blob: afbd1f0ebf2067eb35cb370c16a7b7f5eefe2aa5 [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_COMPILER_GENERIC_NODE_INL_H_
#define V8_COMPILER_GENERIC_NODE_INL_H_
#include "src/v8.h"
#include "src/compiler/generic-graph.h"
#include "src/compiler/generic-node.h"
#include "src/zone.h"
namespace v8 {
namespace internal {
namespace compiler {
template <class B, class S>
GenericNode<B, S>::GenericNode(GenericGraphBase* graph, int input_count,
int reserve_input_count)
: BaseClass(graph->zone()),
input_count_(input_count),
reserve_input_count_(reserve_input_count),
has_appendable_inputs_(false),
use_count_(0),
first_use_(NULL),
last_use_(NULL) {
DCHECK(reserve_input_count <= kMaxReservedInputs);
inputs_.static_ = reinterpret_cast<Input*>(this + 1);
AssignUniqueID(graph);
}
template <class B, class S>
inline void GenericNode<B, S>::AssignUniqueID(GenericGraphBase* graph) {
id_ = graph->NextNodeID();
}
template <class B, class S>
inline typename GenericNode<B, S>::Inputs::iterator
GenericNode<B, S>::Inputs::begin() {
return typename GenericNode<B, S>::Inputs::iterator(this->node_, 0);
}
template <class B, class S>
inline typename GenericNode<B, S>::Inputs::iterator
GenericNode<B, S>::Inputs::end() {
return typename GenericNode<B, S>::Inputs::iterator(
this->node_, this->node_->InputCount());
}
template <class B, class S>
inline typename GenericNode<B, S>::Uses::iterator
GenericNode<B, S>::Uses::begin() {
return typename GenericNode<B, S>::Uses::iterator(this->node_);
}
template <class B, class S>
inline typename GenericNode<B, S>::Uses::iterator
GenericNode<B, S>::Uses::end() {
return typename GenericNode<B, S>::Uses::iterator();
}
template <class B, class S>
void GenericNode<B, S>::ReplaceUses(GenericNode* replace_to) {
for (Use* use = first_use_; use != NULL; use = use->next) {
use->from->GetInputRecordPtr(use->input_index)->to = replace_to;
}
if (replace_to->last_use_ == NULL) {
DCHECK_EQ(NULL, replace_to->first_use_);
replace_to->first_use_ = first_use_;
replace_to->last_use_ = last_use_;
} else if (first_use_ != NULL) {
DCHECK_NE(NULL, replace_to->first_use_);
replace_to->last_use_->next = first_use_;
first_use_->prev = replace_to->last_use_;
replace_to->last_use_ = last_use_;
}
replace_to->use_count_ += use_count_;
use_count_ = 0;
first_use_ = NULL;
last_use_ = NULL;
}
template <class B, class S>
template <class UnaryPredicate>
void GenericNode<B, S>::ReplaceUsesIf(UnaryPredicate pred,
GenericNode* replace_to) {
for (Use* use = first_use_; use != NULL;) {
Use* next = use->next;
if (pred(static_cast<S*>(use->from))) {
RemoveUse(use);
replace_to->AppendUse(use);
use->from->GetInputRecordPtr(use->input_index)->to = replace_to;
}
use = next;
}
}
template <class B, class S>
void GenericNode<B, S>::RemoveAllInputs() {
for (typename Inputs::iterator iter(inputs().begin()); iter != inputs().end();
++iter) {
iter.GetInput()->Update(NULL);
}
}
template <class B, class S>
void GenericNode<B, S>::TrimInputCount(int new_input_count) {
if (new_input_count == input_count_) return; // Nothing to do.
DCHECK(new_input_count < input_count_);
// Update inline inputs.
for (int i = new_input_count; i < input_count_; i++) {
typename GenericNode<B, S>::Input* input = GetInputRecordPtr(i);
input->Update(NULL);
}
input_count_ = new_input_count;
}
template <class B, class S>
void GenericNode<B, S>::ReplaceInput(int index, GenericNode<B, S>* new_to) {
Input* input = GetInputRecordPtr(index);
input->Update(new_to);
}
template <class B, class S>
void GenericNode<B, S>::Input::Update(GenericNode<B, S>* new_to) {
GenericNode* old_to = this->to;
if (new_to == old_to) return; // Nothing to do.
// Snip out the use from where it used to be
if (old_to != NULL) {
old_to->RemoveUse(use);
}
to = new_to;
// And put it into the new node's use list.
if (new_to != NULL) {
new_to->AppendUse(use);
} else {
use->next = NULL;
use->prev = NULL;
}
}
template <class B, class S>
void GenericNode<B, S>::EnsureAppendableInputs(Zone* zone) {
if (!has_appendable_inputs_) {
void* deque_buffer = zone->New(sizeof(InputDeque));
InputDeque* deque = new (deque_buffer) InputDeque(zone);
for (int i = 0; i < input_count_; ++i) {
deque->push_back(inputs_.static_[i]);
}
inputs_.appendable_ = deque;
has_appendable_inputs_ = true;
}
}
template <class B, class S>
void GenericNode<B, S>::AppendInput(Zone* zone, GenericNode<B, S>* to_append) {
Use* new_use = new (zone) Use;
Input new_input;
new_input.to = to_append;
new_input.use = new_use;
if (reserve_input_count_ > 0) {
DCHECK(!has_appendable_inputs_);
reserve_input_count_--;
inputs_.static_[input_count_] = new_input;
} else {
EnsureAppendableInputs(zone);
inputs_.appendable_->push_back(new_input);
}
new_use->input_index = input_count_;
new_use->from = this;
to_append->AppendUse(new_use);
input_count_++;
}
template <class B, class S>
void GenericNode<B, S>::InsertInput(Zone* zone, int index,
GenericNode<B, S>* to_insert) {
DCHECK(index >= 0 && index < InputCount());
// TODO(turbofan): Optimize this implementation!
AppendInput(zone, InputAt(InputCount() - 1));
for (int i = InputCount() - 1; i > index; --i) {
ReplaceInput(i, InputAt(i - 1));
}
ReplaceInput(index, to_insert);
}
template <class B, class S>
void GenericNode<B, S>::RemoveInput(int index) {
DCHECK(index >= 0 && index < InputCount());
// TODO(turbofan): Optimize this implementation!
for (; index < InputCount() - 1; ++index) {
ReplaceInput(index, InputAt(index + 1));
}
TrimInputCount(InputCount() - 1);
}
template <class B, class S>
void GenericNode<B, S>::AppendUse(Use* use) {
use->next = NULL;
use->prev = last_use_;
if (last_use_ == NULL) {
first_use_ = use;
} else {
last_use_->next = use;
}
last_use_ = use;
++use_count_;
}
template <class B, class S>
void GenericNode<B, S>::RemoveUse(Use* use) {
if (last_use_ == use) {
last_use_ = use->prev;
}
if (use->prev != NULL) {
use->prev->next = use->next;
} else {
first_use_ = use->next;
}
if (use->next != NULL) {
use->next->prev = use->prev;
}
--use_count_;
}
template <class B, class S>
inline bool GenericNode<B, S>::OwnedBy(GenericNode* owner) const {
return first_use_ != NULL && first_use_->from == owner &&
first_use_->next == NULL;
}
template <class B, class S>
S* GenericNode<B, S>::New(GenericGraphBase* graph, int input_count, S** inputs,
bool has_extensible_inputs) {
size_t node_size = sizeof(GenericNode);
int reserve_input_count = has_extensible_inputs ? kDefaultReservedInputs : 0;
size_t inputs_size = (input_count + reserve_input_count) * sizeof(Input);
size_t uses_size = input_count * sizeof(Use);
int size = static_cast<int>(node_size + inputs_size + uses_size);
Zone* zone = graph->zone();
void* buffer = zone->New(size);
S* result = new (buffer) S(graph, input_count, reserve_input_count);
Input* input =
reinterpret_cast<Input*>(reinterpret_cast<char*>(buffer) + node_size);
Use* use =
reinterpret_cast<Use*>(reinterpret_cast<char*>(input) + inputs_size);
for (int current = 0; current < input_count; ++current) {
GenericNode* to = *inputs++;
input->to = to;
input->use = use;
use->input_index = current;
use->from = result;
to->AppendUse(use);
++use;
++input;
}
return result;
}
}
}
} // namespace v8::internal::compiler
#endif // V8_COMPILER_GENERIC_NODE_INL_H_