrayMapRootIndex);
__ sw(t1, MemOperand(t2, FixedDoubleArray::kLengthOffset));
__ sw(t5, MemOperand(t2, HeapObject::kMapOffset));
// Update receiver's map.
__ sw(a3, FieldMemOperand(a2, HeapObject::kMapOffset));
__ RecordWriteField(a2,
HeapObject::kMapOffset,
a3,
t5,
kRAHasBeenSaved,
kDontSaveFPRegs,
OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
// Replace receiver's backing store with newly created FixedDoubleArray.
__ Addu(a3, t2, Operand(kHeapObjectTag));
__ sw(a3, FieldMemOperand(a2, JSObject::kElementsOffset));
__ RecordWriteField(a2,
JSObject::kElementsOffset,
a3,
t5,
kRAHasBeenSaved,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
// Prepare for conversion loop.
__ Addu(a3, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ Addu(t3, t2, Operand(FixedDoubleArray::kHeaderSize));
__ sll(t2, t1, 2);
__ Addu(t2, t2, t3);
__ li(t0, Operand(kHoleNanLower32));
__ li(t1, Operand(kHoleNanUpper32));
// t0: kHoleNanLower32
// t1: kHoleNanUpper32
// t2: end of destination FixedDoubleArray, not tagged
// t3: begin of FixedDoubleArray element fields, not tagged
__ Branch(&entry);
__ bind(&only_change_map);
__ sw(a3, FieldMemOperand(a2, HeapObject::kMapOffset));
__ RecordWriteField(a2,
HeapObject::kMapOffset,
a3,
t5,
kRAHasNotBeenSaved,
kDontSaveFPRegs,
OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
__ Branch(&done);
// Call into runtime if GC is required.
__ bind(&gc_required);
__ pop(ra);
__ Branch(fail);
// Convert and copy elements.
__ bind(&loop);
__ lw(t5, MemOperand(a3));
__ Addu(a3, a3, kIntSize);
// t5: current element
__ UntagAndJumpIfNotSmi(t5, t5, &convert_hole);
// Normal smi, convert to double and store.
__ mtc1(t5, f0);
__ cvt_d_w(f0, f0);
__ sdc1(f0, MemOperand(t3));
__ Addu(t3, t3, kDoubleSize);
__ Branch(&entry);
// Hole found, store the-hole NaN.
__ bind(&convert_hole);
if (FLAG_debug_code) {
// Restore a "smi-untagged" heap object.
__ SmiTag(t5);
__ Or(t5, t5, Operand(1));
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
__ Assert(eq, kObjectFoundInSmiOnlyArray, at, Operand(t5));
}
__ sw(t0, MemOperand(t3)); // mantissa
__ sw(t1, MemOperand(t3, kIntSize)); // exponent
__ Addu(t3, t3, kDoubleSize);
__ bind(&entry);
__ Branch(&loop, lt, t3, Operand(t2));
__ pop(ra);
__ bind(&done);
}
void ElementsTransitionGenerator::GenerateDoubleToObject(
MacroAssembler* masm, AllocationSiteMode mode, Label* fail) {
// ----------- S t a t e -------------
// -- a0 : value
// -- a1 : key
// -- a2 : receiver
// -- ra : return address
// -- a3 : target map, scratch for subsequent call
// -- t0 : scratch (elements)
// -----------------------------------
Label entry, loop, convert_hole, gc_required, only_change_map;
if (mode == TRACK_ALLOCATION_SITE) {
masm->TestJSArrayForAllocationMemento(a2, t0, eq, fail);
}
// Check for empty arrays, which only require a map transition and no changes
// to the backing store.
__ lw(t0, FieldMemOperand(a2, JSObject::kElementsOffset));
__ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
__ Branch(&only_change_map, eq, at, Operand(t0));
__ MultiPush(a0.bit() | a1.bit() | a2.bit() | a3.bit() | ra.bit());
__ lw(t1, FieldMemOperand(t0, FixedArray::kLengthOffset));
// t0: source FixedArray
// t1: number of elements (smi-tagged)
// Allocate new FixedArray.
__ sll(a0, t1, 1);
__ Addu(a0, a0, FixedDoubleArray::kHeaderSize);
__ Allocate(a0, t2, t3, t5, &gc_required, NO_ALLOCATION_FLAGS);
// t2: destination FixedArray, not tagged as heap object
// Set destination FixedDoubleArray's length and map.
__ LoadRoot(t5, Heap::kFixedArrayMapRootIndex);
__ sw(t1, MemOperand(t2, FixedDoubleArray::kLengthOffset));
__ sw(t5, MemOperand(t2, HeapObject::kMapOffset));
// Prepare for conversion loop.
__ Addu(t0, t0, Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag + 4));
__ Addu(a3, t2, Operand(FixedArray::kHeaderSize));
__ Addu(t2, t2, Operand(kHeapObjectTag));
__ sll(t1, t1, 1);
__ Addu(t1, a3, t1);
__ LoadRoot(t3, Heap::kTheHoleValueRootIndex);
__ LoadRoot(t5, Heap::kHeapNumberMapRootIndex);
// Using offsetted addresses.
// a3: begin of destination FixedArray element fields, not tagged
// t0: begin of source FixedDoubleArray element fields, not tagged, +4
// t1: end of destination FixedArray, not tagged
// t2: destination FixedArray
// t3: the-hole pointer
// t5: heap number map
__ Branch(&entry);
// Call into runtime if GC is required.
__ bind(&gc_required);
__ MultiPop(a0.bit() | a1.bit() | a2.bit() | a3.bit() | ra.bit());
__ Branch(fail);
__ bind(&loop);
__ lw(a1, MemOperand(t0));
__ Addu(t0, t0, kDoubleSize);
// a1: current element's upper 32 bit
// t0: address of next element's upper 32 bit
__ Branch(&convert_hole, eq, a1, Operand(kHoleNanUpper32));
// Non-hole double, copy value into a heap number.
__ AllocateHeapNumber(a2, a0, t6, t5, &gc_required);
// a2: new heap number
__ lw(a0, MemOperand(t0, -12));
__ sw(a0, FieldMemOperand(a2, HeapNumber::kMantissaOffset));
__ sw(a1, FieldMemOperand(a2, HeapNumber::kExponentOffset));
__ mov(a0, a3);
__ sw(a2, MemOperand(a3));
__ Addu(a3, a3, kIntSize);
__ RecordWrite(t2,
a0,
a2,
kRAHasBeenSaved,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
__ Branch(&entry);
// Replace the-hole NaN with the-hole pointer.
__ bind(&convert_hole);
__ sw(t3, MemOperand(a3));
__ Addu(a3, a3, kIntSize);
__ bind(&entry);
__ Branch(&loop, lt, a3, Operand(t1));
__ MultiPop(a2.bit() | a3.bit() | a0.bit() | a1.bit());
// Replace receiver's backing store with newly created and filled FixedArray.
__ sw(t2, FieldMemOperand(a2, JSObject::kElementsOffset));
__ RecordWriteField(a2,
JSObject::kElementsOffset,
t2,
t5,
kRAHasBeenSaved,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
__ pop(ra);
__ bind(&only_change_map);
// Update receiver's map.
__ sw(a3, FieldMemOperand(a2, HeapObject::kMapOffset));
__ RecordWriteField(a2,
HeapObject::kMapOffset,
a3,
t5,
kRAHasNotBeenSaved,
kDontSaveFPRegs,
OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
}
void StringCharLoadGenerator::Generate(MacroAssembler* masm,
Register string,
Register index,
Register result,
Label* call_runtime) {
// Fetch the instance type of the receiver into result register.
__ lw(result, FieldMemOperand(string, HeapObject::kMapOffset));
__ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
// We need special handling for indirect strings.
Label check_sequential;
__ And(at, result, Operand(kIsIndirectStringMask));
__ Branch(&check_sequential, eq, at, Operand(zero_reg));
// Dispatch on the indirect string shape: slice or cons.
Label cons_string;
__ And(at, result, Operand(kSlicedNotConsMask));
__ Branch(&cons_string, eq, at, Operand(zero_reg));
// Handle slices.
Label indirect_string_loaded;
__ lw(result, FieldMemOperand(string, SlicedString::kOffsetOffset));
__ lw(string, FieldMemOperand(string, SlicedString::kParentOffset));
__ sra(at, result, kSmiTagSize);
__ Addu(index, index, at);
__ jmp(&indirect_string_loaded);
// Handle cons strings.
// Check whether the right hand side is the empty string (i.e. if
// this is really a flat string in a cons string). If that is not
// the case we would rather go to the runtime system now to flatten
// the string.
__ bind(&cons_string);
__ lw(result, FieldMemOperand(string, ConsString::kSecondOffset));
__ LoadRoot(at, Heap::kempty_stringRootIndex);
__ Branch(call_runtime, ne, result, Operand(at));
// Get the first of the two strings and load its instance type.
__ lw(string, FieldMemOperand(string, ConsString::kFirstOffset));
__ bind(&indirect_string_loaded);
__ lw(result, FieldMemOperand(string, HeapObject::kMapOffset));
__ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
// Distinguish sequential and external strings. Only these two string
// representations can reach here (slices and flat cons strings have been
// reduced to the underlying sequential or external string).
Label external_string, check_encoding;
__ bind(&check_sequential);
STATIC_ASSERT(kSeqStringTag == 0);
__ And(at, result, Operand(kStringRepresentationMask));
__ Branch(&external_string, ne, at, Operand(zero_reg));
// Prepare sequential strings
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
__ Addu(string,
string,
SeqTwoByteString::kHeaderSize - kHeapObjectTag);
__ jmp(&check_encoding);
// Handle external strings.
__ bind(&external_string);
if (FLAG_debug_code) {
// Assert that we do not have a cons or slice (indirect strings) here.
// Sequential strings have already been ruled out.
__ And(at, result, Operand(kIsIndirectStringMask));
__ Assert(eq, kExternalStringExpectedButNotFound,
at, Operand(zero_reg));
}
// Rule out short external strings.
STATIC_CHECK(kShortExternalStringTag != 0);
__ And(at, result, Operand(kShortExternalStringMask));
__ Branch(call_runtime, ne, at, Operand(zero_reg));
__ lw(string, FieldMemOperand(string, ExternalString::kResourceDataOffset));
Label ascii, done;
__ bind(&check_encoding);
STATIC_ASSERT(kTwoByteStringTag == 0);
__ And(at, result, Operand(kStringEncodingMask));
__ Branch(&ascii, ne, at, Operand(zero_reg));
// Two-byte string.
__ sll(at, index, 1);
__ Addu(at, string, at);
__ lhu(result, MemOperand(at));
__ jmp(&done);
__ bind(&ascii);
// Ascii string.
__ Addu(at, string, index);
__ lbu(result, MemOperand(at));
__ bind(&done);
}
static MemOperand ExpConstant(int index, Register base) {
return MemOperand(base, index * kDoubleSize);
}
void MathExpGenerator::EmitMathExp(MacroAssembler* masm,
DoubleRegister input,
DoubleRegister result,
DoubleRegister double_scratch1,
DoubleRegister double_scratch2,
Register temp1,
Register temp2,
Register temp3) {
ASSERT(!input.is(result));
ASSERT(!input.is(double_scratch1));
ASSERT(!input.is(double_scratch2));
ASSERT(!result.is(double_scratch1));
ASSERT(!result.is(double_scratch2));
ASSERT(!double_scratch1.is(double_scratch2));
ASSERT(!temp1.is(temp2));
ASSERT(!temp1.is(temp3));
ASSERT(!temp2.is(temp3));
ASSERT(ExternalReference::math_exp_constants(0).address() != NULL);
Label zero, infinity, done;
__ li(temp3, Operand(ExternalReference::math_exp_constants(0)));
__ ldc1(double_scratch1, ExpConstant(0, temp3));
__ BranchF(&zero, NULL, ge, double_scratch1, input);
__ ldc1(double_scratch2, ExpConstant(1, temp3));
__ BranchF(&infinity, NULL, ge, input, double_scratch2);
__ ldc1(double_scratch1, ExpConstant(3, temp3));
__ ldc1(result, ExpConstant(4, temp3));
__ mul_d(double_scratch1, double_scratch1, input);
__ add_d(double_scratch1, double_scratch1, result);
__ FmoveLow(temp2, double_scratch1);
__ sub_d(double_scratch1, double_scratch1, result);
__ ldc1(result, ExpConstant(6, temp3));
__ ldc1(double_scratch2, ExpConstant(5, temp3));
__ mul_d(double_scratch1, double_scratch1, double_scratch2);
__ sub_d(double_scratch1, double_scratch1, input);
__ sub_d(result, result, double_scratch1);
__ mul_d(double_scratch2, double_scratch1, double_scratch1);
__ mul_d(result, result, double_scratch2);
__ ldc1(double_scratch2, ExpConstant(7, temp3));
__ mul_d(result, result, double_scratch2);
__ sub_d(result, result, double_scratch1);
// Mov 1 in double_scratch2 as math_exp_constants_array[8] == 1.
ASSERT(*reinterpret_cast<double*>
(ExternalReference::math_exp_constants(8).address()) == 1);
__ Move(double_scratch2, 1);
__ add_d(result, result, double_scratch2);
__ srl(temp1, temp2, 11);
__ Ext(temp2, temp2, 0, 11);
__ Addu(temp1, temp1, Operand(0x3ff));
// Must not call ExpConstant() after overwriting temp3!
__ li(temp3, Operand(ExternalReference::math_exp_log_table()));
__ sll(at, temp2, 3);
__ Addu(temp3, temp3, Operand(at));
__ lw(temp2, MemOperand(temp3, 0));
__ lw(temp3, MemOperand(temp3, kPointerSize));
// The first word is loaded is the lower number register.
if (temp2.code() < temp3.code()) {
__ sll(at, temp1, 20);
__ Or(temp1, temp3, at);
__ Move(double_scratch1, temp2, temp1);
} else {
__ sll(at, temp1, 20);
__ Or(temp1, temp2, at);
__ Move(double_scratch1, temp3, temp1);
}
__ mul_d(result, result, double_scratch1);
__ Branch(&done);
__ bind(&zero);
__ Move(result, kDoubleRegZero);
__ Branch(&done);
__ bind(&infinity);
__ ldc1(result, ExpConstant(2, temp3));
__ bind(&done);
}
// nop(CODE_AGE_MARKER_NOP)
static const uint32_t kCodeAgePatchFirstInstruction = 0x00010180;
static byte* GetNoCodeAgeSequence(uint32_t* length) {
// The sequence of instructions that is patched out for aging code is the
// following boilerplate stack-building prologue that is found in FUNCTIONS
static bool initialized = false;
static uint32_t sequence[kNoCodeAgeSequenceLength];
byte* byte_sequence = reinterpret_cast<byte*>(sequence);
*length = kNoCodeAgeSequenceLength * Assembler::kInstrSize;
if (!initialized) {
CodePatcher patcher(byte_sequence, kNoCodeAgeSequenceLength);
patcher.masm()->Push(ra, fp, cp, a1);
patcher.masm()->nop(Assembler::CODE_AGE_SEQUENCE_NOP);
patcher.masm()->Addu(fp, sp, Operand(2 * kPointerSize));
initialized = true;
}
return byte_sequence;
}
bool Code::IsYoungSequence(byte* sequence) {
uint32_t young_length;
byte* young_sequence = GetNoCodeAgeSequence(&young_length);
bool result = !memcmp(sequence, young_sequence, young_length);
ASSERT(result ||
Memory::uint32_at(sequence) == kCodeAgePatchFirstInstruction);
return result;
}
void Code::GetCodeAgeAndParity(byte* sequence, Age* age,
MarkingParity* parity) {
if (IsYoungSequence(sequence)) {
*age = kNoAge;
*parity = NO_MARKING_PARITY;
} else {
Address target_address = Memory::Address_at(
sequence + Assembler::kInstrSize * (kNoCodeAgeSequenceLength - 1));
Code* stub = GetCodeFromTargetAddress(target_address);
GetCodeAgeAndParity(stub, age, parity);
}
}
void Code::PatchPlatformCodeAge(Isolate* isolate,
byte* sequence,
Code::Age age,
MarkingParity parity) {
uint32_t young_length;
byte* young_sequence = GetNoCodeAgeSequence(&young_length);
if (age == kNoAge) {
CopyBytes(sequence, young_sequence, young_length);
CPU::FlushICache(sequence, young_length);
} else {
Code* stub = GetCodeAgeStub(isolate, age, parity);
CodePatcher patcher(sequence, young_length / Assembler::kInstrSize);
// Mark this code sequence for FindPlatformCodeAgeSequence()
patcher.masm()->nop(Assembler::CODE_AGE_MARKER_NOP);
// Save the function's original return address
// (it will be clobbered by Call(t9))
patcher.masm()->mov(at, ra);
// Load the stub address to t9 and call it
patcher.masm()->li(t9,
Operand(reinterpret_cast<uint32_t>(stub->instruction_start())));
patcher.masm()->Call(t9);
// Record the stub address in the empty space for GetCodeAgeAndParity()
patcher.masm()->dd(reinterpret_cast<uint32_t>(stub->instruction_start()));
}
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_MIPS