blob: 190fdb1920ce414abe2c146c2c8d22f5865165ce [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "accessors.h"
#include "api.h"
#include "arguments.h"
#include "codegen.h"
#include "execution.h"
#include "ic-inl.h"
#include "runtime.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
#ifdef DEBUG
char IC::TransitionMarkFromState(IC::State state) {
switch (state) {
case UNINITIALIZED: return '0';
case PREMONOMORPHIC: return '.';
case MONOMORPHIC: return '1';
case MONOMORPHIC_PROTOTYPE_FAILURE: return '^';
case POLYMORPHIC: return 'P';
case MEGAMORPHIC: return 'N';
case GENERIC: return 'G';
// We never see the debugger states here, because the state is
// computed from the original code - not the patched code. Let
// these cases fall through to the unreachable code below.
case DEBUG_STUB: break;
}
UNREACHABLE();
return 0;
}
const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) {
if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW";
if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
return ".IGNORE_OOB";
}
if (IsGrowStoreMode(mode)) return ".GROW";
return "";
}
void IC::TraceIC(const char* type,
Handle<Object> name,
State old_state,
Code* new_target) {
if (FLAG_trace_ic) {
Object* undef = new_target->GetHeap()->undefined_value();
State new_state = StateFrom(new_target, undef, undef);
PrintF("[%s in ", type);
Isolate* isolate = new_target->GetIsolate();
StackFrameIterator it(isolate);
while (it.frame()->fp() != this->fp()) it.Advance();
StackFrame* raw_frame = it.frame();
if (raw_frame->is_internal()) {
Code* apply_builtin = isolate->builtins()->builtin(
Builtins::kFunctionApply);
if (raw_frame->unchecked_code() == apply_builtin) {
PrintF("apply from ");
it.Advance();
raw_frame = it.frame();
}
}
JavaScriptFrame::PrintTop(isolate, stdout, false, true);
Code::ExtraICState state = new_target->extra_ic_state();
const char* modifier =
GetTransitionMarkModifier(Code::GetKeyedAccessStoreMode(state));
PrintF(" (%c->%c%s)",
TransitionMarkFromState(old_state),
TransitionMarkFromState(new_state),
modifier);
name->Print();
PrintF("]\n");
}
}
#define TRACE_GENERIC_IC(isolate, type, reason) \
do { \
if (FLAG_trace_ic) { \
PrintF("[%s patching generic stub in ", type); \
JavaScriptFrame::PrintTop(isolate, stdout, false, true); \
PrintF(" (%s)]\n", reason); \
} \
} while (false)
#else
#define TRACE_GENERIC_IC(isolate, type, reason)
#endif // DEBUG
#define TRACE_IC(type, name, old_state, new_target) \
ASSERT((TraceIC(type, name, old_state, new_target), true))
IC::IC(FrameDepth depth, Isolate* isolate) : isolate_(isolate) {
// To improve the performance of the (much used) IC code, we unfold a few
// levels of the stack frame iteration code. This yields a ~35% speedup when
// running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag.
const Address entry =
Isolate::c_entry_fp(isolate->thread_local_top());
Address* pc_address =
reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset);
Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
// If there's another JavaScript frame on the stack or a
// StubFailureTrampoline, we need to look one frame further down the stack to
// find the frame pointer and the return address stack slot.
if (depth == EXTRA_CALL_FRAME) {
const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset;
pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset);
fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
}
#ifdef DEBUG
StackFrameIterator it(isolate);
for (int i = 0; i < depth + 1; i++) it.Advance();
StackFrame* frame = it.frame();
ASSERT(fp == frame->fp() && pc_address == frame->pc_address());
#endif
fp_ = fp;
pc_address_ = StackFrame::ResolveReturnAddressLocation(pc_address);
}
#ifdef ENABLE_DEBUGGER_SUPPORT
Address IC::OriginalCodeAddress() const {
HandleScope scope(isolate());
// Compute the JavaScript frame for the frame pointer of this IC
// structure. We need this to be able to find the function
// corresponding to the frame.
StackFrameIterator it(isolate());
while (it.frame()->fp() != this->fp()) it.Advance();
JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame());
// Find the function on the stack and both the active code for the
// function and the original code.
JSFunction* function = frame->function();
Handle<SharedFunctionInfo> shared(function->shared(), isolate());
Code* code = shared->code();
ASSERT(Debug::HasDebugInfo(shared));
Code* original_code = Debug::GetDebugInfo(shared)->original_code();
ASSERT(original_code->IsCode());
// Get the address of the call site in the active code. This is the
// place where the call to DebugBreakXXX is and where the IC
// normally would be.
Address addr = Assembler::target_address_from_return_address(pc());
// Return the address in the original code. This is the place where
// the call which has been overwritten by the DebugBreakXXX resides
// and the place where the inline cache system should look.
intptr_t delta =
original_code->instruction_start() - code->instruction_start();
return addr + delta;
}
#endif
static bool TryRemoveInvalidPrototypeDependentStub(Code* target,
Object* receiver,
Object* name) {
if (target->is_keyed_load_stub() ||
target->is_keyed_call_stub() ||
target->is_keyed_store_stub()) {
// Determine whether the failure is due to a name failure.
if (!name->IsName()) return false;
Name* stub_name = target->FindFirstName();
if (Name::cast(name) != stub_name) return false;
}
InlineCacheHolderFlag cache_holder =
Code::ExtractCacheHolderFromFlags(target->flags());
Isolate* isolate = target->GetIsolate();
if (cache_holder == OWN_MAP && !receiver->IsJSObject()) {
// The stub was generated for JSObject but called for non-JSObject.
// IC::GetCodeCacheHolder is not applicable.
return false;
} else if (cache_holder == PROTOTYPE_MAP &&
receiver->GetPrototype(isolate)->IsNull()) {
// IC::GetCodeCacheHolder is not applicable.
return false;
}
Map* map = IC::GetCodeCacheHolder(isolate, receiver, cache_holder)->map();
// Decide whether the inline cache failed because of changes to the
// receiver itself or changes to one of its prototypes.
//
// If there are changes to the receiver itself, the map of the
// receiver will have changed and the current target will not be in
// the receiver map's code cache. Therefore, if the current target
// is in the receiver map's code cache, the inline cache failed due
// to prototype check failure.
int index = map->IndexInCodeCache(name, target);
if (index >= 0) {
map->RemoveFromCodeCache(String::cast(name), target, index);
// For loads and stores, handlers are stored in addition to the ICs on the
// map. Remove those, too.
if ((target->is_load_stub() || target->is_keyed_load_stub() ||
target->is_store_stub() || target->is_keyed_store_stub()) &&
target->type() != Code::NORMAL) {
Code* handler = target->FindFirstCode();
index = map->IndexInCodeCache(name, handler);
if (index >= 0) {
map->RemoveFromCodeCache(String::cast(name), handler, index);
}
}
return true;
}
// The stub is not in the cache. We've ruled out all other kinds of failure
// except for proptotype chain changes, a deprecated map, a map that's
// different from the one that the stub expects, elements kind changes, or a
// constant global property that will become mutable. Threat all those
// situations as prototype failures (stay monomorphic if possible).
// If the IC is shared between multiple receivers (slow dictionary mode), then
// the map cannot be deprecated and the stub invalidated.
if (cache_holder == OWN_MAP) {
Map* old_map = target->FindFirstMap();
if (old_map == map) return true;
if (old_map != NULL) {
if (old_map->is_deprecated()) return true;
if (IsMoreGeneralElementsKindTransition(old_map->elements_kind(),
map->elements_kind())) {
return true;
}
}
}
if (receiver->IsGlobalObject()) {
if (!name->IsName()) return false;
Isolate* isolate = target->GetIsolate();
LookupResult lookup(isolate);
GlobalObject* global = GlobalObject::cast(receiver);
global->LocalLookupRealNamedProperty(Name::cast(name), &lookup);
if (!lookup.IsFound()) return false;
PropertyCell* cell = global->GetPropertyCell(&lookup);
return cell->type()->IsConstant();
}
return false;
}
IC::State IC::StateFrom(Code* target, Object* receiver, Object* name) {
IC::State state = target->ic_state();
if (state != MONOMORPHIC || !name->IsString()) return state;
if (receiver->IsUndefined() || receiver->IsNull()) return state;
Code::Kind kind = target->kind();
// Remove the target from the code cache if it became invalid
// because of changes in the prototype chain to avoid hitting it
// again.
// Call stubs handle this later to allow extra IC state
// transitions.
if (kind != Code::CALL_IC && kind != Code::KEYED_CALL_IC &&
TryRemoveInvalidPrototypeDependentStub(target, receiver, name)) {
return MONOMORPHIC_PROTOTYPE_FAILURE;
}
// The builtins object is special. It only changes when JavaScript
// builtins are loaded lazily. It is important to keep inline
// caches for the builtins object monomorphic. Therefore, if we get
// an inline cache miss for the builtins object after lazily loading
// JavaScript builtins, we return uninitialized as the state to
// force the inline cache back to monomorphic state.
if (receiver->IsJSBuiltinsObject()) {
return UNINITIALIZED;
}
return MONOMORPHIC;
}
RelocInfo::Mode IC::ComputeMode() {
Address addr = address();
Code* code = Code::cast(isolate()->FindCodeObject(addr));
for (RelocIterator it(code, RelocInfo::kCodeTargetMask);
!it.done(); it.next()) {
RelocInfo* info = it.rinfo();
if (info->pc() == addr) return info->rmode();
}
UNREACHABLE();
return RelocInfo::NONE32;
}
Failure* IC::TypeError(const char* type,
Handle<Object> object,
Handle<Object> key) {
HandleScope scope(isolate());
Handle<Object> args[2] = { key, object };
Handle<Object> error = isolate()->factory()->NewTypeError(
type, HandleVector(args, 2));
return isolate()->Throw(*error);
}
Failure* IC::ReferenceError(const char* type, Handle<String> name) {
HandleScope scope(isolate());
Handle<Object> error = isolate()->factory()->NewReferenceError(
type, HandleVector(&name, 1));
return isolate()->Throw(*error);
}
static int ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state) {
bool was_uninitialized =
old_state == UNINITIALIZED || old_state == PREMONOMORPHIC;
bool is_uninitialized =
new_state == UNINITIALIZED || new_state == PREMONOMORPHIC;
return (was_uninitialized && !is_uninitialized) ? 1 :
(!was_uninitialized && is_uninitialized) ? -1 : 0;
}
void IC::PostPatching(Address address, Code* target, Code* old_target) {
if (FLAG_type_info_threshold == 0 && !FLAG_watch_ic_patching) {
return;
}
Isolate* isolate = target->GetHeap()->isolate();
Code* host = isolate->
inner_pointer_to_code_cache()->GetCacheEntry(address)->code;
if (host->kind() != Code::FUNCTION) return;
if (FLAG_type_info_threshold > 0 &&
old_target->is_inline_cache_stub() &&
target->is_inline_cache_stub()) {
int delta = ComputeTypeInfoCountDelta(old_target->ic_state(),
target->ic_state());
// Not all Code objects have TypeFeedbackInfo.
if (host->type_feedback_info()->IsTypeFeedbackInfo() && delta != 0) {
TypeFeedbackInfo* info =
TypeFeedbackInfo::cast(host->type_feedback_info());
info->change_ic_with_type_info_count(delta);
}
}
if (host->type_feedback_info()->IsTypeFeedbackInfo()) {
TypeFeedbackInfo* info =
TypeFeedbackInfo::cast(host->type_feedback_info());
info->change_own_type_change_checksum();
}
if (FLAG_watch_ic_patching) {
host->set_profiler_ticks(0);
isolate->runtime_profiler()->NotifyICChanged();
}
// TODO(2029): When an optimized function is patched, it would
// be nice to propagate the corresponding type information to its
// unoptimized version for the benefit of later inlining.
}
void IC::Clear(Isolate* isolate, Address address) {
Code* target = GetTargetAtAddress(address);
// Don't clear debug break inline cache as it will remove the break point.
if (target->is_debug_stub()) return;
switch (target->kind()) {
case Code::LOAD_IC: return LoadIC::Clear(isolate, address, target);
case Code::KEYED_LOAD_IC:
return KeyedLoadIC::Clear(isolate, address, target);
case Code::STORE_IC: return StoreIC::Clear(isolate, address, target);
case Code::KEYED_STORE_IC:
return KeyedStoreIC::Clear(isolate, address, target);
case Code::CALL_IC: return CallIC::Clear(address, target);
case Code::KEYED_CALL_IC: return KeyedCallIC::Clear(address, target);
case Code::COMPARE_IC: return CompareIC::Clear(isolate, address, target);
case Code::COMPARE_NIL_IC: return CompareNilIC::Clear(address, target);
case Code::BINARY_OP_IC:
case Code::TO_BOOLEAN_IC:
// Clearing these is tricky and does not
// make any performance difference.
return;
default: UNREACHABLE();
}
}
void CallICBase::Clear(Address address, Code* target) {
if (target->ic_state() == UNINITIALIZED) return;
bool contextual = CallICBase::Contextual::decode(target->extra_ic_state());
Code* code =
target->GetIsolate()->stub_cache()->FindCallInitialize(
target->arguments_count(),
contextual ? RelocInfo::CODE_TARGET_CONTEXT : RelocInfo::CODE_TARGET,
target->kind());
SetTargetAtAddress(address, code);
}
void KeyedLoadIC::Clear(Isolate* isolate, Address address, Code* target) {
if (target->ic_state() == UNINITIALIZED) return;
// Make sure to also clear the map used in inline fast cases. If we
// do not clear these maps, cached code can keep objects alive
// through the embedded maps.
SetTargetAtAddress(address, *initialize_stub(isolate));
}
void LoadIC::Clear(Isolate* isolate, Address address, Code* target) {
if (target->ic_state() == UNINITIALIZED) return;
SetTargetAtAddress(address, *initialize_stub(isolate));
}
void StoreIC::Clear(Isolate* isolate, Address address, Code* target) {
if (target->ic_state() == UNINITIALIZED) return;
SetTargetAtAddress(address,
(Code::GetStrictMode(target->extra_ic_state()) == kStrictMode)
? *initialize_stub_strict(isolate)
: *initialize_stub(isolate));
}
void KeyedStoreIC::Clear(Isolate* isolate, Address address, Code* target) {
if (target->ic_state() == UNINITIALIZED) return;
SetTargetAtAddress(address,
(Code::GetStrictMode(target->extra_ic_state()) == kStrictMode)
? *initialize_stub_strict(isolate)
: *initialize_stub(isolate));
}
void CompareIC::Clear(Isolate* isolate, Address address, Code* target) {
ASSERT(target->major_key() == CodeStub::CompareIC);
CompareIC::State handler_state;
Token::Value op;
ICCompareStub::DecodeMinorKey(target->stub_info(), NULL, NULL,
&handler_state, &op);
// Only clear CompareICs that can retain objects.
if (handler_state != KNOWN_OBJECT) return;
SetTargetAtAddress(address, GetRawUninitialized(isolate, op));
PatchInlinedSmiCode(address, DISABLE_INLINED_SMI_CHECK);
}
static bool HasInterceptorGetter(JSObject* object) {
return !object->GetNamedInterceptor()->getter()->IsUndefined();
}
static void LookupForRead(Handle<Object> object,
Handle<String> name,
LookupResult* lookup) {
// Skip all the objects with named interceptors, but
// without actual getter.
while (true) {
object->Lookup(*name, lookup);
// Besides normal conditions (property not found or it's not
// an interceptor), bail out if lookup is not cacheable: we won't
// be able to IC it anyway and regular lookup should work fine.
if (!lookup->IsInterceptor() || !lookup->IsCacheable()) {
return;
}
Handle<JSObject> holder(lookup->holder(), lookup->isolate());
if (HasInterceptorGetter(*holder)) {
return;
}
holder->LocalLookupRealNamedProperty(*name, lookup);
if (lookup->IsFound()) {
ASSERT(!lookup->IsInterceptor());
return;
}
Handle<Object> proto(holder->GetPrototype(), lookup->isolate());
if (proto->IsNull()) {
ASSERT(!lookup->IsFound());
return;
}
object = proto;
}
}
Handle<Object> CallICBase::TryCallAsFunction(Handle<Object> object) {
Handle<Object> delegate = Execution::GetFunctionDelegate(isolate(), object);
if (delegate->IsJSFunction() && !object->IsJSFunctionProxy()) {
// Patch the receiver and use the delegate as the function to
// invoke. This is used for invoking objects as if they were functions.
const int argc = target()->arguments_count();
StackFrameLocator locator(isolate());
JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
int index = frame->ComputeExpressionsCount() - (argc + 1);
frame->SetExpression(index, *object);
}
return delegate;
}
void CallICBase::ReceiverToObjectIfRequired(Handle<Object> callee,
Handle<Object> object) {
while (callee->IsJSFunctionProxy()) {
callee = Handle<Object>(JSFunctionProxy::cast(*callee)->call_trap(),
isolate());
}
if (callee->IsJSFunction()) {
Handle<JSFunction> function = Handle<JSFunction>::cast(callee);
if (!function->shared()->is_classic_mode() || function->IsBuiltin()) {
// Do not wrap receiver for strict mode functions or for builtins.
return;
}
}
// And only wrap string, number or boolean.
if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
// Change the receiver to the result of calling ToObject on it.
const int argc = this->target()->arguments_count();
StackFrameLocator locator(isolate());
JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
int index = frame->ComputeExpressionsCount() - (argc + 1);
frame->SetExpression(index, *isolate()->factory()->ToObject(object));
}
}
MaybeObject* CallICBase::LoadFunction(State state,
Code::ExtraICState extra_ic_state,
Handle<Object> object,
Handle<String> name) {
if (object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (receiver->map()->is_deprecated()) {
JSObject::MigrateInstance(receiver);
}
}
// If the object is undefined or null it's illegal to try to get any
// of its properties; throw a TypeError in that case.
if (object->IsUndefined() || object->IsNull()) {
return TypeError("non_object_property_call", object, name);
}
// Check if the name is trivially convertible to an index and get
// the element if so.
uint32_t index;
if (name->AsArrayIndex(&index)) {
Handle<Object> result = Object::GetElement(isolate(), object, index);
RETURN_IF_EMPTY_HANDLE(isolate(), result);
if (result->IsJSFunction()) return *result;
// Try to find a suitable function delegate for the object at hand.
result = TryCallAsFunction(result);
if (result->IsJSFunction()) return *result;
// Otherwise, it will fail in the lookup step.
}
// Lookup the property in the object.
LookupResult lookup(isolate());
LookupForRead(object, name, &lookup);
if (!lookup.IsFound()) {
// If the object does not have the requested property, check which
// exception we need to throw.
return IsUndeclaredGlobal(object)
? ReferenceError("not_defined", name)
: TypeError("undefined_method", object, name);
}
// Lookup is valid: Update inline cache and stub cache.
if (FLAG_use_ic) {
UpdateCaches(&lookup, state, extra_ic_state, object, name);
}
// Get the property.
PropertyAttributes attr;
Handle<Object> result =
Object::GetProperty(object, object, &lookup, name, &attr);
RETURN_IF_EMPTY_HANDLE(isolate(), result);
if (lookup.IsInterceptor() && attr == ABSENT) {
// If the object does not have the requested property, check which
// exception we need to throw.
return IsUndeclaredGlobal(object)
? ReferenceError("not_defined", name)
: TypeError("undefined_method", object, name);
}
ASSERT(!result->IsTheHole());
// Make receiver an object if the callee requires it. Strict mode or builtin
// functions do not wrap the receiver, non-strict functions and objects
// called as functions do.
ReceiverToObjectIfRequired(result, object);
if (result->IsJSFunction()) {
Handle<JSFunction> function = Handle<JSFunction>::cast(result);
#ifdef ENABLE_DEBUGGER_SUPPORT
// Handle stepping into a function if step into is active.
Debug* debug = isolate()->debug();
if (debug->StepInActive()) {
// Protect the result in a handle as the debugger can allocate and might
// cause GC.
debug->HandleStepIn(function, object, fp(), false);
}
#endif
return *function;
}
// Try to find a suitable function delegate for the object at hand.
result = TryCallAsFunction(result);
if (result->IsJSFunction()) return *result;
return TypeError("property_not_function", object, name);
}
bool CallICBase::TryUpdateExtraICState(LookupResult* lookup,
Handle<Object> object,
Code::ExtraICState* extra_ic_state) {
ASSERT(kind_ == Code::CALL_IC);
if (!lookup->IsConstantFunction()) return false;
JSFunction* function = lookup->GetConstantFunction();
if (!function->shared()->HasBuiltinFunctionId()) return false;
// Fetch the arguments passed to the called function.
const int argc = target()->arguments_count();
Address entry = isolate()->c_entry_fp(isolate()->thread_local_top());
Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
Arguments args(argc + 1,
&Memory::Object_at(fp +
StandardFrameConstants::kCallerSPOffset +
argc * kPointerSize));
switch (function->shared()->builtin_function_id()) {
case kStringCharCodeAt:
case kStringCharAt:
if (object->IsString()) {
String* string = String::cast(*object);
// Check there's the right string value or wrapper in the receiver slot.
ASSERT(string == args[0] || string == JSValue::cast(args[0])->value());
// If we're in the default (fastest) state and the index is
// out of bounds, update the state to record this fact.
if (StringStubState::decode(*extra_ic_state) == DEFAULT_STRING_STUB &&
argc >= 1 && args[1]->IsNumber()) {
double index = DoubleToInteger(args.number_at(1));
if (index < 0 || index >= string->length()) {
*extra_ic_state =
StringStubState::update(*extra_ic_state,
STRING_INDEX_OUT_OF_BOUNDS);
return true;
}
}
}
break;
default:
return false;
}
return false;
}
Handle<Code> CallICBase::ComputeMonomorphicStub(LookupResult* lookup,
State state,
Code::ExtraICState extra_state,
Handle<Object> object,
Handle<String> name) {
int argc = target()->arguments_count();
Handle<JSObject> holder(lookup->holder(), isolate());
switch (lookup->type()) {
case FIELD: {
PropertyIndex index = lookup->GetFieldIndex();
return isolate()->stub_cache()->ComputeCallField(
argc, kind_, extra_state, name, object, holder, index);
}
case CONSTANT: {
if (!lookup->IsConstantFunction()) return Handle<Code>::null();
// Get the constant function and compute the code stub for this
// call; used for rewriting to monomorphic state and making sure
// that the code stub is in the stub cache.
Handle<JSFunction> function(lookup->GetConstantFunction(), isolate());
return isolate()->stub_cache()->ComputeCallConstant(
argc, kind_, extra_state, name, object, holder, function);
}
case NORMAL: {
// If we return a null handle, the IC will not be patched.
if (!object->IsJSObject()) return Handle<Code>::null();
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (holder->IsGlobalObject()) {
Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
Handle<PropertyCell> cell(
global->GetPropertyCell(lookup), isolate());
if (!cell->value()->IsJSFunction()) return Handle<Code>::null();
Handle<JSFunction> function(JSFunction::cast(cell->value()));
return isolate()->stub_cache()->ComputeCallGlobal(
argc, kind_, extra_state, name, receiver, global, cell, function);
} else {
// There is only one shared stub for calling normalized
// properties. It does not traverse the prototype chain, so the
// property must be found in the receiver for the stub to be
// applicable.
if (!holder.is_identical_to(receiver)) return Handle<Code>::null();
return isolate()->stub_cache()->ComputeCallNormal(
argc, kind_, extra_state);
}
break;
}
case INTERCEPTOR:
ASSERT(HasInterceptorGetter(*holder));
return isolate()->stub_cache()->ComputeCallInterceptor(
argc, kind_, extra_state, name, object, holder);
default:
return Handle<Code>::null();
}
}
void CallICBase::UpdateCaches(LookupResult* lookup,
State state,
Code::ExtraICState extra_ic_state,
Handle<Object> object,
Handle<String> name) {
// Bail out if we didn't find a result.
if (!lookup->IsProperty() || !lookup->IsCacheable()) return;
// Compute the number of arguments.
int argc = target()->arguments_count();
Handle<Code> code;
if (state == UNINITIALIZED) {
// This is the first time we execute this inline cache.
// Set the target to the pre monomorphic stub to delay
// setting the monomorphic state.
code = isolate()->stub_cache()->ComputeCallPreMonomorphic(
argc, kind_, extra_ic_state);
} else if (state == MONOMORPHIC) {
if (kind_ == Code::CALL_IC &&
TryUpdateExtraICState(lookup, object, &extra_ic_state)) {
code = ComputeMonomorphicStub(lookup, state, extra_ic_state,
object, name);
} else if (TryRemoveInvalidPrototypeDependentStub(target(),
*object,
*name)) {
state = MONOMORPHIC_PROTOTYPE_FAILURE;
code = ComputeMonomorphicStub(lookup, state, extra_ic_state,
object, name);
} else {
code = isolate()->stub_cache()->ComputeCallMegamorphic(
argc, kind_, extra_ic_state);
}
} else {
code = ComputeMonomorphicStub(lookup, state, extra_ic_state,
object, name);
}
// If there's no appropriate stub we simply avoid updating the caches.
if (code.is_null()) return;
// Patch the call site depending on the state of the cache.
switch (state) {
case UNINITIALIZED:
case MONOMORPHIC_PROTOTYPE_FAILURE:
case PREMONOMORPHIC:
case MONOMORPHIC:
set_target(*code);
break;
case MEGAMORPHIC: {
// Cache code holding map should be consistent with
// GenerateMonomorphicCacheProbe. It is not the map which holds the stub.
Handle<JSObject> cache_object = object->IsJSObject()
? Handle<JSObject>::cast(object)
: Handle<JSObject>(JSObject::cast(object->GetPrototype(isolate())),
isolate());
// Update the stub cache.
UpdateMegamorphicCache(cache_object->map(), *name, *code);
break;
}
case DEBUG_STUB:
break;
case POLYMORPHIC:
case GENERIC:
UNREACHABLE();
break;
}
TRACE_IC(kind_ == Code::CALL_IC ? "CallIC" : "KeyedCallIC",
name, state, target());
}
MaybeObject* KeyedCallIC::LoadFunction(State state,
Handle<Object> object,
Handle<Object> key) {
if (key->IsInternalizedString()) {
return CallICBase::LoadFunction(state,
Code::kNoExtraICState,
object,
Handle<String>::cast(key));
}
if (object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (receiver->map()->is_deprecated()) {
JSObject::MigrateInstance(receiver);
}
}
if (object->IsUndefined() || object->IsNull()) {
return TypeError("non_object_property_call", object, key);
}
bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded();
ASSERT(!(use_ic && object->IsJSGlobalProxy()));
if (use_ic && state != MEGAMORPHIC) {
int argc = target()->arguments_count();
Handle<Code> stub = isolate()->stub_cache()->ComputeCallMegamorphic(
argc, Code::KEYED_CALL_IC, Code::kNoExtraICState);
if (object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (receiver->elements()->map() ==
isolate()->heap()->non_strict_arguments_elements_map()) {
stub = isolate()->stub_cache()->ComputeCallArguments(argc);
}
}
ASSERT(!stub.is_null());
set_target(*stub);
TRACE_IC("KeyedCallIC", key, state, target());
}
Handle<Object> result = GetProperty(isolate(), object, key);
RETURN_IF_EMPTY_HANDLE(isolate(), result);
// Make receiver an object if the callee requires it. Strict mode or builtin
// functions do not wrap the receiver, non-strict functions and objects
// called as functions do.
ReceiverToObjectIfRequired(result, object);
if (result->IsJSFunction()) return *result;
result = TryCallAsFunction(result);
if (result->IsJSFunction()) return *result;
return TypeError("property_not_function", object, key);
}
MaybeObject* LoadIC::Load(State state,
Handle<Object> object,
Handle<String> name) {
// If the object is undefined or null it's illegal to try to get any
// of its properties; throw a TypeError in that case.
if (object->IsUndefined() || object->IsNull()) {
return TypeError("non_object_property_load", object, name);
}
if (FLAG_use_ic) {
// Use specialized code for getting the length of strings and
// string wrapper objects. The length property of string wrapper
// objects is read-only and therefore always returns the length of
// the underlying string value. See ECMA-262 15.5.5.1.
if ((object->IsString() || object->IsStringWrapper()) &&
name->Equals(isolate()->heap()->length_string())) {
Handle<Code> stub;
if (state == UNINITIALIZED) {
stub = pre_monomorphic_stub();
} else if (state == PREMONOMORPHIC) {
StringLengthStub string_length_stub(kind(), !object->IsString());
stub = string_length_stub.GetCode(isolate());
} else if (state == MONOMORPHIC && object->IsStringWrapper()) {
StringLengthStub string_length_stub(kind(), true);
stub = string_length_stub.GetCode(isolate());
} else if (state != MEGAMORPHIC) {
ASSERT(state != GENERIC);
stub = megamorphic_stub();
}
if (!stub.is_null()) {
set_target(*stub);
#ifdef DEBUG
if (FLAG_trace_ic) PrintF("[LoadIC : +#length /string]\n");
#endif
}
// Get the string if we have a string wrapper object.
Handle<Object> string = object->IsJSValue()
? Handle<Object>(Handle<JSValue>::cast(object)->value(), isolate())
: object;
return Smi::FromInt(String::cast(*string)->length());
}
// Use specialized code for getting prototype of functions.
if (object->IsJSFunction() &&
name->Equals(isolate()->heap()->prototype_string()) &&
Handle<JSFunction>::cast(object)->should_have_prototype()) {
Handle<Code> stub;
if (state == UNINITIALIZED) {
stub = pre_monomorphic_stub();
} else if (state == PREMONOMORPHIC) {
FunctionPrototypeStub function_prototype_stub(kind());
stub = function_prototype_stub.GetCode(isolate());
} else if (state != MEGAMORPHIC) {
ASSERT(state != GENERIC);
stub = megamorphic_stub();
}
if (!stub.is_null()) {
set_target(*stub);
#ifdef DEBUG
if (FLAG_trace_ic) PrintF("[LoadIC : +#prototype /function]\n");
#endif
}
return *Accessors::FunctionGetPrototype(Handle<JSFunction>::cast(object));
}
}
// Check if the name is trivially convertible to an index and get
// the element or char if so.
uint32_t index;
if (kind() == Code::KEYED_LOAD_IC && name->AsArrayIndex(&index)) {
// Rewrite to the generic keyed load stub.
if (FLAG_use_ic) set_target(*generic_stub());
return Runtime::GetElementOrCharAtOrFail(isolate(), object, index);
}
if (object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (receiver->map()->is_deprecated()) {
JSObject::MigrateInstance(receiver);
}
}
// Named lookup in the object.
LookupResult lookup(isolate());
LookupForRead(object, name, &lookup);
// If we did not find a property, check if we need to throw an exception.
if (!lookup.IsFound()) {
if (IsUndeclaredGlobal(object)) {
return ReferenceError("not_defined", name);
}
LOG(isolate(), SuspectReadEvent(*name, *object));
}
// Update inline cache and stub cache.
if (FLAG_use_ic) UpdateCaches(&lookup, state, object, name);
PropertyAttributes attr;
if (lookup.IsInterceptor() || lookup.IsHandler()) {
// Get the property.
Handle<Object> result =
Object::GetProperty(object, object, &lookup, name, &attr);
RETURN_IF_EMPTY_HANDLE(isolate(), result);
// If the property is not present, check if we need to throw an
// exception.
if (attr == ABSENT && IsUndeclaredGlobal(object)) {
return ReferenceError("not_defined", name);
}
return *result;
}
// Get the property.
return Object::GetPropertyOrFail(object, object, &lookup, name, &attr);
}
static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps,
Handle<Map> new_receiver_map) {
ASSERT(!new_receiver_map.is_null());
for (int current = 0; current < receiver_maps->length(); ++current) {
if (!receiver_maps->at(current).is_null() &&
receiver_maps->at(current).is_identical_to(new_receiver_map)) {
return false;
}
}
receiver_maps->Add(new_receiver_map);
return true;
}
bool IC::UpdatePolymorphicIC(State state,
Handle<JSObject> receiver,
Handle<String> name,
Handle<Code> code,
StrictModeFlag strict_mode) {
if (code->type() == Code::NORMAL) return false;
if (target()->ic_state() == MONOMORPHIC &&
target()->type() == Code::NORMAL) {
return false;
}
MapHandleList receiver_maps;
CodeHandleList handlers;
int number_of_valid_maps;
int handler_to_overwrite = -1;
Handle<Map> new_receiver_map(receiver->map());
{
DisallowHeapAllocation no_gc;
target()->FindAllMaps(&receiver_maps);
int number_of_maps = receiver_maps.length();
number_of_valid_maps = number_of_maps;
for (int i = 0; i < number_of_maps; i++) {
Handle<Map> map = receiver_maps.at(i);
// Filter out deprecated maps to ensure its instances get migrated.
if (map->is_deprecated()) {
number_of_valid_maps--;
// If the receiver map is already in the polymorphic IC, this indicates
// there was a prototoype chain failure. In that case, just overwrite the
// handler.
} else if (map.is_identical_to(new_receiver_map)) {
number_of_valid_maps--;
handler_to_overwrite = i;
}
}
if (number_of_valid_maps >= 4) return false;
// Only allow 0 maps in case target() was reset to UNINITIALIZED by the GC.
// In that case, allow the IC to go back monomorphic.
if (number_of_maps == 0 && target()->ic_state() != UNINITIALIZED) {
return false;
}
target()->FindAllCode(&handlers, receiver_maps.length());
}
number_of_valid_maps++;
if (handler_to_overwrite >= 0) {
handlers.Set(handler_to_overwrite, code);
} else {
receiver_maps.Add(new_receiver_map);
handlers.Add(code);
}
Handle<Code> ic = ComputePolymorphicIC(
&receiver_maps, &handlers, number_of_valid_maps, name, strict_mode);
set_target(*ic);
return true;
}
Handle<Code> LoadIC::ComputePolymorphicIC(MapHandleList* receiver_maps,
CodeHandleList* handlers,
int number_of_valid_maps,
Handle<Name> name,
StrictModeFlag strict_mode) {
return isolate()->stub_cache()->ComputePolymorphicLoadIC(
receiver_maps, handlers, number_of_valid_maps, name);
}
Handle<Code> StoreIC::ComputePolymorphicIC(MapHandleList* receiver_maps,
CodeHandleList* handlers,
int number_of_valid_maps,
Handle<Name> name,
StrictModeFlag strict_mode) {
return isolate()->stub_cache()->ComputePolymorphicStoreIC(
receiver_maps, handlers, number_of_valid_maps, name, strict_mode);
}
void LoadIC::UpdateMonomorphicIC(Handle<JSObject> receiver,
Handle<Code> handler,
Handle<String> name,
StrictModeFlag strict_mode) {
if (handler->type() == Code::NORMAL) return set_target(*handler);
Handle<Code> ic = isolate()->stub_cache()->ComputeMonomorphicLoadIC(
receiver, handler, name);
set_target(*ic);
}
void KeyedLoadIC::UpdateMonomorphicIC(Handle<JSObject> receiver,
Handle<Code> handler,
Handle<String> name,
StrictModeFlag strict_mode) {
if (handler->type() == Code::NORMAL) return set_target(*handler);
Handle<Code> ic = isolate()->stub_cache()->ComputeMonomorphicKeyedLoadIC(
receiver, handler, name);
set_target(*ic);
}
void StoreIC::UpdateMonomorphicIC(Handle<JSObject> receiver,
Handle<Code> handler,
Handle<String> name,
StrictModeFlag strict_mode) {
if (handler->type() == Code::NORMAL) return set_target(*handler);
Handle<Code> ic = isolate()->stub_cache()->ComputeMonomorphicStoreIC(
receiver, handler, name, strict_mode);
set_target(*ic);
}
void KeyedStoreIC::UpdateMonomorphicIC(Handle<JSObject> receiver,
Handle<Code> handler,
Handle<String> name,
StrictModeFlag strict_mode) {
if (handler->type() == Code::NORMAL) return set_target(*handler);
Handle<Code> ic = isolate()->stub_cache()->ComputeMonomorphicKeyedStoreIC(
receiver, handler, name, strict_mode);
set_target(*ic);
}
void IC::CopyICToMegamorphicCache(Handle<String> name) {
MapHandleList receiver_maps;
CodeHandleList handlers;
{
DisallowHeapAllocation no_gc;
target()->FindAllMaps(&receiver_maps);
target()->FindAllCode(&handlers, receiver_maps.length());
}
for (int i = 0; i < receiver_maps.length(); i++) {
UpdateMegamorphicCache(*receiver_maps.at(i), *name, *handlers.at(i));
}
}
bool IC::IsTransitionedMapOfMonomorphicTarget(Map* receiver_map) {
DisallowHeapAllocation no_allocation;
Map* current_map = target()->FindFirstMap();
ElementsKind receiver_elements_kind = receiver_map->elements_kind();
bool more_general_transition =
IsMoreGeneralElementsKindTransition(
current_map->elements_kind(), receiver_elements_kind);
Map* transitioned_map = more_general_transition
? current_map->LookupElementsTransitionMap(receiver_elements_kind)
: NULL;
return transitioned_map == receiver_map;
}
// Since GC may have been invoked, by the time PatchCache is called, |state| is
// not necessarily equal to target()->state().
void IC::PatchCache(State state,
StrictModeFlag strict_mode,
Handle<JSObject> receiver,
Handle<String> name,
Handle<Code> code) {
switch (state) {
case UNINITIALIZED:
case PREMONOMORPHIC:
case MONOMORPHIC_PROTOTYPE_FAILURE:
UpdateMonomorphicIC(receiver, code, name, strict_mode);
break;
case MONOMORPHIC:
// Only move to megamorphic if the target changes.
if (target() != *code) {
if (target()->is_load_stub() || target()->is_store_stub()) {
bool is_same_handler = false;
{
DisallowHeapAllocation no_allocation;
Code* old_handler = target()->FindFirstCode();
is_same_handler = old_handler == *code;
}
if (is_same_handler
&& IsTransitionedMapOfMonomorphicTarget(receiver->map())) {
UpdateMonomorphicIC(receiver, code, name, strict_mode);
break;
}
if (UpdatePolymorphicIC(state, receiver, name, code, strict_mode)) {
break;
}
if (target()->type() != Code::NORMAL) {
CopyICToMegamorphicCache(name);
}
}
UpdateMegamorphicCache(receiver->map(), *name, *code);
set_target((strict_mode == kStrictMode)
? *megamorphic_stub_strict()
: *megamorphic_stub());
}
break;
case MEGAMORPHIC:
// Update the stub cache.
UpdateMegamorphicCache(receiver->map(), *name, *code);
break;
case POLYMORPHIC:
if (target()->is_load_stub() || target()->is_store_stub()) {
if (UpdatePolymorphicIC(state, receiver, name, code, strict_mode)) {
break;
}
CopyICToMegamorphicCache(name);
UpdateMegamorphicCache(receiver->map(), *name, *code);
set_target((strict_mode == kStrictMode)
? *megamorphic_stub_strict()
: *megamorphic_stub());
} else {
// When trying to patch a polymorphic keyed load/store element stub
// with anything other than another polymorphic stub, go generic.
set_target((strict_mode == kStrictMode)
? *generic_stub_strict()
: *generic_stub());
}
break;
case DEBUG_STUB:
break;
case GENERIC:
UNREACHABLE();
break;
}
}
static void GetReceiverMapsForStub(Handle<Code> stub,
MapHandleList* result) {
ASSERT(stub->is_inline_cache_stub());
switch (stub->ic_state()) {
case MONOMORPHIC: {
Map* map = stub->FindFirstMap();
if (map != NULL) {
result->Add(Handle<Map>(map));
}
break;
}
case POLYMORPHIC: {
DisallowHeapAllocation no_allocation;
int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
for (RelocIterator it(*stub, mask); !it.done(); it.next()) {
RelocInfo* info = it.rinfo();
Handle<Object> object(info->target_object(), stub->GetIsolate());
if (object->IsString()) break;
ASSERT(object->IsMap());
AddOneReceiverMapIfMissing(result, Handle<Map>::cast(object));
}
break;
}
case MEGAMORPHIC:
break;
case UNINITIALIZED:
case PREMONOMORPHIC:
case MONOMORPHIC_PROTOTYPE_FAILURE:
case GENERIC:
case DEBUG_STUB:
UNREACHABLE();
break;
}
}
void LoadIC::UpdateCaches(LookupResult* lookup,
State state,
Handle<Object> object,
Handle<String> name) {
// Bail out if the result is not cacheable.
if (!lookup->IsCacheable()) {
set_target(*generic_stub());
return;
}
// TODO(jkummerow): It would be nice to support non-JSObjects in
// UpdateCaches, then we wouldn't need to go generic here.
if (!object->IsJSObject()) {
set_target(*generic_stub());
return;
}
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
Handle<Code> code;
if (state == UNINITIALIZED) {
// This is the first time we execute this inline cache.
// Set the target to the pre monomorphic stub to delay
// setting the monomorphic state.
code = pre_monomorphic_stub();
} else {
code = ComputeLoadHandler(lookup, receiver, name);
if (code.is_null()) {
set_target(*generic_stub());
return;
}
}
PatchCache(state, kNonStrictMode, receiver, name, code);
TRACE_IC("LoadIC", name, state, target());
}
void IC::UpdateMegamorphicCache(Map* map, Name* name, Code* code) {
// Cache code holding map should be consistent with
// GenerateMonomorphicCacheProbe.
isolate()->stub_cache()->Set(name, map, code);
}
Handle<Code> LoadIC::ComputeLoadHandler(LookupResult* lookup,
Handle<JSObject> receiver,
Handle<String> name) {
if (!lookup->IsProperty()) {
// Nonexistent property. The result is undefined.
return isolate()->stub_cache()->ComputeLoadNonexistent(name, receiver);
}
// Compute monomorphic stub.
Handle<JSObject> holder(lookup->holder());
switch (lookup->type()) {
case FIELD:
return isolate()->stub_cache()->ComputeLoadField(
name, receiver, holder,
lookup->GetFieldIndex(), lookup->representation());
case CONSTANT: {
Handle<Object> constant(lookup->GetConstant(), isolate());
// TODO(2803): Don't compute a stub for cons strings because they cannot
// be embedded into code.
if (constant->IsConsString()) return Handle<Code>::null();
return isolate()->stub_cache()->ComputeLoadConstant(
name, receiver, holder, constant);
}
case NORMAL:
if (holder->IsGlobalObject()) {
Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
Handle<PropertyCell> cell(
global->GetPropertyCell(lookup), isolate());
return isolate()->stub_cache()->ComputeLoadGlobal(
name, receiver, global, cell, lookup->IsDontDelete());
}
// There is only one shared stub for loading normalized
// properties. It does not traverse the prototype chain, so the
// property must be found in the receiver for the stub to be
// applicable.
if (!holder.is_identical_to(receiver)) break;
return isolate()->stub_cache()->ComputeLoadNormal(name, receiver);
case CALLBACKS: {
Handle<Object> callback(lookup->GetCallbackObject(), isolate());
if (callback->IsExecutableAccessorInfo()) {
Handle<ExecutableAccessorInfo> info =
Handle<ExecutableAccessorInfo>::cast(callback);
if (v8::ToCData<Address>(info->getter()) == 0) break;
if (!info->IsCompatibleReceiver(*receiver)) break;
return isolate()->stub_cache()->ComputeLoadCallback(
name, receiver, holder, info);
} else if (callback->IsAccessorPair()) {
Handle<Object> getter(Handle<AccessorPair>::cast(callback)->getter(),
isolate());
if (!getter->IsJSFunction()) break;
if (holder->IsGlobalObject()) break;
if (!holder->HasFastProperties()) break;
return isolate()->stub_cache()->ComputeLoadViaGetter(
name, receiver, holder, Handle<JSFunction>::cast(getter));
} else if (receiver->IsJSArray() &&
name->Equals(isolate()->heap()->length_string())) {
PropertyIndex lengthIndex =
PropertyIndex::NewHeaderIndex(JSArray::kLengthOffset / kPointerSize);
return isolate()->stub_cache()->ComputeLoadField(
name, receiver, holder, lengthIndex, Representation::Tagged());
}
// TODO(dcarney): Handle correctly.
if (callback->IsDeclaredAccessorInfo()) break;
ASSERT(callback->IsForeign());
// No IC support for old-style native accessors.
break;
}
case INTERCEPTOR:
ASSERT(HasInterceptorGetter(*holder));
return isolate()->stub_cache()->ComputeLoadInterceptor(
name, receiver, holder);
default:
break;
}
return Handle<Code>::null();
}
static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) {
// This helper implements a few common fast cases for converting
// non-smi keys of keyed loads/stores to a smi or a string.
if (key->IsHeapNumber()) {
double value = Handle<HeapNumber>::cast(key)->value();
if (std::isnan(value)) {
key = isolate->factory()->nan_string();
} else {
int int_value = FastD2I(value);
if (value == int_value && Smi::IsValid(int_value)) {
key = Handle<Smi>(Smi::FromInt(int_value), isolate);
}
}
} else if (key->IsUndefined()) {
key = isolate->factory()->undefined_string();
}
return key;
}
Handle<Code> KeyedLoadIC::LoadElementStub(Handle<JSObject> receiver) {
State ic_state = target()->ic_state();
// Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
// via megamorphic stubs, since they don't have a map in their relocation info
// and so the stubs can't be harvested for the object needed for a map check.
if (target()->type() != Code::NORMAL) {
TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
return generic_stub();
}
Handle<Map> receiver_map(receiver->map(), isolate());
MapHandleList target_receiver_maps;
if (ic_state == UNINITIALIZED || ic_state == PREMONOMORPHIC) {
// Optimistically assume that ICs that haven't reached the MONOMORPHIC state
// yet will do so and stay there.
return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
}
if (target() == *string_stub()) {
target_receiver_maps.Add(isolate()->factory()->string_map());
} else {
GetReceiverMapsForStub(Handle<Code>(target(), isolate()),
&target_receiver_maps);
if (target_receiver_maps.length() == 0) {
return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
}
}
// The first time a receiver is seen that is a transitioned version of the
// previous monomorphic receiver type, assume the new ElementsKind is the
// monomorphic type. This benefits global arrays that only transition
// once, and all call sites accessing them are faster if they remain
// monomorphic. If this optimistic assumption is not true, the IC will
// miss again and it will become polymorphic and support both the
// untransitioned and transitioned maps.
if (ic_state == MONOMORPHIC &&
IsMoreGeneralElementsKindTransition(
target_receiver_maps.at(0)->elements_kind(),
receiver->GetElementsKind())) {
return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
}
ASSERT(ic_state != GENERIC);
// Determine the list of receiver maps that this call site has seen,
// adding the map that was just encountered.
if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) {
// If the miss wasn't due to an unseen map, a polymorphic stub
// won't help, use the generic stub.
TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
return generic_stub();
}
// If the maximum number of receiver maps has been exceeded, use the generic
// version of the IC.
if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
return generic_stub();
}
return isolate()->stub_cache()->ComputeLoadElementPolymorphic(
&target_receiver_maps);
}
MaybeObject* KeyedLoadIC::Load(State state,
Handle<Object> object,
Handle<Object> key,
ICMissMode miss_mode) {
// Check for values that can be converted into an internalized string directly
// or is representable as a smi.
key = TryConvertKey(key, isolate());
if (key->IsInternalizedString()) {
return LoadIC::Load(state, object, Handle<String>::cast(key));
}
bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded();
ASSERT(!(use_ic && object->IsJSGlobalProxy()));
if (use_ic) {
Handle<Code> stub = generic_stub();
if (miss_mode != MISS_FORCE_GENERIC) {
if (object->IsString() && key->IsNumber()) {
if (state == UNINITIALIZED) {
stub = string_stub();
}
} else if (object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (receiver->map()->is_deprecated()) {
JSObject::MigrateInstance(receiver);
}
if (receiver->elements()->map() ==
isolate()->heap()->non_strict_arguments_elements_map()) {
stub = non_strict_arguments_stub();
} else if (receiver->HasIndexedInterceptor()) {
stub = indexed_interceptor_stub();
} else if (!key->ToSmi()->IsFailure() &&
(target() != *non_strict_arguments_stub())) {
stub = LoadElementStub(receiver);
}
}
} else {
TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "force generic");
}
ASSERT(!stub.is_null());
set_target(*stub);
TRACE_IC("KeyedLoadIC", key, state, target());
}
return Runtime::GetObjectPropertyOrFail(isolate(), object, key);
}
Handle<Code> KeyedLoadIC::ComputeLoadHandler(LookupResult* lookup,
Handle<JSObject> receiver,
Handle<String> name) {
// Bail out if we didn't find a result.
if (!lookup->IsProperty()) return Handle<Code>::null();
// Compute a monomorphic stub.
Handle<JSObject> holder(lookup->holder(), isolate());
switch (lookup->type()) {
case FIELD:
return isolate()->stub_cache()->ComputeKeyedLoadField(
name, receiver, holder,
lookup->GetFieldIndex(), lookup->representation());
case CONSTANT: {
Handle<Object> constant(lookup->GetConstant(), isolate());
// TODO(2803): Don't compute a stub for cons strings because they cannot
// be embedded into code.
if (constant->IsConsString()) return Handle<Code>::null();
return isolate()->stub_cache()->ComputeKeyedLoadConstant(
name, receiver, holder, constant);
}
case CALLBACKS: {
Handle<Object> callback_object(lookup->GetCallbackObject(), isolate());
// TODO(dcarney): Handle DeclaredAccessorInfo correctly.
if (!callback_object->IsExecutableAccessorInfo()) break;
Handle<ExecutableAccessorInfo> callback =
Handle<ExecutableAccessorInfo>::cast(callback_object);
if (v8::ToCData<Address>(callback->getter()) == 0) break;
if (!callback->IsCompatibleReceiver(*receiver)) break;
return isolate()->stub_cache()->ComputeKeyedLoadCallback(
name, receiver, holder, callback);
}
case INTERCEPTOR:
ASSERT(HasInterceptorGetter(lookup->holder()));
return isolate()->stub_cache()->ComputeKeyedLoadInterceptor(
name, receiver, holder);
default:
// Always rewrite to the generic case so that we do not
// repeatedly try to rewrite.
return generic_stub();
}
return Handle<Code>::null();
}
static bool LookupForWrite(Handle<JSObject> receiver,
Handle<String> name,
Handle<Object> value,
LookupResult* lookup,
IC::State* state) {
Handle<JSObject> holder = receiver;
receiver->Lookup(*name, lookup);
if (lookup->IsFound()) {
if (lookup->IsReadOnly() || !lookup->IsCacheable()) return false;
if (lookup->holder() == *receiver) {
if (lookup->IsInterceptor() &&
receiver->GetNamedInterceptor()->setter()->IsUndefined()) {
receiver->LocalLookupRealNamedProperty(*name, lookup);
return lookup->IsFound() &&
!lookup->IsReadOnly() &&
lookup->CanHoldValue(value) &&
lookup->IsCacheable();
}
return lookup->CanHoldValue(value);
}
if (lookup->IsPropertyCallbacks()) return true;
// Currently normal holders in the prototype chain are not supported. They
// would require a runtime positive lookup and verification that the details
// have not changed.
if (lookup->IsInterceptor() || lookup->IsNormal()) return false;
holder = Handle<JSObject>(lookup->holder(), lookup->isolate());
}
// While normally LookupTransition gets passed the receiver, in this case we
// pass the holder of the property that we overwrite. This keeps the holder in
// the LookupResult intact so we can later use it to generate a prototype
// chain check. This avoids a double lookup, but requires us to pass in the
// receiver when trying to fetch extra information from the transition.
receiver->map()->LookupTransition(*holder, *name, lookup);
if (!lookup->IsTransition()) return false;
PropertyDetails target_details =
lookup->GetTransitionDetails(receiver->map());
if (target_details.IsReadOnly()) return false;
// If the value that's being stored does not fit in the field that the
// instance would transition to, create a new transition that fits the value.
// This has to be done before generating the IC, since that IC will embed the
// transition target.
// Ensure the instance and its map were migrated before trying to update the
// transition target.
ASSERT(!receiver->map()->is_deprecated());
if (!value->FitsRepresentation(target_details.representation())) {
Handle<Map> target(lookup->GetTransitionMapFromMap(receiver->map()));
Map::GeneralizeRepresentation(
target, target->LastAdded(),
value->OptimalRepresentation(), FORCE_FIELD);
// Lookup the transition again since the transition tree may have changed
// entirely by the migration above.
receiver->map()->LookupTransition(*holder, *name, lookup);
if (!lookup->IsTransition()) return false;
*state = MONOMORPHIC_PROTOTYPE_FAILURE;
}
return true;
}
MaybeObject* StoreIC::Store(State state,
StrictModeFlag strict_mode,
Handle<Object> object,
Handle<String> name,
Handle<Object> value,
JSReceiver::StoreFromKeyed store_mode) {
// Handle proxies.
if (object->IsJSProxy()) {
return JSReceiver::SetPropertyOrFail(
Handle<JSReceiver>::cast(object), name, value, NONE, strict_mode);
}
// If the object is undefined or null it's illegal to try to set any
// properties on it; throw a TypeError in that case.
if (object->IsUndefined() || object->IsNull()) {
return TypeError("non_object_property_store", object, name);
}
// The length property of string values is read-only. Throw in strict mode.
if (strict_mode == kStrictMode && object->IsString() &&
name->Equals(isolate()->heap()->length_string())) {
return TypeError("strict_read_only_property", object, name);
}
// Ignore other stores where the receiver is not a JSObject.
// TODO(1475): Must check prototype chains of object wrappers.
if (!object->IsJSObject()) return *value;
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (receiver->map()->is_deprecated()) {
JSObject::MigrateInstance(receiver);
}
// Check if the given name is an array index.
uint32_t index;
if (name->AsArrayIndex(&index)) {
Handle<Object> result =
JSObject::SetElement(receiver, index, value, NONE, strict_mode);
RETURN_IF_EMPTY_HANDLE(isolate(), result);
return *value;
}
// Observed objects are always modified through the runtime.
if (FLAG_harmony_observation && receiver->map()->is_observed()) {
return JSReceiver::SetPropertyOrFail(
receiver, name, value, NONE, strict_mode, store_mode);
}
// Use specialized code for setting the length of arrays with fast
// properties. Slow properties might indicate redefinition of the length
// property. Note that when redefined using Object.freeze, it's possible
// to have fast properties but a read-only length.
if (FLAG_use_ic &&
receiver->IsJSArray() &&
name->Equals(isolate()->heap()->length_string()) &&
Handle<JSArray>::cast(receiver)->AllowsSetElementsLength() &&
receiver->HasFastProperties() &&
!receiver->map()->is_frozen()) {
Handle<Code> stub =
StoreArrayLengthStub(kind(), strict_mode).GetCode(isolate());
set_target(*stub);
TRACE_IC("StoreIC", name, state, *stub);
return JSReceiver::SetPropertyOrFail(
receiver, name, value, NONE, strict_mode, store_mode);
}
if (receiver->IsJSGlobalProxy()) {
if (FLAG_use_ic && kind() != Code::KEYED_STORE_IC) {
// Generate a generic stub that goes to the runtime when we see a global
// proxy as receiver.
Handle<Code> stub = (strict_mode == kStrictMode)
? global_proxy_stub_strict()
: global_proxy_stub();
set_target(*stub);
TRACE_IC("StoreIC", name, state, *stub);
}
return JSReceiver::SetPropertyOrFail(
receiver, name, value, NONE, strict_mode, store_mode);
}
LookupResult lookup(isolate());
bool can_store = LookupForWrite(receiver, name, value, &lookup, &state);
if (!can_store &&
strict_mode == kStrictMode &&
!(lookup.IsProperty() && lookup.IsReadOnly()) &&
IsUndeclaredGlobal(object)) {
// Strict mode doesn't allow setting non-existent global property.
return ReferenceError("not_defined", name);
}
if (FLAG_use_ic) {
if (state == UNINITIALIZED) {
Handle<Code> stub = (strict_mode == kStrictMode)
? pre_monomorphic_stub_strict()
: pre_monomorphic_stub();
set_target(*stub);
TRACE_IC("StoreIC", name, state, *stub);
} else if (can_store) {
UpdateCaches(&lookup, state, strict_mode, receiver, name, value);
} else if (!name->IsCacheable(isolate()) ||
lookup.IsNormal() ||
(lookup.IsField() && lookup.CanHoldValue(value))) {
Handle<Code> stub = (strict_mode == kStrictMode) ? generic_stub_strict()
: generic_stub();
set_target(*stub);
}
}
// Set the property.
return JSReceiver::SetPropertyOrFail(
receiver, name, value, NONE, strict_mode, store_mode);
}
void StoreIC::UpdateCaches(LookupResult* lookup,
State state,
StrictModeFlag strict_mode,
Handle<JSObject> receiver,
Handle<String> name,
Handle<Object> value) {
ASSERT(!receiver->IsJSGlobalProxy());
ASSERT(lookup->IsFound());
// These are not cacheable, so we never see such LookupResults here.
ASSERT(!lookup->IsHandler());
Handle<Code> code = ComputeStoreMonomorphic(
lookup, strict_mode, receiver, name, value);
if (code.is_null()) {
Handle<Code> stub = strict_mode == kStrictMode
? generic_stub_strict() : generic_stub();
set_target(*stub);
return;
}
PatchCache(state, strict_mode, receiver, name, code);
TRACE_IC("StoreIC", name, state, target());
}
Handle<Code> StoreIC::ComputeStoreMonomorphic(LookupResult* lookup,
StrictModeFlag strict_mode,
Handle<JSObject> receiver,
Handle<String> name,
Handle<Object> value) {
Handle<JSObject> holder(lookup->holder());
switch (lookup->type()) {
case FIELD:
return isolate()->stub_cache()->ComputeStoreField(
name, receiver, lookup, strict_mode);
case NORMAL:
if (receiver->IsGlobalObject()) {
// The stub generated for the global object picks the value directly
// from the property cell. So the property must be directly on the
// global object.
Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver);
Handle<PropertyCell> cell(
global->GetPropertyCell(lookup), isolate());
return isolate()->stub_cache()->ComputeStoreGlobal(
name, global, cell, value, strict_mode);
}
ASSERT(holder.is_identical_to(receiver));
return isolate()->stub_cache()->ComputeStoreNormal(strict_mode);
case CALLBACKS: {
Handle<Object> callback(lookup->GetCallbackObject(), isolate());
if (callback->IsExecutableAccessorInfo()) {
Handle<ExecutableAccessorInfo> info =
Handle<ExecutableAccessorInfo>::cast(callback);
if (v8::ToCData<Address>(info->setter()) == 0) break;
if (!holder->HasFastProperties()) break;
if (!info->IsCompatibleReceiver(*receiver)) break;
return isolate()->stub_cache()->ComputeStoreCallback(
name, receiver, holder, info, strict_mode);
} else if (callback->IsAccessorPair()) {
Handle<Object> setter(
Handle<AccessorPair>::cast(callback)->setter(), isolate());
if (!setter->IsJSFunction()) break;
if (holder->IsGlobalObject()) break;
if (!holder->HasFastProperties()) break;
return isolate()->stub_cache()->ComputeStoreViaSetter(
name, receiver, holder, Handle<JSFunction>::cast(setter),
strict_mode);
}
// TODO(dcarney): Handle correctly.
if (callback->IsDeclaredAccessorInfo()) break;
ASSERT(callback->IsForeign());
// No IC support for old-style native accessors.
break;
}
case INTERCEPTOR:
ASSERT(!receiver->GetNamedInterceptor()->setter()->IsUndefined());
return isolate()->stub_cache()->ComputeStoreInterceptor(
name, receiver, strict_mode);
case CONSTANT:
break;
case TRANSITION: {
// Explicitly pass in the receiver map since LookupForWrite may have
// stored something else than the receiver in the holder.
Handle<Map> transition(
lookup->GetTransitionTarget(receiver->map()), isolate());
int descriptor = transition->LastAdded();
DescriptorArray* target_descriptors = transition->instance_descriptors();
PropertyDetails details = target_descriptors->GetDetails(descriptor);
if (details.type() == CALLBACKS || details.attributes() != NONE) break;
return isolate()->stub_cache()->ComputeStoreTransition(
name, receiver, lookup, transition, strict_mode);
}
case NONEXISTENT:
case HANDLER:
UNREACHABLE();
break;
}
return Handle<Code>::null();
}
Handle<Code> KeyedStoreIC::StoreElementStub(Handle<JSObject> receiver,
KeyedAccessStoreMode store_mode,
StrictModeFlag strict_mode) {
// Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
// via megamorphic stubs, since they don't have a map in their relocation info
// and so the stubs can't be harvested for the object needed for a map check.
if (target()->type() != Code::NORMAL) {
TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
return strict_mode == kStrictMode ? generic_stub_strict() : generic_stub();
}
State ic_state = target()->ic_state();
Handle<Map> receiver_map(receiver->map(), isolate());
if (ic_state == UNINITIALIZED || ic_state == PREMONOMORPHIC) {
// Optimistically assume that ICs that haven't reached the MONOMORPHIC state
// yet will do so and stay there.
Handle<Map> monomorphic_map = ComputeTransitionedMap(receiver, store_mode);
store_mode = GetNonTransitioningStoreMode(store_mode);
return isolate()->stub_cache()->ComputeKeyedStoreElement(
monomorphic_map, strict_mode, store_mode);
}
MapHandleList target_receiver_maps;
target()->FindAllMaps(&target_receiver_maps);
if (target_receiver_maps.length() == 0) {
// In the case that there is a non-map-specific IC is installed (e.g. keyed
// stores into properties in dictionary mode), then there will be not
// receiver maps in the target.
return strict_mode == kStrictMode
? generic_stub_strict()
: generic_stub();
}
// There are several special cases where an IC that is MONOMORPHIC can still
// transition to a different GetNonTransitioningStoreMode IC that handles a
// superset of the original IC. Handle those here if the receiver map hasn't
// changed or it has transitioned to a more general kind.
KeyedAccessStoreMode old_store_mode =
Code::GetKeyedAccessStoreMode(target()->extra_ic_state());
Handle<Map> previous_receiver_map = target_receiver_maps.at(0);
if (ic_state == MONOMORPHIC) {
// If the "old" and "new" maps are in the same elements map family, stay
// MONOMORPHIC and use the map for the most generic ElementsKind.
Handle<Map> transitioned_receiver_map = receiver_map;
if (IsTransitionStoreMode(store_mode)) {
transitioned_receiver_map =
ComputeTransitionedMap(receiver, store_mode);
}
if (IsTransitionedMapOfMonomorphicTarget(*transitioned_receiver_map)) {
// Element family is the same, use the "worst" case map.
store_mode = GetNonTransitioningStoreMode(store_mode);
return isolate()->stub_cache()->ComputeKeyedStoreElement(
transitioned_receiver_map, strict_mode, store_mode);
} else if (*previous_receiver_map == receiver->map() &&
old_store_mode == STANDARD_STORE &&
(IsGrowStoreMode(store_mode) ||
store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
store_mode == STORE_NO_TRANSITION_HANDLE_COW)) {
// A "normal" IC that handles stores can switch to a version that can
// grow at the end of the array, handle OOB accesses or copy COW arrays
// and still stay MONOMORPHIC.
return isolate()->stub_cache()->ComputeKeyedStoreElement(
receiver_map, strict_mode, store_mode);
}
}
ASSERT(ic_state != GENERIC);
bool map_added =
AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map);
if (IsTransitionStoreMode(store_mode)) {
Handle<Map> transitioned_receiver_map =
ComputeTransitionedMap(receiver, store_mode);
map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps,
transitioned_receiver_map);
}
if (!map_added) {
// If the miss wasn't due to an unseen map, a polymorphic stub
// won't help, use the generic stub.
TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
return strict_mode == kStrictMode ? generic_stub_strict() : generic_stub();
}
// If the maximum number of receiver maps has been exceeded, use the generic
// version of the IC.
if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
return strict_mode == kStrictMode ? generic_stub_strict() : generic_stub();
}
// Make sure all polymorphic handlers have the same store mode, otherwise the
// generic stub must be used.
store_mode = GetNonTransitioningStoreMode(store_mode);
if (old_store_mode != STANDARD_STORE) {
if (store_mode == STANDARD_STORE) {
store_mode = old_store_mode;
} else if (store_mode != old_store_mode) {
TRACE_GENERIC_IC(isolate(), "KeyedIC", "store mode mismatch");
return strict_mode == kStrictMode
? generic_stub_strict()
: generic_stub();
}
}
// If the store mode isn't the standard mode, make sure that all polymorphic
// receivers are either external arrays, or all "normal" arrays. Otherwise,
// use the generic stub.
if (store_mode != STANDARD_STORE) {
int external_arrays = 0;
for (int i = 0; i < target_receiver_maps.length(); ++i) {
if (target_receiver_maps[i]->has_external_array_elements()) {
external_arrays++;
}
}
if (external_arrays != 0 &&
external_arrays != target_receiver_maps.length()) {
TRACE_GENERIC_IC(isolate(), "KeyedIC",
"unsupported combination of external and normal arrays");
return strict_mode == kStrictMode
? generic_stub_strict()
: generic_stub();
}
}
return isolate()->stub_cache()->ComputeStoreElementPolymorphic(
&target_receiver_maps, store_mode, strict_mode);
}
Handle<Map> KeyedStoreIC::ComputeTransitionedMap(
Handle<JSObject> receiver,
KeyedAccessStoreMode store_mode) {
switch (store_mode) {
case STORE_TRANSITION_SMI_TO_OBJECT:
case STORE_TRANSITION_DOUBLE_TO_OBJECT:
case STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT:
case STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT:
return JSObject::GetElementsTransitionMap(receiver, FAST_ELEMENTS);
case STORE_TRANSITION_SMI_TO_DOUBLE:
case STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE:
return JSObject::GetElementsTransitionMap(receiver, FAST_DOUBLE_ELEMENTS);
case STORE_TRANSITION_HOLEY_SMI_TO_OBJECT:
case STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT:
case STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
return JSObject::GetElementsTransitionMap(receiver,
FAST_HOLEY_ELEMENTS);
case STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE:
case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE:
return JSObject::GetElementsTransitionMap(receiver,
FAST_HOLEY_DOUBLE_ELEMENTS);
case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS:
ASSERT(receiver->map()->has_external_array_elements());
// Fall through
case STORE_NO_TRANSITION_HANDLE_COW:
case STANDARD_STORE:
case STORE_AND_GROW_NO_TRANSITION:
return Handle<Map>(receiver->map(), isolate());
}
return Handle<Map>::null();
}
bool IsOutOfBoundsAccess(Handle<JSObject> receiver,
int index) {
if (receiver->IsJSArray()) {
return JSArray::cast(*receiver)->length()->IsSmi() &&
index >= Smi::cast(JSArray::cast(*receiver)->length())->value();
}
return index >= receiver->elements()->length();
}
KeyedAccessStoreMode KeyedStoreIC::GetStoreMode(Handle<JSObject> receiver,
Handle<Object> key,
Handle<Object> value) {
ASSERT(!key->ToSmi()->IsFailure());
Smi* smi_key = NULL;
key->ToSmi()->To(&smi_key);
int index = smi_key->value();
bool oob_access = IsOutOfBoundsAccess(receiver, index);
bool allow_growth = receiver->IsJSArray() && oob_access;
if (allow_growth) {
// Handle growing array in stub if necessary.
if (receiver->HasFastSmiElements()) {
if (value->IsHeapNumber()) {
if (receiver->HasFastHoleyElements()) {
return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE;
} else {
return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE;
}
}
if (value->IsHeapObject()) {
if (receiver->HasFastHoleyElements()) {
return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT;
} else {
return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT;
}
}
} else if (receiver->HasFastDoubleElements()) {
if (!value->IsSmi() && !value->IsHeapNumber()) {
if (receiver->HasFastHoleyElements()) {
return STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
} else {
return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT;
}
}
}
return STORE_AND_GROW_NO_TRANSITION;
} else {
// Handle only in-bounds elements accesses.
if (receiver->HasFastSmiElements()) {
if (value->IsHeapNumber()) {
if (receiver->HasFastHoleyElements()) {
return STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE;
} else {
return STORE_TRANSITION_SMI_TO_DOUBLE;
}
} else if (value->IsHeapObject()) {
if (receiver->HasFastHoleyElements()) {
return STORE_TRANSITION_HOLEY_SMI_TO_OBJECT;
} else {
return STORE_TRANSITION_SMI_TO_OBJECT;
}
}
} else if (receiver->HasFastDoubleElements()) {
if (!value->IsSmi() && !value->IsHeapNumber()) {
if (receiver->HasFastHoleyElements()) {
return STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
} else {
return STORE_TRANSITION_DOUBLE_TO_OBJECT;
}
}
}
if (!FLAG_trace_external_array_abuse &&
receiver->map()->has_external_array_elements() && oob_access) {
return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS;
}
Heap* heap = receiver->GetHeap();
if (receiver->elements()->map() == heap->fixed_cow_array_map()) {
return STORE_NO_TRANSITION_HANDLE_COW;
} else {
return STANDARD_STORE;
}
}
}
MaybeObject* KeyedStoreIC::Store(State state,
StrictModeFlag strict_mode,
Handle<Object> object,
Handle<Object> key,
Handle<Object> value,
ICMissMode miss_mode) {
// Check for values that can be converted into an internalized string directly
// or is representable as a smi.
key = TryConvertKey(key, isolate());
if (key->IsInternalizedString()) {
return StoreIC::Store(state,
strict_mode,
object,
Handle<String>::cast(key),
value,
JSReceiver::MAY_BE_STORE_FROM_KEYED);
}
bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded() &&
!(FLAG_harmony_observation && object->IsJSObject() &&
JSObject::cast(*object)->map()->is_observed());
if (use_ic && !object->IsSmi()) {
// Don't use ICs for maps of the objects in Array's prototype chain. We
// expect to be able to trap element sets to objects with those maps in the
// runtime to enable optimization of element hole access.
Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
if (heap_object->map()->IsMapInArrayPrototypeChain()) use_ic = false;
}
ASSERT(!(use_ic && object->IsJSGlobalProxy()));
if (use_ic) {
Handle<Code> stub = (strict_mode == kStrictMode)
? generic_stub_strict()
: generic_stub();
if (miss_mode != MISS_FORCE_GENERIC) {
if (object->IsJSObject()) {
Handle<JSObject> receiver = Handle<JSObject>::cast(object);
if (receiver->map()->is_deprecated()) {
JSObject::MigrateInstance(receiver);
}
bool key_is_smi_like = key->IsSmi() || !key->ToSmi()->IsFailure();
if (receiver->elements()->map() ==
isolate()->heap()->non_strict_arguments_elements_map()) {
stub = non_strict_arguments_stub();
} else if (key_is_smi_like &&
(target() != *non_strict_arguments_stub())) {
KeyedAccessStoreMode store_mode = GetStoreMode(receiver, key, value);
stub = StoreElementStub(receiver, store_mode, strict_mode);
} else {
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "key not a number");
}
} else {
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "not an object");
}
} else {
TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "force generic");
}
ASSERT(!stub.is_null());
set_target(*stub);
TRACE_IC("KeyedStoreIC", key, state, target());
}
return Runtime::SetObjectPropertyOrFail(
isolate(), object , key, value, NONE, strict_mode);
}
Handle<Code> KeyedStoreIC::ComputeStoreMonomorphic(LookupResult* lookup,
StrictModeFlag strict_mode,
Handle<JSObject> receiver,
Handle<String> name,
Handle<Object> value) {
// If the property has a non-field type allowing map transitions
// where there is extra room in the object, we leave the IC in its
// current state.
switch (lookup->type()) {
case FIELD:
return isolate()->stub_cache()->ComputeKeyedStoreField(
name, receiver, lookup, strict_mode);
case TRANSITION: {
// Explicitly pass in the receiver map since LookupForWrite may have
// stored something else than the receiver in the holder.
Handle<Map> transition(
lookup->GetTransitionTarget(receiver->map()), isolate());
int descriptor = transition->LastAdded();
DescriptorArray* target_descriptors = transition->instance_descriptors();
PropertyDetails details = target_descriptors->GetDetails(descriptor);
if (details.type() != CALLBACKS && details.attributes() == NONE) {
return isolate()->stub_cache()->ComputeKeyedStoreTransition(
name, receiver, lookup, transition, strict_mode);
}
// fall through.
}
case NORMAL:
case CONSTANT:
case CALLBACKS:
case INTERCEPTOR:
// Always rewrite to the generic case so that we do not
// repeatedly try to rewrite.
return (strict_mode == kStrictMode)
? generic_stub_strict()
: generic_stub();
case HANDLER:
case NONEXISTENT:
UNREACHABLE();
break;
}
return Handle<Code>::null();
}
#undef TRACE_IC
// ----------------------------------------------------------------------------
// Static IC stub generators.
//
// Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject*, CallIC_Miss) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
CallIC ic(isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
MaybeObject* maybe_result = ic.LoadFunction(state,
extra_ic_state,
args.at<Object>(0),
args.at<String>(1));
JSFunction* raw_function;
if (!maybe_result->To(&raw_function)) return maybe_result;
// The first time the inline cache is updated may be the first time the
// function it references gets called. If the function is lazily compiled
// then the first call will trigger a compilation. We check for this case
// and we do the compilation immediately, instead of waiting for the stub
// currently attached to the JSFunction object to trigger compilation.
if (raw_function->is_compiled()) return raw_function;
Handle<JSFunction> function(raw_function);
JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
return *function;
}
// Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject*, KeyedCallIC_Miss) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
KeyedCallIC ic(isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
MaybeObject* maybe_result =
ic.LoadFunction(state, args.at<Object>(0), args.at<Object>(1));
// Result could be a function or a failure.
JSFunction* raw_function = NULL;
if (!maybe_result->To(&raw_function)) return maybe_result;
if (raw_function->is_compiled()) return raw_function;
Handle<JSFunction> function(raw_function, isolate);
JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
return *function;
}
// Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject*, LoadIC_Miss) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
LoadIC ic(IC::NO_EXTRA_FRAME, isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
return ic.Load(state, args.at<Object>(0), args.at<String>(1));
}
// Used from ic-<arch>.cc
RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_Miss) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
return ic.Load(state, args.at<Object>(0), args.at<Object>(1), MISS);
}
RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_MissFromStubFailure) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
return ic.Load(state, args.at<Object>(0), args.at<Object>(1), MISS);
}
RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_MissForceGeneric) {
HandleScope scope(isolate);
ASSERT(args.length() == 2);
KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
return ic.Load(state,
args.at<Object>(0),
args.at<Object>(1),
MISS_FORCE_GENERIC);
}
// Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject*, StoreIC_Miss) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
return ic.Store(state,
Code::GetStrictMode(extra_ic_state),
args.at<Object>(0),
args.at<String>(1),
args.at<Object>(2));
}
RUNTIME_FUNCTION(MaybeObject*, StoreIC_MissFromStubFailure) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
StoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
return ic.Store(state,
Code::GetStrictMode(extra_ic_state),
args.at<Object>(0),
args.at<String>(1),
args.at<Object>(2));
}
RUNTIME_FUNCTION(MaybeObject*, StoreIC_ArrayLength) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 2);
JSArray* receiver = JSArray::cast(args[0]);
Object* len = args[1];
// The generated code should filter out non-Smis before we get here.
ASSERT(len->IsSmi());
#ifdef DEBUG
// The length property has to be a writable callback property.
LookupResult debug_lookup(isolate);
receiver->LocalLookup(isolate->heap()->length_string(), &debug_lookup);
ASSERT(debug_lookup.IsPropertyCallbacks() && !debug_lookup.IsReadOnly());
#endif
Object* result;
MaybeObject* maybe_result = receiver->SetElementsLength(len);
if (!maybe_result->To(&result)) return maybe_result;
return len;
}
// Extend storage is called in a store inline cache when
// it is necessary to extend the properties array of a
// JSObject.
RUNTIME_FUNCTION(MaybeObject*, SharedStoreIC_ExtendStorage) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 3);
// Convert the parameters
JSObject* object = JSObject::cast(args[0]);
Map* transition = Map::cast(args[1]);
Object* value = args[2];
// Check the object has run out out property space.
ASSERT(object->HasFastProperties());
ASSERT(object->map()->unused_property_fields() == 0);
// Expand the properties array.
FixedArray* old_storage = object->properties();
int new_unused = transition->unused_property_fields();
int new_size = old_storage->length() + new_unused + 1;
Object* result;
MaybeObject* maybe_result = old_storage->CopySize(new_size);
if (!maybe_result->ToObject(&result)) return maybe_result;
FixedArray* new_storage = FixedArray::cast(result);
Object* to_store = value;
if (FLAG_track_double_fields) {
DescriptorArray* descriptors = transition->instance_descriptors();
PropertyDetails details = descriptors->GetDetails(transition->LastAdded());
if (details.representation().IsDouble()) {
MaybeObject* maybe_storage =
isolate->heap()->AllocateHeapNumber(value->Number());
if (!maybe_storage->To(&to_store)) return maybe_storage;
}
}
new_storage->set(old_storage->length(), to_store);
// Set the new property value and do the map transition.
object->set_properties(new_storage);
object->set_map(transition);
// Return the stored value.
return value;
}
// Used from ic-<arch>.cc.
RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Miss) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
return ic.Store(state,
Code::GetStrictMode(extra_ic_state),
args.at<Object>(0),
args.at<Object>(1),
args.at<Object>(2),
MISS);
}
RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_MissFromStubFailure) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
return ic.Store(state,
Code::GetStrictMode(extra_ic_state),
args.at<Object>(0),
args.at<Object>(1),
args.at<Object>(2),
MISS);
}
RUNTIME_FUNCTION(MaybeObject*, StoreIC_Slow) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 3);
StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
Handle<Object> object = args.at<Object>(0);
Handle<Object> key = args.at<Object>(1);
Handle<Object> value = args.at<Object>(2);
StrictModeFlag strict_mode = Code::GetStrictMode(extra_ic_state);
return Runtime::SetObjectProperty(isolate,
object,
key,
value,
NONE,
strict_mode);
}
RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Slow) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 3);
KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
Handle<Object> object = args.at<Object>(0);
Handle<Object> key = args.at<Object>(1);
Handle<Object> value = args.at<Object>(2);
StrictModeFlag strict_mode = Code::GetStrictMode(extra_ic_state);
return Runtime::SetObjectProperty(isolate,
object,
key,
value,
NONE,
strict_mode);
}
RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_MissForceGeneric) {
HandleScope scope(isolate);
ASSERT(args.length() == 3);
KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
return ic.Store(state,
Code::GetStrictMode(extra_ic_state),
args.at<Object>(0),
args.at<Object>(1),
args.at<Object>(2),
MISS_FORCE_GENERIC);
}
RUNTIME_FUNCTION(MaybeObject*, ElementsTransitionAndStoreIC_Miss) {
SealHandleScope scope(isolate);
ASSERT(args.length() == 4);
KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
Handle<Object> value = args.at<Object>(0);
Handle<Object> key = args.at<Object>(2);
Handle<Object> object = args.at<Object>(3);
StrictModeFlag strict_mode = Code::GetStrictMode(extra_ic_state);
return Runtime::SetObjectProperty(isolate,
object,
key,
value,
NONE,
strict_mode);
}
void BinaryOpIC::patch(Code* code) {
set_target(code);
}
const char* BinaryOpIC::GetName(TypeInfo type_info) {
switch (type_info) {
case UNINITIALIZED: return "Uninitialized";
case SMI: return "Smi";
case INT32: return "Int32";
case NUMBER: return "Number";
case ODDBALL: return "Oddball";
case STRING: return "String";
case GENERIC: return "Generic";
default: return "Invalid";
}
}
BinaryOpIC::State BinaryOpIC::ToState(TypeInfo type_info) {
switch (type_info) {
case UNINITIALIZED:
return ::v8::internal::UNINITIALIZED;
case SMI:
case INT32:
case NUMBER:
case ODDBALL:
case STRING:
return MONOMORPHIC;
case GENERIC:
return ::v8::internal::GENERIC;
}
UNREACHABLE();
return ::v8::internal::UNINITIALIZED;
}
Handle<Type> BinaryOpIC::TypeInfoToType(BinaryOpIC::TypeInfo binary_type,
Isolate* isolate) {
switch (binary_type) {
case UNINITIALIZED:
return handle(Type::None(), isolate);
case SMI:
return handle(Type::Smi(), isolate);
case INT32:
return handle(Type::Signed32(), isolate);
case NUMBER:
return handle(Type::Number(), isolate);
case ODDBALL:
return handle(Type::Optional(
handle(Type::Union(
handle(Type::Number(), isolate),
handle(Type::String(), isolate)), isolate)), isolate);
case STRING:
return handle(Type::String(), isolate);
case GENERIC:
return handle(Type::Any(), isolate);
}
UNREACHABLE();
return handle(Type::Any(), isolate);
}
void BinaryOpIC::StubInfoToType(int minor_key,
Handle<Type>* left,
Handle<Type>* right,
Handle<Type>* result,
Isolate* isolate) {
TypeInfo left_typeinfo, right_typeinfo, result_typeinfo;
BinaryOpStub::decode_types_from_minor_key(
minor_key, &left_typeinfo, &right_typeinfo, &result_typeinfo);
*left = TypeInfoToType(left_typeinfo, isolate);
*right = TypeInfoToType(right_typeinfo, isolate);
*result = TypeInfoToType(result_typeinfo, isolate);
}
static BinaryOpIC::TypeInfo TypeInfoFromValue(Handle<Object> value,
Token::Value op) {
v8::internal::TypeInfo type = v8::internal::TypeInfo::FromValue(value);
if (type.IsSmi()) return BinaryOpIC::SMI;
if (type.IsInteger32()) {
if (SmiValuesAre32Bits()) return BinaryOpIC::SMI;
return BinaryOpIC::INT32;
}
if (type.IsNumber()) return BinaryOpIC::NUMBER;
if (type.IsString()) return BinaryOpIC::STRING;
if (value->IsUndefined()) {
if (op == Token::BIT_AND ||
op == Token::BIT_OR ||
op == Token::BIT_XOR ||
op == Token::SAR ||
op == Token::SHL ||
op == Token::SHR) {
if (SmiValuesAre32Bits()) return BinaryOpIC::SMI;
return BinaryOpIC::INT32;
}
return BinaryOpIC::ODDBALL;
}
return BinaryOpIC::GENERIC;
}
static BinaryOpIC::TypeInfo InputState(BinaryOpIC::TypeInfo old_type,
Handle<Object> value,
Token::Value op) {
BinaryOpIC::TypeInfo new_type = TypeInfoFromValue(value, op);
if (old_type == BinaryOpIC::STRING) {
if (new_type == BinaryOpIC::STRING) return new_type;
return BinaryOpIC::GENERIC;
}
return Max(old_type, new_type);
}
#ifdef DEBUG
static void TraceBinaryOp(BinaryOpIC::TypeInfo left,
BinaryOpIC::TypeInfo right,
Maybe<int32_t> fixed_right_arg,
BinaryOpIC::TypeInfo result) {
PrintF("%s*%s", BinaryOpIC::GetName(left), BinaryOpIC::GetName(right));
if (fixed_right_arg.has_value) PrintF("{%d}", fixed_right_arg.value);
PrintF("->%s", BinaryOpIC::GetName(result));
}
#endif
RUNTIME_FUNCTION(MaybeObject*, BinaryOp_Patch) {
ASSERT(args.length() == 3);
HandleScope scope(isolate);
Handle<Object> left = args.at<Object>(0);
Handle<Object> right = args.at<Object>(1);
int key = args.smi_at(2);
Token::Value op = BinaryOpStub::decode_op_from_minor_key(key);
BinaryOpIC::TypeInfo previous_left, previous_right, previous_result;
BinaryOpStub::decode_types_from_minor_key(
key, &previous_left, &previous_right, &previous_result);
BinaryOpIC::TypeInfo new_left = InputState(previous_left, left, op);
BinaryOpIC::TypeInfo new_right = InputState(previous_right, right, op);
BinaryOpIC::TypeInfo result_type = BinaryOpIC::UNINITIALIZED;
// STRING is only used for ADD operations.
if ((new_left == BinaryOpIC::STRING || new_right == BinaryOpIC::STRING) &&
op != Token::ADD) {
new_left = new_right = BinaryOpIC::GENERIC;
}
BinaryOpIC::TypeInfo new_overall = Max(new_left, new_right);
BinaryOpIC::TypeInfo previous_overall = Max(previous_left, previous_right);
Maybe<int> previous_fixed_right_arg =
BinaryOpStub::decode_fixed_right_arg_from_minor_key(key);
int32_t value;
bool new_has_fixed_right_arg =
op == Token::MOD &&
right->ToInt32(&value) &&
BinaryOpStub::can_encode_arg_value(value) &&
(previous_overall == BinaryOpIC::UNINITIALIZED ||
(previous_fixed_right_arg.has_value &&
previous_fixed_right_arg.value == value));
Maybe<int32_t> new_fixed_right_arg(
new_has_fixed_right_arg, new_has_fixed_right_arg ? value : 1);
if (previous_fixed_right_arg.has_value == new_fixed_right_arg.has_value) {
if (new_overall == BinaryOpIC::SMI && previous_overall == BinaryOpIC::SMI) {
if (op == Token::DIV ||
op == Token::MUL ||
op == Token::SHR ||
SmiValuesAre32Bits()) {
// Arithmetic on two Smi inputs has yielded a heap number.
// That is the only way to get here from the Smi stub.
// With 32-bit Smis, all overflows give heap numbers, but with
// 31-bit Smis, most operations overflow to int32 results.
result_type = BinaryOpIC::NUMBER;
} else {
// Other operations on SMIs that overflow yield int32s.
result_type = BinaryOpIC::INT32;
}
}
if (new_overall == BinaryOpIC::INT32 &&
previous_overall == BinaryOpIC::INT32) {
if (new_left == previous_left && new_right == previous_right) {
result_type = BinaryOpIC::NUMBER;
}
}
}
BinaryOpStub stub(key, new_left, new_right, result_type, new_fixed_right_arg);
Handle<Code> code = stub.GetCode(isolate);
if (!code.is_null()) {
#ifdef DEBUG
if (FLAG_trace_ic) {
PrintF("[BinaryOpIC in ");
JavaScriptFrame::PrintTop(isolate, stdout, false, true);
PrintF(" ");
TraceBinaryOp(previous_left, previous_right, previous_fixed_right_arg,
previous_result);
PrintF(" => ");
TraceBinaryOp(new_left, new_right, new_fixed_right_arg, result_type);
PrintF(" #%s @ %p]\n", Token::Name(op), static_cast<void*>(*code));
}
#endif
BinaryOpIC ic(isolate);
ic.patch(*code);
// Activate inlined smi code.
if (previous_overall == BinaryOpIC::UNINITIALIZED) {
PatchInlinedSmiCode(ic.address(), ENABLE_INLINED_SMI_CHECK);
}
}
Handle<JSBuiltinsObject> builtins(isolate->js_builtins_object());
Object* builtin = NULL; // Initialization calms down the compiler.
switch (op) {
case Token::ADD:
builtin = builtins->javascript_builtin(Builtins::ADD);
break;
case Token::SUB:
builtin = builtins->javascript_builtin(Builtins::SUB);
break;
case Token::MUL:
builtin = builtins->javascript_builtin(Builtins::MUL);
break;
case Token::DIV:
builtin = builtins->javascript_builtin(Builtins::DIV);
break;
case Token::MOD:
builtin = builtins->javascript_builtin(Builtins::MOD);
break;
case Token::BIT_AND:
builtin = builtins->javascript_builtin(Builtins::BIT_AND);
break;
case Token::BIT_OR:
builtin = builtins->javascript_builtin(Builtins::BIT_OR);
break;
case Token::BIT_XOR:
builtin = builtins->javascript_builtin(Builtins::BIT_XOR);
break;
case Token::SHR:
builtin = builtins->javascript_builtin(Builtins::SHR);
break;
case Token::SAR:
builtin = builtins->javascript_builtin(Builtins::SAR);
break;
case Token::SHL:
builtin = builtins->javascript_builtin(Builtins::SHL);
break;
default:
UNREACHABLE();
}
Handle<JSFunction> builtin_function(JSFunction::cast(builtin), isolate);
bool caught_exception;
Handle<Object> builtin_args[] = { right };
Handle<Object> result = Execution::Call(builtin_function,
left,
ARRAY_SIZE(builtin_args),
builtin_args,
&caught_exception);
if (caught_exception) {
return Failure::Exception();
}
return *result;
}
Code* CompareIC::GetRawUninitialized(Isolate* isolate, Token::Value op) {
ICCompareStub stub(op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
Code* code = NULL;
CHECK(stub.FindCodeInCache(&code, isolate));
return code;
}
Handle<Code> CompareIC::GetUninitialized(Isolate* isolate, Token::Value op) {
ICCompareStub stub(op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
return stub.GetCode(isolate);
}
const char* CompareIC::GetStateName(State state) {
switch (state) {
case UNINITIALIZED: return "UNINITIALIZED";
case SMI: return "SMI";
case NUMBER: return "NUMBER";
case INTERNALIZED_STRING: return "INTERNALIZED_STRING";
case STRING: return "STRING";
case UNIQUE_NAME: return "UNIQUE_NAME";
case OBJECT: return "OBJECT";
case KNOWN_OBJECT: return "KNOWN_OBJECT";
case GENERIC: return "GENERIC";
}
UNREACHABLE();
return NULL;
}
Handle<Type> CompareIC::StateToType(
Isolate* isolate,
CompareIC::State state,
Handle<Map> map) {
switch (state) {
case CompareIC::UNINITIALIZED:
return handle(Type::None(), isolate);
case CompareIC::SMI:
return handle(Type::Smi(), isolate);
case CompareIC::NUMBER:
return handle(Type::Number(), isolate);
case CompareIC::STRING:
return handle(Type::String(), isolate);
case CompareIC::INTERNALIZED_STRING:
return handle(Type::InternalizedString(), isolate);
case CompareIC::UNIQUE_NAME:
return handle(Type::UniqueName(), isolate);
case CompareIC::OBJECT:
return handle(Type::Receiver(), isolate);
case CompareIC::KNOWN_OBJECT:
return handle(
map.is_null() ? Type::Receiver() : Type::Class(map), isolate);
case CompareIC::GENERIC:
return handle(Type::Any(), isolate);
}
UNREACHABLE();
return Handle<Type>();
}
void CompareIC::StubInfoToType(int stub_minor_key,
Handle<Type>* left_type,
Handle<Type>* right_type,
Handle<Type>* overall_type,
Handle<Map> map,
Isolate* isolate) {
State left_state, right_state, handler_state;
ICCompareStub::DecodeMinorKey(stub_minor_key, &left_state, &right_state,
&handler_state, NULL);
*left_type = StateToType(isolate, left_state);
*right_type = StateToType(isolate, right_state);
*overall_type = StateToType(isolate, handler_state, map);
}
CompareIC::State CompareIC::NewInputState(State old_state,
Handle<Object> value) {
switch (old_state) {
case UNINITIALIZED:
if (value->IsSmi()) return SMI;
if (value->IsHeapNumber()) return NUMBER;
if (value->IsInternalizedString()) return INTERNALIZED_STRING;
if (value->IsString()) return STRING;
if (value->IsSymbol()) return UNIQUE_NAME;
if (value->IsJSObject()) return OBJECT;
break;
case SMI:
if (value->IsSmi()) return SMI;
if (value->IsHeapNumber()) return NUMBER;
break;
case NUMBER:
if (value->IsNumber()) return NUMBER;
break;
case INTERNALIZED_STRING:
if (value->IsInternalizedString()) return INTERNALIZED_STRING;
if (value->IsString()) return STRING;
if (value->IsSymbol()) return UNIQUE_NAME;
break;
case STRING:
if (value->IsString()) return STRING;
break;
case UNIQUE_NAME:
if (value->IsUniqueName()) return UNIQUE_NAME;
break;
case OBJECT:
if (value->IsJSObject()) return OBJECT;
break;
case GENERIC:
break;
case KNOWN_OBJECT:
UNREACHABLE();
break;
}
return GENERIC;
}
CompareIC::State CompareIC::TargetState(State old_state,
State old_left,
State old_right,
bool has_inlined_smi_code,
Handle<Object> x,
Handle<Object> y) {
switch (old_state) {
case UNINITIALIZED:
if (x->IsSmi() && y->IsSmi()) return SMI;
if (x->IsNumber() && y->IsNumber()) return NUMBER;
if (Token::IsOrderedRelationalCompareOp(op_)) {
// Ordered comparisons treat undefined as NaN, so the
// NUMBER stub will do the right thing.
if ((x->IsNumber() && y->IsUndefined()) ||
(y->IsNumber() && x->IsUndefined())) {
return NUMBER;
}
}
if (x->IsInternalizedString() && y->IsInternalizedString()) {
// We compare internalized strings as plain ones if we need to determine
// the order in a non-equality compare.
return Token::IsEqualityOp(op_) ? INTERNALIZED_STRING : STRING;
}
if (x->IsString() && y->IsString()) return STRING;
if (!Token::IsEqualityOp(op_)) return GENERIC;
if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
if (x->IsJSObject() && y->IsJSObject()) {
if (Handle<JSObject>::cast(x)->map() ==
Handle<JSObject>::cast(y)->map()) {
return KNOWN_OBJECT;
} else {
return OBJECT;
}
}
return GENERIC;
case SMI:
return x->IsNumber() && y->IsNumber() ? NUMBER : GENERIC;
case INTERNALIZED_STRING:
ASSERT(Token::IsEqualityOp(op_));
if (x->IsString() && y->IsString()) return STRING;
if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
return GENERIC;
case NUMBER:
// If the failure was due to one side changing from smi to heap number,
// then keep the state (if other changed at the same time, we will get
// a second miss and then go to generic).
if (old_left == SMI && x->IsHeapNumber()) return NUMBER;
if (old_right == SMI && y->IsHeapNumber()) return NUMBER;
return GENERIC;
case KNOWN_OBJECT:
ASSERT(Token::IsEqualityOp(op_));
if (x->IsJSObject() && y->IsJSObject()) return OBJECT;
return GENERIC;
case STRING:
case UNIQUE_NAME:
case OBJECT:
case GENERIC:
return GENERIC;
}
UNREACHABLE();
return GENERIC; // Make the compiler happy.
}
void CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) {
HandleScope scope(isolate());
State previous_left, previous_right, previous_state;
ICCompareStub::DecodeMinorKey(target()->stub_info(), &previous_left,
&previous_right, &previous_state, NULL);
State new_left = NewInputState(previous_left, x);
State new_right = NewInputState(previous_right, y);
State state = TargetState(previous_state, previous_left, previous_right,
HasInlinedSmiCode(address()), x, y);
ICCompareStub stub(op_, new_left, new_right, state);
if (state == KNOWN_OBJECT) {
stub.set_known_map(
Handle<Map>(Handle<JSObject>::cast(x)->map(), isolate()));
}
set_target(*stub.GetCode(isolate()));
#ifdef DEBUG
if (FLAG_trace_ic) {
PrintF("[CompareIC in ");
JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
PrintF(" ((%s+%s=%s)->(%s+%s=%s))#%s @ %p]\n",
GetStateName(previous_left),
GetStateName(previous_right),
GetStateName(previous_state),
GetStateName(new_left),
GetStateName(new_right),
GetStateName(state),
Token::Name(op_),
static_cast<void*>(*stub.GetCode(isolate())));
}
#endif
// Activate inlined smi code.
if (previous_state == UNINITIALIZED) {
PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
}
}
// Used from ICCompareStub::GenerateMiss in code-stubs-<arch>.cc.
RUNTIME_FUNCTION(Code*, CompareIC_Miss) {
SealHandleScope shs(isolate);
ASSERT(args.length() == 3);
CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2)));
ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1));
return ic.target();
}
void CompareNilIC::Clear(Address address, Code* target) {
if (target->ic_state() == UNINITIALIZED) return;
Code::ExtraICState state = target->extended_extra_ic_state();
CompareNilICStub stub(state, HydrogenCodeStub::UNINITIALIZED);
stub.ClearState();
Code* code = NULL;
CHECK(stub.FindCodeInCache(&code, target->GetIsolate()));
SetTargetAtAddress(address, code);
}
MaybeObject* CompareNilIC::DoCompareNilSlow(NilValue nil,
Handle<Object> object) {
if (object->IsNull() || object->IsUndefined()) {
return Smi::FromInt(true);
}
return Smi::FromInt(object->IsUndetectableObject());
}
MaybeObject* CompareNilIC::CompareNil(Handle<Object> object) {
Code::ExtraICState extra_ic_state = target()->extended_extra_ic_state();
CompareNilICStub stub(extra_ic_state);
// Extract the current supported types from the patched IC and calculate what
// types must be supported as a result of the miss.
bool already_monomorphic = stub.IsMonomorphic();
stub.UpdateStatus(object);
NilValue nil = stub.GetNilValue();
// Find or create the specialized stub to support the new set of types.
Handle<Code> code;
if (stub.IsMonomorphic()) {
Handle<Map> monomorphic_map(already_monomorphic
? target()->FindFirstMap()
: HeapObject::cast(*object)->map());
code = isolate()->stub_cache()->ComputeCompareNil(monomorphic_map, stub);
} else {
code = stub.GetCode(isolate());
}
set_target(*code);
return DoCompareNilSlow(nil, object);
}
RUNTIME_FUNCTION(MaybeObject*, CompareNilIC_Miss) {
HandleScope scope(isolate);
Handle<Object> object = args.at<Object>(0);
CompareNilIC ic(isolate);
return ic.CompareNil(object);
}
RUNTIME_FUNCTION(MaybeObject*, Unreachable) {
UNREACHABLE();
CHECK(false);
return isolate->heap()->undefined_value();
}
MaybeObject* ToBooleanIC::ToBoolean(Handle<Object> object,
Code::ExtraICState extra_ic_state) {
ToBooleanStub stub(extra_ic_state);
bool to_boolean_value = stub.UpdateStatus(object);
Handle<Code> code = stub.GetCode(isolate());
set_target(*code);
return Smi::FromInt(to_boolean_value ? 1 : 0);
}
RUNTIME_FUNCTION(MaybeObject*, ToBooleanIC_Miss) {
ASSERT(args.length() == 1);
HandleScope scope(isolate);
Handle<Object> object = args.at<Object>(0);
ToBooleanIC ic(isolate);
Code::ExtraICState ic_state = ic.target()->extended_extra_ic_state();
return ic.ToBoolean(object, ic_state);
}
static const Address IC_utilities[] = {
#define ADDR(name) FUNCTION_ADDR(name),
IC_UTIL_LIST(ADDR)
NULL
#undef ADDR
};
Address IC::AddressFromUtilityId(IC::UtilityId id) {
return IC_utilities[id];
}
} } // namespace v8::internal