blob: 0fc450a56f43887f469ea9347e33df23b265146b [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#if V8_TARGET_ARCH_X87
#include "src/codegen.h"
#include "src/ic-inl.h"
#include "src/stub-cache.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
static void ProbeTable(Isolate* isolate,
MacroAssembler* masm,
Code::Flags flags,
StubCache::Table table,
Register name,
Register receiver,
// Number of the cache entry pointer-size scaled.
Register offset,
Register extra) {
ExternalReference key_offset(isolate->stub_cache()->key_reference(table));
ExternalReference value_offset(isolate->stub_cache()->value_reference(table));
ExternalReference map_offset(isolate->stub_cache()->map_reference(table));
Label miss;
// Multiply by 3 because there are 3 fields per entry (name, code, map).
__ lea(offset, Operand(offset, offset, times_2, 0));
if (extra.is_valid()) {
// Get the code entry from the cache.
__ mov(extra, Operand::StaticArray(offset, times_1, value_offset));
// Check that the key in the entry matches the name.
__ cmp(name, Operand::StaticArray(offset, times_1, key_offset));
__ j(not_equal, &miss);
// Check the map matches.
__ mov(offset, Operand::StaticArray(offset, times_1, map_offset));
__ cmp(offset, FieldOperand(receiver, HeapObject::kMapOffset));
__ j(not_equal, &miss);
// Check that the flags match what we're looking for.
__ mov(offset, FieldOperand(extra, Code::kFlagsOffset));
__ and_(offset, ~Code::kFlagsNotUsedInLookup);
__ cmp(offset, flags);
__ j(not_equal, &miss);
#ifdef DEBUG
if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) {
__ jmp(&miss);
} else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) {
__ jmp(&miss);
}
#endif
// Jump to the first instruction in the code stub.
__ add(extra, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(extra);
__ bind(&miss);
} else {
// Save the offset on the stack.
__ push(offset);
// Check that the key in the entry matches the name.
__ cmp(name, Operand::StaticArray(offset, times_1, key_offset));
__ j(not_equal, &miss);
// Check the map matches.
__ mov(offset, Operand::StaticArray(offset, times_1, map_offset));
__ cmp(offset, FieldOperand(receiver, HeapObject::kMapOffset));
__ j(not_equal, &miss);
// Restore offset register.
__ mov(offset, Operand(esp, 0));
// Get the code entry from the cache.
__ mov(offset, Operand::StaticArray(offset, times_1, value_offset));
// Check that the flags match what we're looking for.
__ mov(offset, FieldOperand(offset, Code::kFlagsOffset));
__ and_(offset, ~Code::kFlagsNotUsedInLookup);
__ cmp(offset, flags);
__ j(not_equal, &miss);
#ifdef DEBUG
if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) {
__ jmp(&miss);
} else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) {
__ jmp(&miss);
}
#endif
// Restore offset and re-load code entry from cache.
__ pop(offset);
__ mov(offset, Operand::StaticArray(offset, times_1, value_offset));
// Jump to the first instruction in the code stub.
__ add(offset, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(offset);
// Pop at miss.
__ bind(&miss);
__ pop(offset);
}
}
void PropertyHandlerCompiler::GenerateDictionaryNegativeLookup(
MacroAssembler* masm, Label* miss_label, Register receiver,
Handle<Name> name, Register scratch0, Register scratch1) {
DCHECK(name->IsUniqueName());
DCHECK(!receiver.is(scratch0));
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->negative_lookups(), 1);
__ IncrementCounter(counters->negative_lookups_miss(), 1);
__ mov(scratch0, FieldOperand(receiver, HeapObject::kMapOffset));
const int kInterceptorOrAccessCheckNeededMask =
(1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);
// Bail out if the receiver has a named interceptor or requires access checks.
__ test_b(FieldOperand(scratch0, Map::kBitFieldOffset),
kInterceptorOrAccessCheckNeededMask);
__ j(not_zero, miss_label);
// Check that receiver is a JSObject.
__ CmpInstanceType(scratch0, FIRST_SPEC_OBJECT_TYPE);
__ j(below, miss_label);
// Load properties array.
Register properties = scratch0;
__ mov(properties, FieldOperand(receiver, JSObject::kPropertiesOffset));
// Check that the properties array is a dictionary.
__ cmp(FieldOperand(properties, HeapObject::kMapOffset),
Immediate(masm->isolate()->factory()->hash_table_map()));
__ j(not_equal, miss_label);
Label done;
NameDictionaryLookupStub::GenerateNegativeLookup(masm,
miss_label,
&done,
properties,
name,
scratch1);
__ bind(&done);
__ DecrementCounter(counters->negative_lookups_miss(), 1);
}
void StubCache::GenerateProbe(MacroAssembler* masm,
Code::Flags flags,
Register receiver,
Register name,
Register scratch,
Register extra,
Register extra2,
Register extra3) {
Label miss;
// Assert that code is valid. The multiplying code relies on the entry size
// being 12.
DCHECK(sizeof(Entry) == 12);
// Assert the flags do not name a specific type.
DCHECK(Code::ExtractTypeFromFlags(flags) == 0);
// Assert that there are no register conflicts.
DCHECK(!scratch.is(receiver));
DCHECK(!scratch.is(name));
DCHECK(!extra.is(receiver));
DCHECK(!extra.is(name));
DCHECK(!extra.is(scratch));
// Assert scratch and extra registers are valid, and extra2/3 are unused.
DCHECK(!scratch.is(no_reg));
DCHECK(extra2.is(no_reg));
DCHECK(extra3.is(no_reg));
Register offset = scratch;
scratch = no_reg;
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->megamorphic_stub_cache_probes(), 1);
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Get the map of the receiver and compute the hash.
__ mov(offset, FieldOperand(name, Name::kHashFieldOffset));
__ add(offset, FieldOperand(receiver, HeapObject::kMapOffset));
__ xor_(offset, flags);
// We mask out the last two bits because they are not part of the hash and
// they are always 01 for maps. Also in the two 'and' instructions below.
__ and_(offset, (kPrimaryTableSize - 1) << kCacheIndexShift);
// ProbeTable expects the offset to be pointer scaled, which it is, because
// the heap object tag size is 2 and the pointer size log 2 is also 2.
DCHECK(kCacheIndexShift == kPointerSizeLog2);
// Probe the primary table.
ProbeTable(isolate(), masm, flags, kPrimary, name, receiver, offset, extra);
// Primary miss: Compute hash for secondary probe.
__ mov(offset, FieldOperand(name, Name::kHashFieldOffset));
__ add(offset, FieldOperand(receiver, HeapObject::kMapOffset));
__ xor_(offset, flags);
__ and_(offset, (kPrimaryTableSize - 1) << kCacheIndexShift);
__ sub(offset, name);
__ add(offset, Immediate(flags));
__ and_(offset, (kSecondaryTableSize - 1) << kCacheIndexShift);
// Probe the secondary table.
ProbeTable(
isolate(), masm, flags, kSecondary, name, receiver, offset, extra);
// Cache miss: Fall-through and let caller handle the miss by
// entering the runtime system.
__ bind(&miss);
__ IncrementCounter(counters->megamorphic_stub_cache_misses(), 1);
}
void NamedLoadHandlerCompiler::GenerateDirectLoadGlobalFunctionPrototype(
MacroAssembler* masm, int index, Register prototype, Label* miss) {
// Get the global function with the given index.
Handle<JSFunction> function(
JSFunction::cast(masm->isolate()->native_context()->get(index)));
// Check we're still in the same context.
Register scratch = prototype;
const int offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX);
__ mov(scratch, Operand(esi, offset));
__ mov(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset));
__ cmp(Operand(scratch, Context::SlotOffset(index)), function);
__ j(not_equal, miss);
// Load its initial map. The global functions all have initial maps.
__ Move(prototype, Immediate(Handle<Map>(function->initial_map())));
// Load the prototype from the initial map.
__ mov(prototype, FieldOperand(prototype, Map::kPrototypeOffset));
}
void NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(
MacroAssembler* masm, Register receiver, Register scratch1,
Register scratch2, Label* miss_label) {
__ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label);
__ mov(eax, scratch1);
__ ret(0);
}
static void PushInterceptorArguments(MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
Handle<JSObject> holder_obj) {
STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex == 0);
STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsInfoIndex == 1);
STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex == 2);
STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex == 3);
STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsLength == 4);
__ push(name);
Handle<InterceptorInfo> interceptor(holder_obj->GetNamedInterceptor());
DCHECK(!masm->isolate()->heap()->InNewSpace(*interceptor));
Register scratch = name;
__ mov(scratch, Immediate(interceptor));
__ push(scratch);
__ push(receiver);
__ push(holder);
}
static void CompileCallLoadPropertyWithInterceptor(
MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
Handle<JSObject> holder_obj,
IC::UtilityId id) {
PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
__ CallExternalReference(ExternalReference(IC_Utility(id), masm->isolate()),
NamedLoadHandlerCompiler::kInterceptorArgsLength);
}
// Generate call to api function.
// This function uses push() to generate smaller, faster code than
// the version above. It is an optimization that should will be removed
// when api call ICs are generated in hydrogen.
void PropertyHandlerCompiler::GenerateFastApiCall(
MacroAssembler* masm, const CallOptimization& optimization,
Handle<Map> receiver_map, Register receiver, Register scratch_in,
bool is_store, int argc, Register* values) {
// Copy return value.
__ pop(scratch_in);
// receiver
__ push(receiver);
// Write the arguments to stack frame.
for (int i = 0; i < argc; i++) {
Register arg = values[argc-1-i];
DCHECK(!receiver.is(arg));
DCHECK(!scratch_in.is(arg));
__ push(arg);
}
__ push(scratch_in);
// Stack now matches JSFunction abi.
DCHECK(optimization.is_simple_api_call());
// Abi for CallApiFunctionStub.
Register callee = eax;
Register call_data = ebx;
Register holder = ecx;
Register api_function_address = edx;
Register scratch = edi; // scratch_in is no longer valid.
// Put holder in place.
CallOptimization::HolderLookup holder_lookup;
Handle<JSObject> api_holder = optimization.LookupHolderOfExpectedType(
receiver_map,
&holder_lookup);
switch (holder_lookup) {
case CallOptimization::kHolderIsReceiver:
__ Move(holder, receiver);
break;
case CallOptimization::kHolderFound:
__ LoadHeapObject(holder, api_holder);
break;
case CallOptimization::kHolderNotFound:
UNREACHABLE();
break;
}
Isolate* isolate = masm->isolate();
Handle<JSFunction> function = optimization.constant_function();
Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
Handle<Object> call_data_obj(api_call_info->data(), isolate);
// Put callee in place.
__ LoadHeapObject(callee, function);
bool call_data_undefined = false;
// Put call_data in place.
if (isolate->heap()->InNewSpace(*call_data_obj)) {
__ mov(scratch, api_call_info);
__ mov(call_data, FieldOperand(scratch, CallHandlerInfo::kDataOffset));
} else if (call_data_obj->IsUndefined()) {
call_data_undefined = true;
__ mov(call_data, Immediate(isolate->factory()->undefined_value()));
} else {
__ mov(call_data, call_data_obj);
}
// Put api_function_address in place.
Address function_address = v8::ToCData<Address>(api_call_info->callback());
__ mov(api_function_address, Immediate(function_address));
// Jump to stub.
CallApiFunctionStub stub(isolate, is_store, call_data_undefined, argc);
__ TailCallStub(&stub);
}
// Generate code to check that a global property cell is empty. Create
// the property cell at compilation time if no cell exists for the
// property.
void PropertyHandlerCompiler::GenerateCheckPropertyCell(
MacroAssembler* masm, Handle<JSGlobalObject> global, Handle<Name> name,
Register scratch, Label* miss) {
Handle<PropertyCell> cell =
JSGlobalObject::EnsurePropertyCell(global, name);
DCHECK(cell->value()->IsTheHole());
Handle<Oddball> the_hole = masm->isolate()->factory()->the_hole_value();
if (masm->serializer_enabled()) {
__ mov(scratch, Immediate(cell));
__ cmp(FieldOperand(scratch, PropertyCell::kValueOffset),
Immediate(the_hole));
} else {
__ cmp(Operand::ForCell(cell), Immediate(the_hole));
}
__ j(not_equal, miss);
}
void PropertyAccessCompiler::GenerateTailCall(MacroAssembler* masm,
Handle<Code> code) {
__ jmp(code, RelocInfo::CODE_TARGET);
}
#undef __
#define __ ACCESS_MASM(masm())
void NamedStoreHandlerCompiler::GenerateRestoreName(Label* label,
Handle<Name> name) {
if (!label->is_unused()) {
__ bind(label);
__ mov(this->name(), Immediate(name));
}
}
// Receiver_reg is preserved on jumps to miss_label, but may be destroyed if
// store is successful.
void NamedStoreHandlerCompiler::GenerateStoreTransition(
Handle<Map> transition, Handle<Name> name, Register receiver_reg,
Register storage_reg, Register value_reg, Register scratch1,
Register scratch2, Register unused, Label* miss_label, Label* slow) {
int descriptor = transition->LastAdded();
DescriptorArray* descriptors = transition->instance_descriptors();
PropertyDetails details = descriptors->GetDetails(descriptor);
Representation representation = details.representation();
DCHECK(!representation.IsNone());
if (details.type() == CONSTANT) {
Handle<Object> constant(descriptors->GetValue(descriptor), isolate());
__ CmpObject(value_reg, constant);
__ j(not_equal, miss_label);
} else if (representation.IsSmi()) {
__ JumpIfNotSmi(value_reg, miss_label);
} else if (representation.IsHeapObject()) {
__ JumpIfSmi(value_reg, miss_label);
HeapType* field_type = descriptors->GetFieldType(descriptor);
HeapType::Iterator<Map> it = field_type->Classes();
if (!it.Done()) {
Label do_store;
while (true) {
__ CompareMap(value_reg, it.Current());
it.Advance();
if (it.Done()) {
__ j(not_equal, miss_label);
break;
}
__ j(equal, &do_store, Label::kNear);
}
__ bind(&do_store);
}
} else if (representation.IsDouble()) {
Label do_store, heap_number;
__ AllocateHeapNumber(storage_reg, scratch1, scratch2, slow, MUTABLE);
__ JumpIfNotSmi(value_reg, &heap_number);
__ SmiUntag(value_reg);
__ push(value_reg);
__ fild_s(Operand(esp, 0));
__ pop(value_reg);
__ SmiTag(value_reg);
__ jmp(&do_store);
__ bind(&heap_number);
__ CheckMap(value_reg, isolate()->factory()->heap_number_map(), miss_label,
DONT_DO_SMI_CHECK);
__ fld_d(FieldOperand(value_reg, HeapNumber::kValueOffset));
__ bind(&do_store);
__ fstp_d(FieldOperand(storage_reg, HeapNumber::kValueOffset));
}
// Stub never generated for objects that require access checks.
DCHECK(!transition->is_access_check_needed());
// Perform map transition for the receiver if necessary.
if (details.type() == FIELD &&
Map::cast(transition->GetBackPointer())->unused_property_fields() == 0) {
// The properties must be extended before we can store the value.
// We jump to a runtime call that extends the properties array.
__ pop(scratch1); // Return address.
__ push(receiver_reg);
__ push(Immediate(transition));
__ push(value_reg);
__ push(scratch1);
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage),
isolate()),
3, 1);
return;
}
// Update the map of the object.
__ mov(scratch1, Immediate(transition));
__ mov(FieldOperand(receiver_reg, HeapObject::kMapOffset), scratch1);
// Update the write barrier for the map field.
__ RecordWriteField(receiver_reg,
HeapObject::kMapOffset,
scratch1,
scratch2,
OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
if (details.type() == CONSTANT) {
DCHECK(value_reg.is(eax));
__ ret(0);
return;
}
int index = transition->instance_descriptors()->GetFieldIndex(
transition->LastAdded());
// Adjust for the number of properties stored in the object. Even in the
// face of a transition we can use the old map here because the size of the
// object and the number of in-object properties is not going to change.
index -= transition->inobject_properties();
SmiCheck smi_check = representation.IsTagged()
? INLINE_SMI_CHECK : OMIT_SMI_CHECK;
// TODO(verwaest): Share this code as a code stub.
if (index < 0) {
// Set the property straight into the object.
int offset = transition->instance_size() + (index * kPointerSize);
if (representation.IsDouble()) {
__ mov(FieldOperand(receiver_reg, offset), storage_reg);
} else {
__ mov(FieldOperand(receiver_reg, offset), value_reg);
}
if (!representation.IsSmi()) {
// Update the write barrier for the array address.
if (!representation.IsDouble()) {
__ mov(storage_reg, value_reg);
}
__ RecordWriteField(receiver_reg,
offset,
storage_reg,
scratch1,
EMIT_REMEMBERED_SET,
smi_check);
}
} else {
// Write to the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
// Get the properties array (optimistically).
__ mov(scratch1, FieldOperand(receiver_reg, JSObject::kPropertiesOffset));
if (representation.IsDouble()) {
__ mov(FieldOperand(scratch1, offset), storage_reg);
} else {
__ mov(FieldOperand(scratch1, offset), value_reg);
}
if (!representation.IsSmi()) {
// Update the write barrier for the array address.
if (!representation.IsDouble()) {
__ mov(storage_reg, value_reg);
}
__ RecordWriteField(scratch1,
offset,
storage_reg,
receiver_reg,
EMIT_REMEMBERED_SET,
smi_check);
}
}
// Return the value (register eax).
DCHECK(value_reg.is(eax));
__ ret(0);
}
void NamedStoreHandlerCompiler::GenerateStoreField(LookupResult* lookup,
Register value_reg,
Label* miss_label) {
DCHECK(lookup->representation().IsHeapObject());
__ JumpIfSmi(value_reg, miss_label);
HeapType::Iterator<Map> it = lookup->GetFieldType()->Classes();
Label do_store;
while (true) {
__ CompareMap(value_reg, it.Current());
it.Advance();
if (it.Done()) {
__ j(not_equal, miss_label);
break;
}
__ j(equal, &do_store, Label::kNear);
}
__ bind(&do_store);
StoreFieldStub stub(isolate(), lookup->GetFieldIndex(),
lookup->representation());
GenerateTailCall(masm(), stub.GetCode());
}
Register PropertyHandlerCompiler::CheckPrototypes(
Register object_reg, Register holder_reg, Register scratch1,
Register scratch2, Handle<Name> name, Label* miss,
PrototypeCheckType check) {
Handle<Map> receiver_map(IC::TypeToMap(*type(), isolate()));
// Make sure there's no overlap between holder and object registers.
DCHECK(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
DCHECK(!scratch2.is(object_reg) && !scratch2.is(holder_reg)
&& !scratch2.is(scratch1));
// Keep track of the current object in register reg.
Register reg = object_reg;
int depth = 0;
Handle<JSObject> current = Handle<JSObject>::null();
if (type()->IsConstant())
current = Handle<JSObject>::cast(type()->AsConstant()->Value());
Handle<JSObject> prototype = Handle<JSObject>::null();
Handle<Map> current_map = receiver_map;
Handle<Map> holder_map(holder()->map());
// Traverse the prototype chain and check the maps in the prototype chain for
// fast and global objects or do negative lookup for normal objects.
while (!current_map.is_identical_to(holder_map)) {
++depth;
// Only global objects and objects that do not require access
// checks are allowed in stubs.
DCHECK(current_map->IsJSGlobalProxyMap() ||
!current_map->is_access_check_needed());
prototype = handle(JSObject::cast(current_map->prototype()));
if (current_map->is_dictionary_map() &&
!current_map->IsJSGlobalObjectMap()) {
DCHECK(!current_map->IsJSGlobalProxyMap()); // Proxy maps are fast.
if (!name->IsUniqueName()) {
DCHECK(name->IsString());
name = factory()->InternalizeString(Handle<String>::cast(name));
}
DCHECK(current.is_null() ||
current->property_dictionary()->FindEntry(name) ==
NameDictionary::kNotFound);
GenerateDictionaryNegativeLookup(masm(), miss, reg, name,
scratch1, scratch2);
__ mov(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
reg = holder_reg; // From now on the object will be in holder_reg.
__ mov(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
} else {
bool in_new_space = heap()->InNewSpace(*prototype);
// Two possible reasons for loading the prototype from the map:
// (1) Can't store references to new space in code.
// (2) Handler is shared for all receivers with the same prototype
// map (but not necessarily the same prototype instance).
bool load_prototype_from_map = in_new_space || depth == 1;
if (depth != 1 || check == CHECK_ALL_MAPS) {
__ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK);
}
// Check access rights to the global object. This has to happen after
// the map check so that we know that the object is actually a global
// object.
// This allows us to install generated handlers for accesses to the
// global proxy (as opposed to using slow ICs). See corresponding code
// in LookupForRead().
if (current_map->IsJSGlobalProxyMap()) {
__ CheckAccessGlobalProxy(reg, scratch1, scratch2, miss);
} else if (current_map->IsJSGlobalObjectMap()) {
GenerateCheckPropertyCell(
masm(), Handle<JSGlobalObject>::cast(current), name,
scratch2, miss);
}
if (load_prototype_from_map) {
// Save the map in scratch1 for later.
__ mov(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
}
reg = holder_reg; // From now on the object will be in holder_reg.
if (load_prototype_from_map) {
__ mov(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
} else {
__ mov(reg, prototype);
}
}
// Go to the next object in the prototype chain.
current = prototype;
current_map = handle(current->map());
}
// Log the check depth.
LOG(isolate(), IntEvent("check-maps-depth", depth + 1));
if (depth != 0 || check == CHECK_ALL_MAPS) {
// Check the holder map.
__ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK);
}
// Perform security check for access to the global object.
DCHECK(current_map->IsJSGlobalProxyMap() ||
!current_map->is_access_check_needed());
if (current_map->IsJSGlobalProxyMap()) {
__ CheckAccessGlobalProxy(reg, scratch1, scratch2, miss);
}
// Return the register containing the holder.
return reg;
}
void NamedLoadHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
if (!miss->is_unused()) {
Label success;
__ jmp(&success);
__ bind(miss);
TailCallBuiltin(masm(), MissBuiltin(kind()));
__ bind(&success);
}
}
void NamedStoreHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
if (!miss->is_unused()) {
Label success;
__ jmp(&success);
GenerateRestoreName(miss, name);
TailCallBuiltin(masm(), MissBuiltin(kind()));
__ bind(&success);
}
}
void NamedLoadHandlerCompiler::GenerateLoadCallback(
Register reg, Handle<ExecutableAccessorInfo> callback) {
// Insert additional parameters into the stack frame above return address.
DCHECK(!scratch3().is(reg));
__ pop(scratch3()); // Get return address to place it below.
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 3);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 4);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 5);
__ push(receiver()); // receiver
// Push data from ExecutableAccessorInfo.
if (isolate()->heap()->InNewSpace(callback->data())) {
DCHECK(!scratch2().is(reg));
__ mov(scratch2(), Immediate(callback));
__ push(FieldOperand(scratch2(), ExecutableAccessorInfo::kDataOffset));
} else {
__ push(Immediate(Handle<Object>(callback->data(), isolate())));
}
__ push(Immediate(isolate()->factory()->undefined_value())); // ReturnValue
// ReturnValue default value
__ push(Immediate(isolate()->factory()->undefined_value()));
__ push(Immediate(reinterpret_cast<int>(isolate())));
__ push(reg); // holder
// Save a pointer to where we pushed the arguments. This will be
// passed as the const PropertyAccessorInfo& to the C++ callback.
__ push(esp);
__ push(name()); // name
__ push(scratch3()); // Restore return address.
// Abi for CallApiGetter
Register getter_address = edx;
Address function_address = v8::ToCData<Address>(callback->getter());
__ mov(getter_address, Immediate(function_address));
CallApiGetterStub stub(isolate());
__ TailCallStub(&stub);
}
void NamedLoadHandlerCompiler::GenerateLoadConstant(Handle<Object> value) {
// Return the constant value.
__ LoadObject(eax, value);
__ ret(0);
}
void NamedLoadHandlerCompiler::GenerateLoadInterceptor(Register holder_reg,
LookupResult* lookup,
Handle<Name> name) {
DCHECK(holder()->HasNamedInterceptor());
DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined());
// So far the most popular follow ups for interceptor loads are FIELD
// and CALLBACKS, so inline only them, other cases may be added
// later.
bool compile_followup_inline = false;
if (lookup->IsFound() && lookup->IsCacheable()) {
if (lookup->IsField()) {
compile_followup_inline = true;
} else if (lookup->type() == CALLBACKS &&
lookup->GetCallbackObject()->IsExecutableAccessorInfo()) {
Handle<ExecutableAccessorInfo> callback(
ExecutableAccessorInfo::cast(lookup->GetCallbackObject()));
compile_followup_inline =
callback->getter() != NULL &&
ExecutableAccessorInfo::IsCompatibleReceiverType(isolate(), callback,
type());
}
}
if (compile_followup_inline) {
// Compile the interceptor call, followed by inline code to load the
// property from further up the prototype chain if the call fails.
// Check that the maps haven't changed.
DCHECK(holder_reg.is(receiver()) || holder_reg.is(scratch1()));
// Preserve the receiver register explicitly whenever it is different from
// the holder and it is needed should the interceptor return without any
// result. The CALLBACKS case needs the receiver to be passed into C++ code,
// the FIELD case might cause a miss during the prototype check.
bool must_perfrom_prototype_check = *holder() != lookup->holder();
bool must_preserve_receiver_reg = !receiver().is(holder_reg) &&
(lookup->type() == CALLBACKS || must_perfrom_prototype_check);
// Save necessary data before invoking an interceptor.
// Requires a frame to make GC aware of pushed pointers.
{
FrameScope frame_scope(masm(), StackFrame::INTERNAL);
if (must_preserve_receiver_reg) {
__ push(receiver());
}
__ push(holder_reg);
__ push(this->name());
// Invoke an interceptor. Note: map checks from receiver to
// interceptor's holder has been compiled before (see a caller
// of this method.)
CompileCallLoadPropertyWithInterceptor(
masm(), receiver(), holder_reg, this->name(), holder(),
IC::kLoadPropertyWithInterceptorOnly);
// Check if interceptor provided a value for property. If it's
// the case, return immediately.
Label interceptor_failed;
__ cmp(eax, factory()->no_interceptor_result_sentinel());
__ j(equal, &interceptor_failed);
frame_scope.GenerateLeaveFrame();
__ ret(0);
// Clobber registers when generating debug-code to provoke errors.
__ bind(&interceptor_failed);
if (FLAG_debug_code) {
__ mov(receiver(), Immediate(BitCast<int32_t>(kZapValue)));
__ mov(holder_reg, Immediate(BitCast<int32_t>(kZapValue)));
__ mov(this->name(), Immediate(BitCast<int32_t>(kZapValue)));
}
__ pop(this->name());
__ pop(holder_reg);
if (must_preserve_receiver_reg) {
__ pop(receiver());
}
// Leave the internal frame.
}
GenerateLoadPostInterceptor(holder_reg, name, lookup);
} else { // !compile_followup_inline
// Call the runtime system to load the interceptor.
// Check that the maps haven't changed.
__ pop(scratch2()); // save old return address
PushInterceptorArguments(masm(), receiver(), holder_reg, this->name(),
holder());
__ push(scratch2()); // restore old return address
ExternalReference ref =
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptor),
isolate());
__ TailCallExternalReference(
ref, NamedLoadHandlerCompiler::kInterceptorArgsLength, 1);
}
}
Handle<Code> NamedStoreHandlerCompiler::CompileStoreCallback(
Handle<JSObject> object, Handle<Name> name,
Handle<ExecutableAccessorInfo> callback) {
Register holder_reg = Frontend(receiver(), name);
__ pop(scratch1()); // remove the return address
__ push(receiver());
__ push(holder_reg);
__ Push(callback);
__ Push(name);
__ push(value());
__ push(scratch1()); // restore return address
// Do tail-call to the runtime system.
ExternalReference store_callback_property =
ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate());
__ TailCallExternalReference(store_callback_property, 5, 1);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
#undef __
#define __ ACCESS_MASM(masm)
void NamedStoreHandlerCompiler::GenerateStoreViaSetter(
MacroAssembler* masm, Handle<HeapType> type, Register receiver,
Handle<JSFunction> setter) {
// ----------- S t a t e -------------
// -- esp[0] : return address
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Save value register, so we can restore it later.
__ push(value());
if (!setter.is_null()) {
// Call the JavaScript setter with receiver and value on the stack.
if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) {
// Swap in the global receiver.
__ mov(receiver,
FieldOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
}
__ push(receiver);
__ push(value());
ParameterCount actual(1);
ParameterCount expected(setter);
__ InvokeFunction(setter, expected, actual,
CALL_FUNCTION, NullCallWrapper());
} else {
// If we generate a global code snippet for deoptimization only, remember
// the place to continue after deoptimization.
masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset());
}
// We have to return the passed value, not the return value of the setter.
__ pop(eax);
// Restore context register.
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
}
__ ret(0);
}
#undef __
#define __ ACCESS_MASM(masm())
Handle<Code> NamedStoreHandlerCompiler::CompileStoreInterceptor(
Handle<Name> name) {
__ pop(scratch1()); // remove the return address
__ push(receiver());
__ push(this->name());
__ push(value());
__ push(scratch1()); // restore return address
// Do tail-call to the runtime system.
ExternalReference store_ic_property = ExternalReference(
IC_Utility(IC::kStorePropertyWithInterceptor), isolate());
__ TailCallExternalReference(store_ic_property, 3, 1);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Handle<Code> PropertyICCompiler::CompileKeyedStorePolymorphic(
MapHandleList* receiver_maps, CodeHandleList* handler_stubs,
MapHandleList* transitioned_maps) {
Label miss;
__ JumpIfSmi(receiver(), &miss, Label::kNear);
__ mov(scratch1(), FieldOperand(receiver(), HeapObject::kMapOffset));
for (int i = 0; i < receiver_maps->length(); ++i) {
__ cmp(scratch1(), receiver_maps->at(i));
if (transitioned_maps->at(i).is_null()) {
__ j(equal, handler_stubs->at(i));
} else {
Label next_map;
__ j(not_equal, &next_map, Label::kNear);
__ mov(transition_map(), Immediate(transitioned_maps->at(i)));
__ jmp(handler_stubs->at(i), RelocInfo::CODE_TARGET);
__ bind(&next_map);
}
}
__ bind(&miss);
TailCallBuiltin(masm(), MissBuiltin(kind()));
// Return the generated code.
return GetCode(kind(), Code::NORMAL, factory()->empty_string(), POLYMORPHIC);
}
Register* PropertyAccessCompiler::load_calling_convention() {
// receiver, name, scratch1, scratch2, scratch3, scratch4.
Register receiver = LoadIC::ReceiverRegister();
Register name = LoadIC::NameRegister();
static Register registers[] = { receiver, name, ebx, eax, edi, no_reg };
return registers;
}
Register* PropertyAccessCompiler::store_calling_convention() {
// receiver, name, scratch1, scratch2, scratch3.
Register receiver = StoreIC::ReceiverRegister();
Register name = StoreIC::NameRegister();
DCHECK(ebx.is(KeyedStoreIC::MapRegister()));
static Register registers[] = { receiver, name, ebx, edi, no_reg };
return registers;
}
Register NamedStoreHandlerCompiler::value() { return StoreIC::ValueRegister(); }
#undef __
#define __ ACCESS_MASM(masm)
void NamedLoadHandlerCompiler::GenerateLoadViaGetter(
MacroAssembler* masm, Handle<HeapType> type, Register receiver,
Handle<JSFunction> getter) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
if (!getter.is_null()) {
// Call the JavaScript getter with the receiver on the stack.
if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) {
// Swap in the global receiver.
__ mov(receiver,
FieldOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
}
__ push(receiver);
ParameterCount actual(0);
ParameterCount expected(getter);
__ InvokeFunction(getter, expected, actual,
CALL_FUNCTION, NullCallWrapper());
} else {
// If we generate a global code snippet for deoptimization only, remember
// the place to continue after deoptimization.
masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset());
}
// Restore context register.
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
}
__ ret(0);
}
#undef __
#define __ ACCESS_MASM(masm())
Handle<Code> NamedLoadHandlerCompiler::CompileLoadGlobal(
Handle<PropertyCell> cell, Handle<Name> name, bool is_configurable) {
Label miss;
FrontendHeader(receiver(), name, &miss);
// Get the value from the cell.
Register result = StoreIC::ValueRegister();
if (masm()->serializer_enabled()) {
__ mov(result, Immediate(cell));
__ mov(result, FieldOperand(result, PropertyCell::kValueOffset));
} else {
__ mov(result, Operand::ForCell(cell));
}
// Check for deleted property if property can actually be deleted.
if (is_configurable) {
__ cmp(result, factory()->the_hole_value());
__ j(equal, &miss);
} else if (FLAG_debug_code) {
__ cmp(result, factory()->the_hole_value());
__ Check(not_equal, kDontDeleteCellsCannotContainTheHole);
}
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->named_load_global_stub(), 1);
// The code above already loads the result into the return register.
__ ret(0);
FrontendFooter(name, &miss);
// Return the generated code.
return GetCode(kind(), Code::NORMAL, name);
}
Handle<Code> PropertyICCompiler::CompilePolymorphic(TypeHandleList* types,
CodeHandleList* handlers,
Handle<Name> name,
Code::StubType type,
IcCheckType check) {
Label miss;
if (check == PROPERTY &&
(kind() == Code::KEYED_LOAD_IC || kind() == Code::KEYED_STORE_IC)) {
// In case we are compiling an IC for dictionary loads and stores, just
// check whether the name is unique.
if (name.is_identical_to(isolate()->factory()->normal_ic_symbol())) {
__ JumpIfNotUniqueName(this->name(), &miss);
} else {
__ cmp(this->name(), Immediate(name));
__ j(not_equal, &miss);
}
}
Label number_case;
Label* smi_target = IncludesNumberType(types) ? &number_case : &miss;
__ JumpIfSmi(receiver(), smi_target);
// Polymorphic keyed stores may use the map register
Register map_reg = scratch1();
DCHECK(kind() != Code::KEYED_STORE_IC ||
map_reg.is(KeyedStoreIC::MapRegister()));
__ mov(map_reg, FieldOperand(receiver(), HeapObject::kMapOffset));
int receiver_count = types->length();
int number_of_handled_maps = 0;
for (int current = 0; current < receiver_count; ++current) {
Handle<HeapType> type = types->at(current);
Handle<Map> map = IC::TypeToMap(*type, isolate());
if (!map->is_deprecated()) {
number_of_handled_maps++;
__ cmp(map_reg, map);
if (type->Is(HeapType::Number())) {
DCHECK(!number_case.is_unused());
__ bind(&number_case);
}
__ j(equal, handlers->at(current));
}
}
DCHECK(number_of_handled_maps != 0);
__ bind(&miss);
TailCallBuiltin(masm(), MissBuiltin(kind()));
// Return the generated code.
InlineCacheState state =
number_of_handled_maps > 1 ? POLYMORPHIC : MONOMORPHIC;
return GetCode(kind(), type, name, state);
}
#undef __
#define __ ACCESS_MASM(masm)
void ElementHandlerCompiler::GenerateLoadDictionaryElement(
MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
DCHECK(edx.is(LoadIC::ReceiverRegister()));
DCHECK(ecx.is(LoadIC::NameRegister()));
Label slow, miss;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
__ JumpIfNotSmi(ecx, &miss);
__ mov(ebx, ecx);
__ SmiUntag(ebx);
__ mov(eax, FieldOperand(edx, JSObject::kElementsOffset));
// Push receiver on the stack to free up a register for the dictionary
// probing.
__ push(edx);
__ LoadFromNumberDictionary(&slow, eax, ecx, ebx, edx, edi, eax);
// Pop receiver before returning.
__ pop(edx);
__ ret(0);
__ bind(&slow);
__ pop(edx);
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
TailCallBuiltin(masm, Builtins::kKeyedLoadIC_Slow);
__ bind(&miss);
// ----------- S t a t e -------------
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
TailCallBuiltin(masm, Builtins::kKeyedLoadIC_Miss);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X87