blob: 50e1358d17569fc6ae5fb8ddaddd1f48e7d1185c [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/instruction-selector-unittest.h"
namespace v8 {
namespace internal {
namespace compiler {
namespace {
// Immediates (random subset).
static const int32_t kImmediates[] = {
kMinInt, -42, -1, 0, 1, 2, 3, 4, 5,
6, 7, 8, 16, 42, 0xff, 0xffff, 0x0f0f0f0f, kMaxInt};
} // namespace
TEST_F(InstructionSelectorTest, Int32AddWithParameter) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Int32Add(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kIA32Add, s[0]->arch_opcode());
}
TEST_F(InstructionSelectorTest, Int32AddWithImmediate) {
TRACED_FOREACH(int32_t, imm, kImmediates) {
{
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Int32Add(m.Parameter(0), m.Int32Constant(imm)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kIA32Add, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
}
{
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Int32Add(m.Int32Constant(imm), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kIA32Add, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
}
}
}
TEST_F(InstructionSelectorTest, Int32SubWithParameter) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
m.Return(m.Int32Sub(m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kIA32Sub, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_F(InstructionSelectorTest, Int32SubWithImmediate) {
TRACED_FOREACH(int32_t, imm, kImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32);
m.Return(m.Int32Sub(m.Parameter(0), m.Int32Constant(imm)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kIA32Sub, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
}
}
// -----------------------------------------------------------------------------
// Conversions.
TEST_F(InstructionSelectorTest, ChangeFloat32ToFloat64WithParameter) {
StreamBuilder m(this, kMachFloat32, kMachFloat64);
m.Return(m.ChangeFloat32ToFloat64(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kSSECvtss2sd, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_F(InstructionSelectorTest, TruncateFloat64ToFloat32WithParameter) {
StreamBuilder m(this, kMachFloat64, kMachFloat32);
m.Return(m.TruncateFloat64ToFloat32(m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(kSSECvtsd2ss, s[0]->arch_opcode());
EXPECT_EQ(1U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
// -----------------------------------------------------------------------------
// Better left operand for commutative binops
TEST_F(InstructionSelectorTest, BetterLeftOperandTestAddBinop) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* param1 = m.Parameter(0);
Node* param2 = m.Parameter(1);
Node* add = m.Int32Add(param1, param2);
m.Return(m.Int32Add(add, param1));
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kIA32Add, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
ASSERT_TRUE(s[0]->InputAt(0)->IsUnallocated());
EXPECT_EQ(param2->id(), s.ToVreg(s[0]->InputAt(0)));
}
TEST_F(InstructionSelectorTest, BetterLeftOperandTestMulBinop) {
StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
Node* param1 = m.Parameter(0);
Node* param2 = m.Parameter(1);
Node* mul = m.Int32Mul(param1, param2);
m.Return(m.Int32Mul(mul, param1));
Stream s = m.Build();
ASSERT_EQ(2U, s.size());
EXPECT_EQ(kIA32Imul, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
ASSERT_TRUE(s[0]->InputAt(0)->IsUnallocated());
EXPECT_EQ(param2->id(), s.ToVreg(s[0]->InputAt(0)));
}
// -----------------------------------------------------------------------------
// Loads and stores
namespace {
struct MemoryAccess {
MachineType type;
ArchOpcode load_opcode;
ArchOpcode store_opcode;
};
std::ostream& operator<<(std::ostream& os, const MemoryAccess& memacc) {
OStringStream ost;
ost << memacc.type;
return os << ost.c_str();
}
static const MemoryAccess kMemoryAccesses[] = {
{kMachInt8, kIA32Movsxbl, kIA32Movb},
{kMachUint8, kIA32Movzxbl, kIA32Movb},
{kMachInt16, kIA32Movsxwl, kIA32Movw},
{kMachUint16, kIA32Movzxwl, kIA32Movw},
{kMachInt32, kIA32Movl, kIA32Movl},
{kMachUint32, kIA32Movl, kIA32Movl},
{kMachFloat32, kIA32Movss, kIA32Movss},
{kMachFloat64, kIA32Movsd, kIA32Movsd}};
} // namespace
typedef InstructionSelectorTestWithParam<MemoryAccess>
InstructionSelectorMemoryAccessTest;
TEST_P(InstructionSelectorMemoryAccessTest, LoadWithParameters) {
const MemoryAccess memacc = GetParam();
StreamBuilder m(this, memacc.type, kMachPtr, kMachInt32);
m.Return(m.Load(memacc.type, m.Parameter(0), m.Parameter(1)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.load_opcode, s[0]->arch_opcode());
EXPECT_EQ(2U, s[0]->InputCount());
EXPECT_EQ(1U, s[0]->OutputCount());
}
TEST_P(InstructionSelectorMemoryAccessTest, LoadWithImmediateBase) {
const MemoryAccess memacc = GetParam();
TRACED_FOREACH(int32_t, base, kImmediates) {
StreamBuilder m(this, memacc.type, kMachPtr);
m.Return(m.Load(memacc.type, m.Int32Constant(base), m.Parameter(0)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.load_opcode, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(base, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
TEST_P(InstructionSelectorMemoryAccessTest, LoadWithImmediateIndex) {
const MemoryAccess memacc = GetParam();
TRACED_FOREACH(int32_t, index, kImmediates) {
StreamBuilder m(this, memacc.type, kMachPtr);
m.Return(m.Load(memacc.type, m.Parameter(0), m.Int32Constant(index)));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.load_opcode, s[0]->arch_opcode());
ASSERT_EQ(2U, s[0]->InputCount());
ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(index, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(1U, s[0]->OutputCount());
}
}
TEST_P(InstructionSelectorMemoryAccessTest, StoreWithParameters) {
const MemoryAccess memacc = GetParam();
StreamBuilder m(this, kMachInt32, kMachPtr, kMachInt32, memacc.type);
m.Store(memacc.type, m.Parameter(0), m.Parameter(1), m.Parameter(2));
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.store_opcode, s[0]->arch_opcode());
EXPECT_EQ(3U, s[0]->InputCount());
EXPECT_EQ(0U, s[0]->OutputCount());
}
TEST_P(InstructionSelectorMemoryAccessTest, StoreWithImmediateBase) {
const MemoryAccess memacc = GetParam();
TRACED_FOREACH(int32_t, base, kImmediates) {
StreamBuilder m(this, kMachInt32, kMachInt32, memacc.type);
m.Store(memacc.type, m.Int32Constant(base), m.Parameter(0), m.Parameter(1));
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.store_opcode, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(base, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(0U, s[0]->OutputCount());
}
}
TEST_P(InstructionSelectorMemoryAccessTest, StoreWithImmediateIndex) {
const MemoryAccess memacc = GetParam();
TRACED_FOREACH(int32_t, index, kImmediates) {
StreamBuilder m(this, kMachInt32, kMachPtr, memacc.type);
m.Store(memacc.type, m.Parameter(0), m.Int32Constant(index),
m.Parameter(1));
m.Return(m.Int32Constant(0));
Stream s = m.Build();
ASSERT_EQ(1U, s.size());
EXPECT_EQ(memacc.store_opcode, s[0]->arch_opcode());
ASSERT_EQ(3U, s[0]->InputCount());
ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
EXPECT_EQ(index, s.ToInt32(s[0]->InputAt(1)));
EXPECT_EQ(0U, s[0]->OutputCount());
}
}
INSTANTIATE_TEST_CASE_P(InstructionSelectorTest,
InstructionSelectorMemoryAccessTest,
::testing::ValuesIn(kMemoryAccesses));
} // namespace compiler
} // namespace internal
} // namespace v8