blob: 9e3421e3220fdd8606cfe2f3445f92b91f3f97d9 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HEAP_HEAP_INL_H_
#define V8_HEAP_HEAP_INL_H_
#include <cmath>
#include "src/base/platform/platform.h"
#include "src/cpu-profiler.h"
#include "src/heap/heap.h"
#include "src/heap/store-buffer.h"
#include "src/heap/store-buffer-inl.h"
#include "src/heap-profiler.h"
#include "src/isolate.h"
#include "src/list-inl.h"
#include "src/msan.h"
#include "src/objects.h"
namespace v8 {
namespace internal {
void PromotionQueue::insert(HeapObject* target, int size) {
if (emergency_stack_ != NULL) {
emergency_stack_->Add(Entry(target, size));
return;
}
if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(rear_))) {
NewSpacePage* rear_page =
NewSpacePage::FromAddress(reinterpret_cast<Address>(rear_));
DCHECK(!rear_page->prev_page()->is_anchor());
rear_ = reinterpret_cast<intptr_t*>(rear_page->prev_page()->area_end());
}
if ((rear_ - 2) < limit_) {
RelocateQueueHead();
emergency_stack_->Add(Entry(target, size));
return;
}
*(--rear_) = reinterpret_cast<intptr_t>(target);
*(--rear_) = size;
// Assert no overflow into live objects.
#ifdef DEBUG
SemiSpace::AssertValidRange(target->GetIsolate()->heap()->new_space()->top(),
reinterpret_cast<Address>(rear_));
#endif
}
template <>
bool inline Heap::IsOneByte(Vector<const char> str, int chars) {
// TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
return chars == str.length();
}
template <>
bool inline Heap::IsOneByte(String* str, int chars) {
return str->IsOneByteRepresentation();
}
AllocationResult Heap::AllocateInternalizedStringFromUtf8(
Vector<const char> str, int chars, uint32_t hash_field) {
if (IsOneByte(str, chars)) {
return AllocateOneByteInternalizedString(Vector<const uint8_t>::cast(str),
hash_field);
}
return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
}
template <typename T>
AllocationResult Heap::AllocateInternalizedStringImpl(T t, int chars,
uint32_t hash_field) {
if (IsOneByte(t, chars)) {
return AllocateInternalizedStringImpl<true>(t, chars, hash_field);
}
return AllocateInternalizedStringImpl<false>(t, chars, hash_field);
}
AllocationResult Heap::AllocateOneByteInternalizedString(
Vector<const uint8_t> str, uint32_t hash_field) {
CHECK_GE(String::kMaxLength, str.length());
// Compute map and object size.
Map* map = one_byte_internalized_string_map();
int size = SeqOneByteString::SizeFor(str.length());
AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
// Allocate string.
HeapObject* result;
{
AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
if (!allocation.To(&result)) return allocation;
}
// String maps are all immortal immovable objects.
result->set_map_no_write_barrier(map);
// Set length and hash fields of the allocated string.
String* answer = String::cast(result);
answer->set_length(str.length());
answer->set_hash_field(hash_field);
DCHECK_EQ(size, answer->Size());
// Fill in the characters.
MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(),
str.length());
return answer;
}
AllocationResult Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str,
uint32_t hash_field) {
CHECK_GE(String::kMaxLength, str.length());
// Compute map and object size.
Map* map = internalized_string_map();
int size = SeqTwoByteString::SizeFor(str.length());
AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
// Allocate string.
HeapObject* result;
{
AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
if (!allocation.To(&result)) return allocation;
}
result->set_map(map);
// Set length and hash fields of the allocated string.
String* answer = String::cast(result);
answer->set_length(str.length());
answer->set_hash_field(hash_field);
DCHECK_EQ(size, answer->Size());
// Fill in the characters.
MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(),
str.length() * kUC16Size);
return answer;
}
AllocationResult Heap::CopyFixedArray(FixedArray* src) {
if (src->length() == 0) return src;
return CopyFixedArrayWithMap(src, src->map());
}
AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
if (src->length() == 0) return src;
return CopyFixedDoubleArrayWithMap(src, src->map());
}
AllocationResult Heap::CopyConstantPoolArray(ConstantPoolArray* src) {
if (src->length() == 0) return src;
return CopyConstantPoolArrayWithMap(src, src->map());
}
AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationSpace space,
AllocationSpace retry_space) {
DCHECK(AllowHandleAllocation::IsAllowed());
DCHECK(AllowHeapAllocation::IsAllowed());
DCHECK(gc_state_ == NOT_IN_GC);
#ifdef DEBUG
if (FLAG_gc_interval >= 0 && AllowAllocationFailure::IsAllowed(isolate_) &&
Heap::allocation_timeout_-- <= 0) {
return AllocationResult::Retry(space);
}
isolate_->counters()->objs_since_last_full()->Increment();
isolate_->counters()->objs_since_last_young()->Increment();
#endif
HeapObject* object;
AllocationResult allocation;
if (NEW_SPACE == space) {
allocation = new_space_.AllocateRaw(size_in_bytes);
if (always_allocate() && allocation.IsRetry() && retry_space != NEW_SPACE) {
space = retry_space;
} else {
if (allocation.To(&object)) {
OnAllocationEvent(object, size_in_bytes);
}
return allocation;
}
}
if (OLD_POINTER_SPACE == space) {
allocation = old_pointer_space_->AllocateRaw(size_in_bytes);
} else if (OLD_DATA_SPACE == space) {
allocation = old_data_space_->AllocateRaw(size_in_bytes);
} else if (CODE_SPACE == space) {
if (size_in_bytes <= code_space()->AreaSize()) {
allocation = code_space_->AllocateRaw(size_in_bytes);
} else {
// Large code objects are allocated in large object space.
allocation = lo_space_->AllocateRaw(size_in_bytes, EXECUTABLE);
}
} else if (LO_SPACE == space) {
allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
} else if (CELL_SPACE == space) {
allocation = cell_space_->AllocateRaw(size_in_bytes);
} else if (PROPERTY_CELL_SPACE == space) {
allocation = property_cell_space_->AllocateRaw(size_in_bytes);
} else {
DCHECK(MAP_SPACE == space);
allocation = map_space_->AllocateRaw(size_in_bytes);
}
if (allocation.To(&object)) {
OnAllocationEvent(object, size_in_bytes);
} else {
old_gen_exhausted_ = true;
}
return allocation;
}
void Heap::OnAllocationEvent(HeapObject* object, int size_in_bytes) {
HeapProfiler* profiler = isolate_->heap_profiler();
if (profiler->is_tracking_allocations()) {
profiler->AllocationEvent(object->address(), size_in_bytes);
}
if (FLAG_verify_predictable) {
++allocations_count_;
UpdateAllocationsHash(object);
UpdateAllocationsHash(size_in_bytes);
if ((FLAG_dump_allocations_digest_at_alloc > 0) &&
(--dump_allocations_hash_countdown_ == 0)) {
dump_allocations_hash_countdown_ = FLAG_dump_allocations_digest_at_alloc;
PrintAlloctionsHash();
}
}
}
void Heap::OnMoveEvent(HeapObject* target, HeapObject* source,
int size_in_bytes) {
HeapProfiler* heap_profiler = isolate_->heap_profiler();
if (heap_profiler->is_tracking_object_moves()) {
heap_profiler->ObjectMoveEvent(source->address(), target->address(),
size_in_bytes);
}
if (isolate_->logger()->is_logging_code_events() ||
isolate_->cpu_profiler()->is_profiling()) {
if (target->IsSharedFunctionInfo()) {
PROFILE(isolate_, SharedFunctionInfoMoveEvent(source->address(),
target->address()));
}
}
if (FLAG_verify_predictable) {
++allocations_count_;
UpdateAllocationsHash(source);
UpdateAllocationsHash(target);
UpdateAllocationsHash(size_in_bytes);
if ((FLAG_dump_allocations_digest_at_alloc > 0) &&
(--dump_allocations_hash_countdown_ == 0)) {
dump_allocations_hash_countdown_ = FLAG_dump_allocations_digest_at_alloc;
PrintAlloctionsHash();
}
}
}
void Heap::UpdateAllocationsHash(HeapObject* object) {
Address object_address = object->address();
MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address);
AllocationSpace allocation_space = memory_chunk->owner()->identity();
STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32);
uint32_t value =
static_cast<uint32_t>(object_address - memory_chunk->address()) |
(static_cast<uint32_t>(allocation_space) << kPageSizeBits);
UpdateAllocationsHash(value);
}
void Heap::UpdateAllocationsHash(uint32_t value) {
uint16_t c1 = static_cast<uint16_t>(value);
uint16_t c2 = static_cast<uint16_t>(value >> 16);
raw_allocations_hash_ =
StringHasher::AddCharacterCore(raw_allocations_hash_, c1);
raw_allocations_hash_ =
StringHasher::AddCharacterCore(raw_allocations_hash_, c2);
}
void Heap::PrintAlloctionsHash() {
uint32_t hash = StringHasher::GetHashCore(raw_allocations_hash_);
PrintF("\n### Allocations = %u, hash = 0x%08x\n", allocations_count_, hash);
}
void Heap::FinalizeExternalString(String* string) {
DCHECK(string->IsExternalString());
v8::String::ExternalStringResourceBase** resource_addr =
reinterpret_cast<v8::String::ExternalStringResourceBase**>(
reinterpret_cast<byte*>(string) + ExternalString::kResourceOffset -
kHeapObjectTag);
// Dispose of the C++ object if it has not already been disposed.
if (*resource_addr != NULL) {
(*resource_addr)->Dispose();
*resource_addr = NULL;
}
}
bool Heap::InNewSpace(Object* object) {
bool result = new_space_.Contains(object);
DCHECK(!result || // Either not in new space
gc_state_ != NOT_IN_GC || // ... or in the middle of GC
InToSpace(object)); // ... or in to-space (where we allocate).
return result;
}
bool Heap::InNewSpace(Address address) { return new_space_.Contains(address); }
bool Heap::InFromSpace(Object* object) {
return new_space_.FromSpaceContains(object);
}
bool Heap::InToSpace(Object* object) {
return new_space_.ToSpaceContains(object);
}
bool Heap::InOldPointerSpace(Address address) {
return old_pointer_space_->Contains(address);
}
bool Heap::InOldPointerSpace(Object* object) {
return InOldPointerSpace(reinterpret_cast<Address>(object));
}
bool Heap::InOldDataSpace(Address address) {
return old_data_space_->Contains(address);
}
bool Heap::InOldDataSpace(Object* object) {
return InOldDataSpace(reinterpret_cast<Address>(object));
}
bool Heap::OldGenerationAllocationLimitReached() {
if (!incremental_marking()->IsStopped()) return false;
return OldGenerationSpaceAvailable() < 0;
}
bool Heap::ShouldBePromoted(Address old_address, int object_size) {
NewSpacePage* page = NewSpacePage::FromAddress(old_address);
Address age_mark = new_space_.age_mark();
return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
(!page->ContainsLimit(age_mark) || old_address < age_mark);
}
void Heap::RecordWrite(Address address, int offset) {
if (!InNewSpace(address)) store_buffer_.Mark(address + offset);
}
void Heap::RecordWrites(Address address, int start, int len) {
if (!InNewSpace(address)) {
for (int i = 0; i < len; i++) {
store_buffer_.Mark(address + start + i * kPointerSize);
}
}
}
OldSpace* Heap::TargetSpace(HeapObject* object) {
InstanceType type = object->map()->instance_type();
AllocationSpace space = TargetSpaceId(type);
return (space == OLD_POINTER_SPACE) ? old_pointer_space_ : old_data_space_;
}
AllocationSpace Heap::TargetSpaceId(InstanceType type) {
// Heap numbers and sequential strings are promoted to old data space, all
// other object types are promoted to old pointer space. We do not use
// object->IsHeapNumber() and object->IsSeqString() because we already
// know that object has the heap object tag.
// These objects are never allocated in new space.
DCHECK(type != MAP_TYPE);
DCHECK(type != CODE_TYPE);
DCHECK(type != ODDBALL_TYPE);
DCHECK(type != CELL_TYPE);
DCHECK(type != PROPERTY_CELL_TYPE);
if (type <= LAST_NAME_TYPE) {
if (type == SYMBOL_TYPE) return OLD_POINTER_SPACE;
DCHECK(type < FIRST_NONSTRING_TYPE);
// There are four string representations: sequential strings, external
// strings, cons strings, and sliced strings.
// Only the latter two contain non-map-word pointers to heap objects.
return ((type & kIsIndirectStringMask) == kIsIndirectStringTag)
? OLD_POINTER_SPACE
: OLD_DATA_SPACE;
} else {
return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
}
}
bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) {
// Object migration is governed by the following rules:
//
// 1) Objects in new-space can be migrated to one of the old spaces
// that matches their target space or they stay in new-space.
// 2) Objects in old-space stay in the same space when migrating.
// 3) Fillers (two or more words) can migrate due to left-trimming of
// fixed arrays in new-space, old-data-space and old-pointer-space.
// 4) Fillers (one word) can never migrate, they are skipped by
// incremental marking explicitly to prevent invalid pattern.
// 5) Short external strings can end up in old pointer space when a cons
// string in old pointer space is made external (String::MakeExternal).
//
// Since this function is used for debugging only, we do not place
// asserts here, but check everything explicitly.
if (obj->map() == one_pointer_filler_map()) return false;
InstanceType type = obj->map()->instance_type();
MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
AllocationSpace src = chunk->owner()->identity();
switch (src) {
case NEW_SPACE:
return dst == src || dst == TargetSpaceId(type);
case OLD_POINTER_SPACE:
return dst == src && (dst == TargetSpaceId(type) || obj->IsFiller() ||
obj->IsExternalString());
case OLD_DATA_SPACE:
return dst == src && dst == TargetSpaceId(type);
case CODE_SPACE:
return dst == src && type == CODE_TYPE;
case MAP_SPACE:
case CELL_SPACE:
case PROPERTY_CELL_SPACE:
case LO_SPACE:
return false;
case INVALID_SPACE:
break;
}
UNREACHABLE();
return false;
}
void Heap::CopyBlock(Address dst, Address src, int byte_size) {
CopyWords(reinterpret_cast<Object**>(dst), reinterpret_cast<Object**>(src),
static_cast<size_t>(byte_size / kPointerSize));
}
void Heap::MoveBlock(Address dst, Address src, int byte_size) {
DCHECK(IsAligned(byte_size, kPointerSize));
int size_in_words = byte_size / kPointerSize;
if ((dst < src) || (dst >= (src + byte_size))) {
Object** src_slot = reinterpret_cast<Object**>(src);
Object** dst_slot = reinterpret_cast<Object**>(dst);
Object** end_slot = src_slot + size_in_words;
while (src_slot != end_slot) {
*dst_slot++ = *src_slot++;
}
} else {
MemMove(dst, src, static_cast<size_t>(byte_size));
}
}
void Heap::ScavengePointer(HeapObject** p) { ScavengeObject(p, *p); }
AllocationMemento* Heap::FindAllocationMemento(HeapObject* object) {
// Check if there is potentially a memento behind the object. If
// the last word of the memento is on another page we return
// immediately.
Address object_address = object->address();
Address memento_address = object_address + object->Size();
Address last_memento_word_address = memento_address + kPointerSize;
if (!NewSpacePage::OnSamePage(object_address, last_memento_word_address)) {
return NULL;
}
HeapObject* candidate = HeapObject::FromAddress(memento_address);
Map* candidate_map = candidate->map();
// This fast check may peek at an uninitialized word. However, the slow check
// below (memento_address == top) ensures that this is safe. Mark the word as
// initialized to silence MemorySanitizer warnings.
MSAN_MEMORY_IS_INITIALIZED(&candidate_map, sizeof(candidate_map));
if (candidate_map != allocation_memento_map()) return NULL;
// Either the object is the last object in the new space, or there is another
// object of at least word size (the header map word) following it, so
// suffices to compare ptr and top here. Note that technically we do not have
// to compare with the current top pointer of the from space page during GC,
// since we always install filler objects above the top pointer of a from
// space page when performing a garbage collection. However, always performing
// the test makes it possible to have a single, unified version of
// FindAllocationMemento that is used both by the GC and the mutator.
Address top = NewSpaceTop();
DCHECK(memento_address == top ||
memento_address + HeapObject::kHeaderSize <= top ||
!NewSpacePage::OnSamePage(memento_address, top));
if (memento_address == top) return NULL;
AllocationMemento* memento = AllocationMemento::cast(candidate);
if (!memento->IsValid()) return NULL;
return memento;
}
void Heap::UpdateAllocationSiteFeedback(HeapObject* object,
ScratchpadSlotMode mode) {
Heap* heap = object->GetHeap();
DCHECK(heap->InFromSpace(object));
if (!FLAG_allocation_site_pretenuring ||
!AllocationSite::CanTrack(object->map()->instance_type()))
return;
AllocationMemento* memento = heap->FindAllocationMemento(object);
if (memento == NULL) return;
if (memento->GetAllocationSite()->IncrementMementoFoundCount()) {
heap->AddAllocationSiteToScratchpad(memento->GetAllocationSite(), mode);
}
}
void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
DCHECK(object->GetIsolate()->heap()->InFromSpace(object));
// We use the first word (where the map pointer usually is) of a heap
// object to record the forwarding pointer. A forwarding pointer can
// point to an old space, the code space, or the to space of the new
// generation.
MapWord first_word = object->map_word();
// If the first word is a forwarding address, the object has already been
// copied.
if (first_word.IsForwardingAddress()) {
HeapObject* dest = first_word.ToForwardingAddress();
DCHECK(object->GetIsolate()->heap()->InFromSpace(*p));
*p = dest;
return;
}
UpdateAllocationSiteFeedback(object, IGNORE_SCRATCHPAD_SLOT);
// AllocationMementos are unrooted and shouldn't survive a scavenge
DCHECK(object->map() != object->GetHeap()->allocation_memento_map());
// Call the slow part of scavenge object.
return ScavengeObjectSlow(p, object);
}
bool Heap::CollectGarbage(AllocationSpace space, const char* gc_reason,
const v8::GCCallbackFlags callbackFlags) {
const char* collector_reason = NULL;
GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
return CollectGarbage(collector, gc_reason, collector_reason, callbackFlags);
}
Isolate* Heap::isolate() {
return reinterpret_cast<Isolate*>(
reinterpret_cast<intptr_t>(this) -
reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(4)->heap()) + 4);
}
// Calls the FUNCTION_CALL function and retries it up to three times
// to guarantee that any allocations performed during the call will
// succeed if there's enough memory.
// Warning: Do not use the identifiers __object__, __maybe_object__ or
// __scope__ in a call to this macro.
#define RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
if (__allocation__.To(&__object__)) { \
DCHECK(__object__ != (ISOLATE)->heap()->exception()); \
RETURN_VALUE; \
}
#define CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \
do { \
AllocationResult __allocation__ = FUNCTION_CALL; \
Object* __object__ = NULL; \
RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
(ISOLATE)->heap()->CollectGarbage(__allocation__.RetrySpace(), \
"allocation failure"); \
__allocation__ = FUNCTION_CALL; \
RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
(ISOLATE)->counters()->gc_last_resort_from_handles()->Increment(); \
(ISOLATE)->heap()->CollectAllAvailableGarbage("last resort gc"); \
{ \
AlwaysAllocateScope __scope__(ISOLATE); \
__allocation__ = FUNCTION_CALL; \
} \
RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
/* TODO(1181417): Fix this. */ \
v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true); \
RETURN_EMPTY; \
} while (false)
#define CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, RETURN_VALUE, \
RETURN_EMPTY) \
CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY)
#define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE) \
CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, \
return Handle<TYPE>(TYPE::cast(__object__), ISOLATE), \
return Handle<TYPE>())
#define CALL_HEAP_FUNCTION_VOID(ISOLATE, FUNCTION_CALL) \
CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, return, return)
void ExternalStringTable::AddString(String* string) {
DCHECK(string->IsExternalString());
if (heap_->InNewSpace(string)) {
new_space_strings_.Add(string);
} else {
old_space_strings_.Add(string);
}
}
void ExternalStringTable::Iterate(ObjectVisitor* v) {
if (!new_space_strings_.is_empty()) {
Object** start = &new_space_strings_[0];
v->VisitPointers(start, start + new_space_strings_.length());
}
if (!old_space_strings_.is_empty()) {
Object** start = &old_space_strings_[0];
v->VisitPointers(start, start + old_space_strings_.length());
}
}
// Verify() is inline to avoid ifdef-s around its calls in release
// mode.
void ExternalStringTable::Verify() {
#ifdef DEBUG
for (int i = 0; i < new_space_strings_.length(); ++i) {
Object* obj = Object::cast(new_space_strings_[i]);
DCHECK(heap_->InNewSpace(obj));
DCHECK(obj != heap_->the_hole_value());
}
for (int i = 0; i < old_space_strings_.length(); ++i) {
Object* obj = Object::cast(old_space_strings_[i]);
DCHECK(!heap_->InNewSpace(obj));
DCHECK(obj != heap_->the_hole_value());
}
#endif
}
void ExternalStringTable::AddOldString(String* string) {
DCHECK(string->IsExternalString());
DCHECK(!heap_->InNewSpace(string));
old_space_strings_.Add(string);
}
void ExternalStringTable::ShrinkNewStrings(int position) {
new_space_strings_.Rewind(position);
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
Verify();
}
#endif
}
void Heap::ClearInstanceofCache() {
set_instanceof_cache_function(Smi::FromInt(0));
}
Object* Heap::ToBoolean(bool condition) {
return condition ? true_value() : false_value();
}
void Heap::CompletelyClearInstanceofCache() {
set_instanceof_cache_map(Smi::FromInt(0));
set_instanceof_cache_function(Smi::FromInt(0));
}
AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
: heap_(isolate->heap()), daf_(isolate) {
// We shouldn't hit any nested scopes, because that requires
// non-handle code to call handle code. The code still works but
// performance will degrade, so we want to catch this situation
// in debug mode.
DCHECK(heap_->always_allocate_scope_depth_ == 0);
heap_->always_allocate_scope_depth_++;
}
AlwaysAllocateScope::~AlwaysAllocateScope() {
heap_->always_allocate_scope_depth_--;
DCHECK(heap_->always_allocate_scope_depth_ == 0);
}
#ifdef VERIFY_HEAP
NoWeakObjectVerificationScope::NoWeakObjectVerificationScope() {
Isolate* isolate = Isolate::Current();
isolate->heap()->no_weak_object_verification_scope_depth_++;
}
NoWeakObjectVerificationScope::~NoWeakObjectVerificationScope() {
Isolate* isolate = Isolate::Current();
isolate->heap()->no_weak_object_verification_scope_depth_--;
}
#endif
GCCallbacksScope::GCCallbacksScope(Heap* heap) : heap_(heap) {
heap_->gc_callbacks_depth_++;
}
GCCallbacksScope::~GCCallbacksScope() { heap_->gc_callbacks_depth_--; }
bool GCCallbacksScope::CheckReenter() {
return heap_->gc_callbacks_depth_ == 1;
}
void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
for (Object** current = start; current < end; current++) {
if ((*current)->IsHeapObject()) {
HeapObject* object = HeapObject::cast(*current);
CHECK(object->GetIsolate()->heap()->Contains(object));
CHECK(object->map()->IsMap());
}
}
}
void VerifySmisVisitor::VisitPointers(Object** start, Object** end) {
for (Object** current = start; current < end; current++) {
CHECK((*current)->IsSmi());
}
}
}
} // namespace v8::internal
#endif // V8_HEAP_HEAP_INL_H_