blob: e635704443e48d4e05658693d5b4e936332242a0 [file] [log] [blame]
/*
* x86 identifier recognition and instruction handling
*
* Copyright (C) 2002-2007 Peter Johnson
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND OTHER CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR OTHER CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <ctype.h>
#include <util.h>
RCSID("$Id: x86id.c 2279 2010-01-19 07:57:43Z peter $");
#include <libyasm.h>
#include <libyasm/phash.h>
#include "modules/arch/x86/x86arch.h"
static const char *cpu_find_reverse(unsigned int cpu0, unsigned int cpu1,
unsigned int cpu2);
/* Opcode modifiers. */
#define MOD_Gap 0 /* Eats a parameter / does nothing */
#define MOD_PreAdd 1 /* Parameter adds to "special" prefix */
#define MOD_Op0Add 2 /* Parameter adds to opcode byte 0 */
#define MOD_Op1Add 3 /* Parameter adds to opcode byte 1 */
#define MOD_Op2Add 4 /* Parameter adds to opcode byte 2 */
#define MOD_SpAdd 5 /* Parameter adds to "spare" value */
#define MOD_OpSizeR 6 /* Parameter replaces opersize */
#define MOD_Imm8 7 /* Parameter is included as immediate byte */
#define MOD_AdSizeR 8 /* Parameter replaces addrsize (jmp only) */
#define MOD_DOpS64R 9 /* Parameter replaces default 64-bit opersize */
#define MOD_Op1AddSp 10 /* Parameter is added as "spare" to opcode byte 2 */
#define MOD_SetVEX 11 /* Parameter replaces internal VEX prefix value */
/* GAS suffix flags for instructions */
enum x86_gas_suffix_flags {
SUF_Z = 1<<0, /* no suffix */
SUF_B = 1<<1,
SUF_W = 1<<2,
SUF_L = 1<<3,
SUF_Q = 1<<4,
SUF_S = 1<<5,
SUF_MASK = SUF_Z|SUF_B|SUF_W|SUF_L|SUF_Q|SUF_S,
/* Flags only used in x86_insn_info */
GAS_ONLY = 1<<6, /* Only available in GAS mode */
GAS_ILLEGAL = 1<<7, /* Illegal in GAS mode */
GAS_NO_REV = 1<<8 /* Don't reverse operands in GAS mode */
};
/* Miscellaneous flag tests for instructions */
enum x86_misc_flags {
/* These are tested against BITS==64. */
ONLY_64 = 1<<0, /* Only available in 64-bit mode */
NOT_64 = 1<<1, /* Not available (invalid) in 64-bit mode */
/* These are tested against whether the base instruction is an AVX one. */
ONLY_AVX = 1<<2, /* Only available in AVX instruction */
NOT_AVX = 1<<3 /* Not available (invalid) in AVX instruction */
};
enum x86_operand_type {
OPT_Imm = 0, /* immediate */
OPT_Reg = 1, /* any general purpose or FPU register */
OPT_Mem = 2, /* memory */
OPT_RM = 3, /* any general purpose or FPU register OR memory */
OPT_SIMDReg = 4, /* any MMX or XMM register */
OPT_SIMDRM = 5, /* any MMX or XMM register OR memory */
OPT_SegReg = 6, /* any segment register */
OPT_CRReg = 7, /* any CR register */
OPT_DRReg = 8, /* any DR register */
OPT_TRReg = 9, /* any TR register */
OPT_ST0 = 10, /* ST0 */
OPT_Areg = 11, /* AL/AX/EAX/RAX (depending on size) */
OPT_Creg = 12, /* CL/CX/ECX/RCX (depending on size) */
OPT_Dreg = 13, /* DL/DX/EDX/RDX (depending on size) */
OPT_CS = 14, /* CS */
OPT_DS = 15, /* DS */
OPT_ES = 16, /* ES */
OPT_FS = 17, /* FS */
OPT_GS = 18, /* GS */
OPT_SS = 19, /* SS */
OPT_CR4 = 20, /* CR4 */
/* memory offset (an EA, but with no registers allowed)
* [special case for MOV opcode]
*/
OPT_MemOffs = 21,
OPT_Imm1 = 22, /* immediate, value=1 (for special-case shift) */
/* immediate, does not contain SEG:OFF (for jmp/call) */
OPT_ImmNotSegOff = 23,
OPT_XMM0 = 24, /* XMM0 */
/* AX/EAX/RAX memory operand only (EA) [special case for SVM opcodes]
*/
OPT_MemrAX = 25,
/* EAX memory operand only (EA) [special case for SVM skinit opcode] */
OPT_MemEAX = 26
};
enum x86_operand_size {
/* any size acceptable/no size spec acceptable (dep. on strict) */
OPS_Any = 0,
/* 8/16/32/64/80/128/256 bits (from user or reg size) */
OPS_8 = 1,
OPS_16 = 2,
OPS_32 = 3,
OPS_64 = 4,
OPS_80 = 5,
OPS_128 = 6,
OPS_256 = 7,
/* current BITS setting; when this is used the size matched
* gets stored into the opersize as well.
*/
OPS_BITS = 8
};
enum x86_operand_targetmod {
OPTM_None = 0, /* no target mod acceptable */
OPTM_Near = 1, /* NEAR */
OPTM_Short = 2, /* SHORT */
OPTM_Far = 3, /* FAR (or SEG:OFF immediate) */
OPTM_To = 4 /* TO */
};
enum x86_operand_action {
OPA_None = 0, /* does nothing (operand data is discarded) */
OPA_EA = 1, /* operand data goes into ea field */
OPA_Imm = 2, /* operand data goes into imm field */
OPA_SImm = 3, /* operand data goes into sign-extended imm field */
OPA_Spare = 4, /* operand data goes into "spare" field */
OPA_Op0Add = 5, /* operand data is added to opcode byte 0 */
OPA_Op1Add = 6, /* operand data is added to opcode byte 1 */
/* operand data goes into BOTH ea and spare
* (special case for imul opcode)
*/
OPA_SpareEA = 7,
/* relative jump (outputs a jmp instead of normal insn) */
OPA_JmpRel = 8,
/* operand size goes into address size (jmp only) */
OPA_AdSizeR = 9,
/* far jump (outputs a farjmp instead of normal insn) */
OPA_JmpFar = 10,
/* ea operand only sets address size (no actual ea field) */
OPA_AdSizeEA = 11,
OPA_VEX = 12, /* operand data goes into VEX/XOP "vvvv" field */
/* operand data goes into BOTH VEX/XOP "vvvv" field and ea field */
OPA_EAVEX = 13,
/* operand data goes into BOTH VEX/XOP "vvvv" field and spare field */
OPA_SpareVEX = 14,
/* operand data goes into upper 4 bits of immediate byte (VEX is4 field) */
OPA_VEXImmSrc = 15,
/* operand data goes into bottom 4 bits of immediate byte
* (currently only VEX imz2 field)
*/
OPA_VEXImm = 16
};
enum x86_operand_post_action {
OPAP_None = 0,
/* sign-extended imm8 that could expand to a large imm16/32 */
OPAP_SImm8 = 1,
/* could become a short opcode mov with bits=64 and a32 prefix */
OPAP_ShortMov = 2,
/* forced 16-bit address size (override ignored, no prefix) */
OPAP_A16 = 3,
/* large imm64 that can become a sign-extended imm32 */
OPAP_SImm32Avail = 4
};
typedef struct x86_info_operand {
/* Operand types. These are more detailed than the "general" types for all
* architectures, as they include the size, for instance.
*/
/* general type (must be exact match, except for RM types): */
unsigned int type:5;
/* size (user-specified, or from register size) */
unsigned int size:4;
/* size implicit or explicit ("strictness" of size matching on
* non-registers -- registers are always strictly matched):
* 0 = user size must exactly match size above.
* 1 = user size either unspecified or exactly match size above.
*/
unsigned int relaxed:1;
/* effective address size
* 0 = any address size allowed except for 64-bit
* 1 = only 64-bit address size allowed
*/
unsigned int eas64:1;
/* target modification */
unsigned int targetmod:3;
/* Actions: what to do with the operand if the instruction matches.
* Essentially describes what part of the output bytecode gets the
* operand. This may require conversion (e.g. a register going into
* an ea field). Naturally, only one of each of these may be contained
* in the operands of a single insn_info structure.
*/
unsigned int action:5;
/* Postponed actions: actions which can't be completed at
* parse-time due to possibly dependent expressions. For these, some
* additional data (stored in the second byte of the opcode with a
* one-byte opcode) is passed to later stages of the assembler with
* flags set to indicate postponed actions.
*/
unsigned int post_action:3;
} x86_info_operand;
typedef struct x86_insn_info {
/* GAS suffix flags */
unsigned int gas_flags:9; /* Enabled for these GAS suffixes */
/* Tests against BITS==64, AVX, and XOP */
unsigned int misc_flags:5;
/* The CPU feature flags needed to execute this instruction. This is OR'ed
* with arch-specific data[2]. This combined value is compared with
* cpu_enabled to see if all bits set here are set in cpu_enabled--if so,
* the instruction is available on this CPU.
*/
unsigned int cpu0:6;
unsigned int cpu1:6;
unsigned int cpu2:6;
/* Opcode modifiers for variations of instruction. As each modifier reads
* its parameter in LSB->MSB order from the arch-specific data[1] from the
* lexer data, and the LSB of the arch-specific data[1] is reserved for the
* count of insn_info structures in the instruction grouping, there can
* only be a maximum of 3 modifiers.
*/
unsigned char modifiers[3];
/* Operand Size */
unsigned char opersize;
/* Default operand size in 64-bit mode (0 = 32-bit for readability). */
unsigned char def_opersize_64;
/* A special instruction prefix, used for some of the Intel SSE and SSE2
* instructions. Intel calls these 3-byte opcodes, but in AMD64's 64-bit
* mode, they're treated like normal prefixes (e.g. the REX prefix needs
* to be *after* the F2/F3/66 "prefix").
* (0=no special prefix)
* 0xC0 - 0xCF indicate a VEX prefix, with the four LSBs holding "WLpp":
* W: VEX.W field (meaning depends on opcode)
* L: 0=128-bit, 1=256-bit
* pp: SIMD prefix designation:
* 00: None
* 01: 66
* 10: F3
* 11: F2
* 0x80 - 0x8F indicate a XOP prefix, with the four LSBs holding "WLpp":
* same meanings as VEX prefix.
*/
unsigned char special_prefix;
/* The length of the basic opcode */
unsigned char opcode_len;
/* The basic 1-3 byte opcode (not including the special instruction
* prefix).
*/
unsigned char opcode[3];
/* The 3-bit "spare" value (extended opcode) for the R/M byte field */
unsigned char spare;
/* The number of operands this form of the instruction takes */
unsigned int num_operands:4;
/* The index into the insn_operands array which contains the type of each
* operand, see above
*/
unsigned int operands_index:12;
} x86_insn_info;
typedef struct x86_id_insn {
yasm_insn insn; /* base structure */
/* instruction parse group - NULL if empty instruction (just prefixes) */
/*@null@*/ const x86_insn_info *group;
/* CPU feature flags enabled at the time of parsing the instruction */
wordptr cpu_enabled;
/* Modifier data */
unsigned char mod_data[3];
/* Number of elements in the instruction parse group */
unsigned int num_info:8;
/* BITS setting active at the time of parsing the instruction */
unsigned int mode_bits:8;
/* Suffix flags */
unsigned int suffix:9;
/* Tests against BITS==64 and AVX */
unsigned int misc_flags:5;
/* Parser enabled at the time of parsing the instruction */
unsigned int parser:2;
/* Strict forced setting at the time of parsing the instruction */
unsigned int force_strict:1;
/* Default rel setting at the time of parsing the instruction */
unsigned int default_rel:1;
} x86_id_insn;
static void x86_id_insn_destroy(void *contents);
static void x86_id_insn_print(const void *contents, FILE *f, int indent_level);
static void x86_id_insn_finalize(yasm_bytecode *bc, yasm_bytecode *prev_bc);
static const yasm_bytecode_callback x86_id_insn_callback = {
x86_id_insn_destroy,
x86_id_insn_print,
x86_id_insn_finalize,
NULL,
yasm_bc_calc_len_common,
yasm_bc_expand_common,
yasm_bc_tobytes_common,
YASM_BC_SPECIAL_INSN
};
#include "x86insns.c"
static void
x86_finalize_common(x86_common *common, const x86_insn_info *info,
unsigned int mode_bits)
{
common->addrsize = 0;
common->opersize = info->opersize;
common->lockrep_pre = 0;
common->mode_bits = (unsigned char)mode_bits;
}
static void
x86_finalize_opcode(x86_opcode *opcode, const x86_insn_info *info)
{
opcode->len = info->opcode_len;
opcode->opcode[0] = info->opcode[0];
opcode->opcode[1] = info->opcode[1];
opcode->opcode[2] = info->opcode[2];
}
/* Clear operands so they don't get destroyed after we've copied references. */
static void
x86_id_insn_clear_operands(x86_id_insn *id_insn)
{
yasm_insn_operand *op = yasm_insn_ops_first(&id_insn->insn);
while (op) {
op->type = YASM_INSN__OPERAND_REG;
op = yasm_insn_op_next(op);
}
}
static void
x86_finalize_jmpfar(yasm_bytecode *bc, yasm_bytecode *prev_bc,
const x86_insn_info *info)
{
x86_id_insn *id_insn = (x86_id_insn *)bc->contents;
unsigned char *mod_data = id_insn->mod_data;
unsigned int mode_bits = id_insn->mode_bits;
x86_jmpfar *jmpfar;
yasm_insn_operand *op;
unsigned int i;
jmpfar = yasm_xmalloc(sizeof(x86_jmpfar));
x86_finalize_common(&jmpfar->common, info, mode_bits);
x86_finalize_opcode(&jmpfar->opcode, info);
op = yasm_insn_ops_first(&id_insn->insn);
if (op->type == YASM_INSN__OPERAND_IMM && op->seg) {
/* SEG:OFF */
if (yasm_value_finalize_expr(&jmpfar->segment, op->seg, prev_bc, 16))
yasm_error_set(YASM_ERROR_TOO_COMPLEX,
N_("jump target segment too complex"));
if (yasm_value_finalize_expr(&jmpfar->offset, op->data.val, prev_bc,
0))
yasm_error_set(YASM_ERROR_TOO_COMPLEX,
N_("jump target offset too complex"));
} else if (op->targetmod == X86_FAR) {
/* "FAR imm" target needs to become "seg imm:imm". */
yasm_expr *e = yasm_expr_create_branch(YASM_EXPR_SEG,
yasm_expr_copy(op->data.val),
op->data.val->line);
if (yasm_value_finalize_expr(&jmpfar->offset, op->data.val, prev_bc, 0)
|| yasm_value_finalize_expr(&jmpfar->segment, e, prev_bc, 16))
yasm_error_set(YASM_ERROR_TOO_COMPLEX,
N_("jump target expression too complex"));
} else if (yasm_insn_op_next(op)) {
/* Two operand form (gas) */
yasm_insn_operand *op2 = yasm_insn_op_next(op);
if (yasm_value_finalize_expr(&jmpfar->segment, op->data.val, prev_bc,
16))
yasm_error_set(YASM_ERROR_TOO_COMPLEX,
N_("jump target segment too complex"));
if (yasm_value_finalize_expr(&jmpfar->offset, op2->data.val, prev_bc,
0))
yasm_error_set(YASM_ERROR_TOO_COMPLEX,
N_("jump target offset too complex"));
if (op2->size == OPS_BITS)
jmpfar->common.opersize = (unsigned char)mode_bits;
} else
yasm_internal_error(N_("didn't get FAR expression in jmpfar"));
/* Apply modifiers */
for (i=0; i<NELEMS(info->modifiers); i++) {
switch (info->modifiers[i]) {
case MOD_Gap:
break;
case MOD_Op0Add:
jmpfar->opcode.opcode[0] += mod_data[i];
break;
case MOD_Op1Add:
jmpfar->opcode.opcode[1] += mod_data[i];
break;
case MOD_Op2Add:
jmpfar->opcode.opcode[2] += mod_data[i];
break;
case MOD_Op1AddSp:
jmpfar->opcode.opcode[1] += mod_data[i]<<3;
break;
default:
break;
}
}
yasm_x86__bc_apply_prefixes((x86_common *)jmpfar, NULL,
info->def_opersize_64,
id_insn->insn.num_prefixes,
id_insn->insn.prefixes);
x86_id_insn_clear_operands(id_insn);
/* Transform the bytecode */
yasm_x86__bc_transform_jmpfar(bc, jmpfar);
}
static void
x86_finalize_jmp(yasm_bytecode *bc, yasm_bytecode *prev_bc,
const x86_insn_info *jinfo)
{
x86_id_insn *id_insn = (x86_id_insn *)bc->contents;
x86_jmp *jmp;
int num_info = id_insn->num_info;
const x86_insn_info *info = id_insn->group;
unsigned char *mod_data = id_insn->mod_data;
unsigned int mode_bits = id_insn->mode_bits;
/*unsigned char suffix = id_insn->suffix;*/
yasm_insn_operand *op;
static const unsigned char size_lookup[] =
{0, 8, 16, 32, 64, 80, 128, 0, 0}; /* 256 not needed */
unsigned int i;
/* We know the target is in operand 0, but sanity check for Imm. */
op = yasm_insn_ops_first(&id_insn->insn);
if (op->type != YASM_INSN__OPERAND_IMM)
yasm_internal_error(N_("invalid operand conversion"));
jmp = yasm_xmalloc(sizeof(x86_jmp));
x86_finalize_common(&jmp->common, jinfo, mode_bits);
if (yasm_value_finalize_expr(&jmp->target, op->data.val, prev_bc, 0))
yasm_error_set(YASM_ERROR_TOO_COMPLEX,
N_("jump target expression too complex"));
if (jmp->target.seg_of || jmp->target.rshift || jmp->target.curpos_rel)
yasm_error_set(YASM_ERROR_VALUE, N_("invalid jump target"));
yasm_value_set_curpos_rel(&jmp->target, bc, 0);
jmp->target.jump_target = 1;
/* See if the user explicitly specified short/near/far. */
switch (insn_operands[jinfo->operands_index+0].targetmod) {
case OPTM_Short:
jmp->op_sel = JMP_SHORT_FORCED;
break;
case OPTM_Near:
jmp->op_sel = JMP_NEAR_FORCED;
break;
default:
jmp->op_sel = JMP_NONE;
}
/* Check for address size setting in second operand, if present */
if (jinfo->num_operands > 1 &&
insn_operands[jinfo->operands_index+1].action == OPA_AdSizeR)
jmp->common.addrsize = (unsigned char)
size_lookup[insn_operands[jinfo->operands_index+1].size];
/* Check for address size override */
for (i=0; i<NELEMS(jinfo->modifiers); i++) {
if (jinfo->modifiers[i] == MOD_AdSizeR)
jmp->common.addrsize = mod_data[i];
}
/* Scan through other infos for this insn looking for short/near versions.
* Needs to match opersize and number of operands, also be within CPU.
*/
jmp->shortop.len = 0;
jmp->nearop.len = 0;
for (; num_info>0 && (jmp->shortop.len == 0 || jmp->nearop.len == 0);
num_info--, info++) {
/* Match CPU */
if (mode_bits != 64 && (info->misc_flags & ONLY_64))
continue;
if (mode_bits == 64 && (info->misc_flags & NOT_64))
continue;
if (!BitVector_bit_test(id_insn->cpu_enabled, info->cpu0) ||
!BitVector_bit_test(id_insn->cpu_enabled, info->cpu1) ||
!BitVector_bit_test(id_insn->cpu_enabled, info->cpu2))
continue;
if (info->num_operands == 0)
continue;
if (insn_operands[info->operands_index+0].action != OPA_JmpRel)
continue;
if (info->opersize != jmp->common.opersize)
continue;
switch (insn_operands[info->operands_index+0].targetmod) {
case OPTM_Short:
x86_finalize_opcode(&jmp->shortop, info);
for (i=0; i<NELEMS(info->modifiers); i++) {
if (info->modifiers[i] == MOD_Op0Add)
jmp->shortop.opcode[0] += mod_data[i];
}
break;
case OPTM_Near:
x86_finalize_opcode(&jmp->nearop, info);
for (i=0; i<NELEMS(info->modifiers); i++) {
if (info->modifiers[i] == MOD_Op1Add)
jmp->nearop.opcode[1] += mod_data[i];
}
break;
}
}
if ((jmp->op_sel == JMP_SHORT_FORCED) && (jmp->shortop.len == 0))
yasm_error_set(YASM_ERROR_TYPE,
N_("no SHORT form of that jump instruction exists"));
if ((jmp->op_sel == JMP_NEAR_FORCED) && (jmp->nearop.len == 0))
yasm_error_set(YASM_ERROR_TYPE,
N_("no NEAR form of that jump instruction exists"));
if (jmp->op_sel == JMP_NONE) {
if (jmp->nearop.len == 0)
jmp->op_sel = JMP_SHORT_FORCED;
if (jmp->shortop.len == 0)
jmp->op_sel = JMP_NEAR_FORCED;
}
yasm_x86__bc_apply_prefixes((x86_common *)jmp, NULL,
jinfo->def_opersize_64,
id_insn->insn.num_prefixes,
id_insn->insn.prefixes);
x86_id_insn_clear_operands(id_insn);
/* Transform the bytecode */
yasm_x86__bc_transform_jmp(bc, jmp);
}
static const x86_insn_info *
x86_find_match(x86_id_insn *id_insn, yasm_insn_operand **ops,
yasm_insn_operand **rev_ops, const unsigned int *size_lookup,
int bypass)
{
const x86_insn_info *info = id_insn->group;
unsigned int num_info = id_insn->num_info;
unsigned int suffix = id_insn->suffix;
unsigned int mode_bits = id_insn->mode_bits;
int found = 0;
/* Just do a simple linear search through the info array for a match.
* First match wins.
*/
for (; num_info>0 && !found; num_info--, info++) {
yasm_insn_operand *op, **use_ops;
const x86_info_operand *info_ops =
&insn_operands[info->operands_index];
unsigned int gas_flags = info->gas_flags;
unsigned int misc_flags = info->misc_flags;
unsigned int size;
int mismatch = 0;
int i;
/* Match CPU */
if (mode_bits != 64 && (misc_flags & ONLY_64))
continue;
if (mode_bits == 64 && (misc_flags & NOT_64))
continue;
if (bypass != 8 &&
(!BitVector_bit_test(id_insn->cpu_enabled, info->cpu0) ||
!BitVector_bit_test(id_insn->cpu_enabled, info->cpu1) ||
!BitVector_bit_test(id_insn->cpu_enabled, info->cpu2)))
continue;
/* Match # of operands */
if (id_insn->insn.num_operands != info->num_operands)
continue;
/* Match AVX */
if (!(id_insn->misc_flags & ONLY_AVX) && (misc_flags & ONLY_AVX))
continue;
if ((id_insn->misc_flags & ONLY_AVX) && (misc_flags & NOT_AVX))
continue;
/* Match parser mode */
if ((gas_flags & GAS_ONLY) && id_insn->parser != X86_PARSER_GAS)
continue;
if ((gas_flags & GAS_ILLEGAL) && id_insn->parser == X86_PARSER_GAS)
continue;
/* Match suffix (if required) */
if (id_insn->parser == X86_PARSER_GAS
&& ((suffix & SUF_MASK) & (gas_flags & SUF_MASK)) == 0)
continue;
/* Use reversed operands in GAS mode if not otherwise specified */
use_ops = ops;
if (id_insn->parser == X86_PARSER_GAS && !(gas_flags & GAS_NO_REV))
use_ops = rev_ops;
if (id_insn->insn.num_operands == 0) {
found = 1; /* no operands -> must have a match here. */
break;
}
/* Match each operand type and size */
for (i = 0, op = use_ops[0]; op && i<info->num_operands && !mismatch;
op = use_ops[++i]) {
/* Check operand type */
switch (info_ops[i].type) {
case OPT_Imm:
if (op->type != YASM_INSN__OPERAND_IMM)
mismatch = 1;
break;
case OPT_RM:
if (op->type == YASM_INSN__OPERAND_MEMORY)
break;
/*@fallthrough@*/
case OPT_Reg:
if (op->type != YASM_INSN__OPERAND_REG)
mismatch = 1;
else {
switch ((x86_expritem_reg_size)(op->data.reg&~0xFUL)) {
case X86_REG8:
case X86_REG8X:
case X86_REG16:
case X86_REG32:
case X86_REG64:
case X86_FPUREG:
break;
default:
mismatch = 1;
break;
}
}
break;
case OPT_Mem:
if (op->type != YASM_INSN__OPERAND_MEMORY)
mismatch = 1;
break;
case OPT_SIMDRM:
if (op->type == YASM_INSN__OPERAND_MEMORY)
break;
/*@fallthrough@*/
case OPT_SIMDReg:
if (op->type != YASM_INSN__OPERAND_REG)
mismatch = 1;
else {
switch ((x86_expritem_reg_size)(op->data.reg&~0xFUL)) {
case X86_MMXREG:
case X86_XMMREG:
case X86_YMMREG:
break;
default:
mismatch = 1;
break;
}
}
break;
case OPT_SegReg:
if (op->type != YASM_INSN__OPERAND_SEGREG)
mismatch = 1;
break;
case OPT_CRReg:
if (op->type != YASM_INSN__OPERAND_REG ||
(op->data.reg & ~0xFUL) != X86_CRREG)
mismatch = 1;
break;
case OPT_DRReg:
if (op->type != YASM_INSN__OPERAND_REG ||
(op->data.reg & ~0xFUL) != X86_DRREG)
mismatch = 1;
break;
case OPT_TRReg:
if (op->type != YASM_INSN__OPERAND_REG ||
(op->data.reg & ~0xFUL) != X86_TRREG)
mismatch = 1;
break;
case OPT_ST0:
if (op->type != YASM_INSN__OPERAND_REG ||
op->data.reg != X86_FPUREG)
mismatch = 1;
break;
case OPT_Areg:
if (op->type != YASM_INSN__OPERAND_REG ||
(info_ops[i].size == OPS_8 &&
op->data.reg != (X86_REG8 | 0) &&
op->data.reg != (X86_REG8X | 0)) ||
(info_ops[i].size == OPS_16 &&
op->data.reg != (X86_REG16 | 0)) ||
(info_ops[i].size == OPS_32 &&
op->data.reg != (X86_REG32 | 0)) ||
(info_ops[i].size == OPS_64 &&
op->data.reg != (X86_REG64 | 0)))
mismatch = 1;
break;
case OPT_Creg:
if (op->type != YASM_INSN__OPERAND_REG ||
(info_ops[i].size == OPS_8 &&
op->data.reg != (X86_REG8 | 1) &&
op->data.reg != (X86_REG8X | 1)) ||
(info_ops[i].size == OPS_16 &&
op->data.reg != (X86_REG16 | 1)) ||
(info_ops[i].size == OPS_32 &&
op->data.reg != (X86_REG32 | 1)) ||
(info_ops[i].size == OPS_64 &&
op->data.reg != (X86_REG64 | 1)))
mismatch = 1;
break;
case OPT_Dreg:
if (op->type != YASM_INSN__OPERAND_REG ||
(info_ops[i].size == OPS_8 &&
op->data.reg != (X86_REG8 | 2) &&
op->data.reg != (X86_REG8X | 2)) ||
(info_ops[i].size == OPS_16 &&
op->data.reg != (X86_REG16 | 2)) ||
(info_ops[i].size == OPS_32 &&
op->data.reg != (X86_REG32 | 2)) ||
(info_ops[i].size == OPS_64 &&
op->data.reg != (X86_REG64 | 2)))
mismatch = 1;
break;
case OPT_CS:
if (op->type != YASM_INSN__OPERAND_SEGREG ||
(op->data.reg & 0xF) != 1)
mismatch = 1;
break;
case OPT_DS:
if (op->type != YASM_INSN__OPERAND_SEGREG ||
(op->data.reg & 0xF) != 3)
mismatch = 1;
break;
case OPT_ES:
if (op->type != YASM_INSN__OPERAND_SEGREG ||
(op->data.reg & 0xF) != 0)
mismatch = 1;
break;
case OPT_FS:
if (op->type != YASM_INSN__OPERAND_SEGREG ||
(op->data.reg & 0xF) != 4)
mismatch = 1;
break;
case OPT_GS:
if (op->type != YASM_INSN__OPERAND_SEGREG ||
(op->data.reg & 0xF) != 5)
mismatch = 1;
break;
case OPT_SS:
if (op->type != YASM_INSN__OPERAND_SEGREG ||
(op->data.reg & 0xF) != 2)
mismatch = 1;
break;
case OPT_CR4:
if (op->type != YASM_INSN__OPERAND_REG ||
op->data.reg != (X86_CRREG | 4))
mismatch = 1;
break;
case OPT_MemOffs:
if (op->type != YASM_INSN__OPERAND_MEMORY ||
yasm_expr__contains(op->data.ea->disp.abs,
YASM_EXPR_REG) ||
op->data.ea->pc_rel ||
(!op->data.ea->not_pc_rel && id_insn->default_rel &&
op->data.ea->disp.size != 64))
mismatch = 1;
break;
case OPT_Imm1:
if (op->type == YASM_INSN__OPERAND_IMM) {
const yasm_intnum *num;
num = yasm_expr_get_intnum(&op->data.val, 0);
if (!num || !yasm_intnum_is_pos1(num))
mismatch = 1;
} else
mismatch = 1;
break;
case OPT_ImmNotSegOff:
if (op->type != YASM_INSN__OPERAND_IMM ||
op->targetmod != 0 || op->seg)
mismatch = 1;
break;
case OPT_XMM0:
if (op->type != YASM_INSN__OPERAND_REG ||
op->data.reg != X86_XMMREG)
mismatch = 1;
break;
case OPT_MemrAX: {
const uintptr_t *regp;
if (op->type != YASM_INSN__OPERAND_MEMORY ||
!(regp = yasm_expr_get_reg(&op->data.ea->disp.abs, 0)) ||
(*regp != (X86_REG16 | 0) &&
*regp != (X86_REG32 | 0) &&
*regp != (X86_REG64 | 0)))
mismatch = 1;
break;
}
case OPT_MemEAX: {
const uintptr_t *regp;
if (op->type != YASM_INSN__OPERAND_MEMORY ||
!(regp = yasm_expr_get_reg(&op->data.ea->disp.abs, 0)) ||
*regp != (X86_REG32 | 0))
mismatch = 1;
break;
}
default:
yasm_internal_error(N_("invalid operand type"));
}
if (mismatch)
break;
/* Check operand size */
size = size_lookup[info_ops[i].size];
if (id_insn->parser == X86_PARSER_GAS) {
/* Require relaxed operands for GAS mode (don't allow
* per-operand sizing).
*/
if (op->type == YASM_INSN__OPERAND_REG && op->size == 0) {
/* Register size must exactly match */
if (yasm_x86__get_reg_size(op->data.reg) != size)
mismatch = 1;
} else if ((info_ops[i].type == OPT_Imm
|| info_ops[i].type == OPT_ImmNotSegOff
|| info_ops[i].type == OPT_Imm1)
&& !info_ops[i].relaxed
&& info_ops[i].action != OPA_JmpRel)
mismatch = 1;
} else {
if (op->type == YASM_INSN__OPERAND_REG && op->size == 0) {
/* Register size must exactly match */
if ((bypass == 4 && i == 0) || (bypass == 5 && i == 1)
|| (bypass == 6 && i == 2))
;
else if (yasm_x86__get_reg_size(op->data.reg) != size)
mismatch = 1;
} else {
if ((bypass == 1 && i == 0) || (bypass == 2 && i == 1)
|| (bypass == 3 && i == 2))
;
else if (info_ops[i].relaxed) {
/* Relaxed checking */
if (size != 0 && op->size != size && op->size != 0)
mismatch = 1;
} else {
/* Strict checking */
if (op->size != size)
mismatch = 1;
}
}
}
if (mismatch)
break;
/* Check for 64-bit effective address size in NASM mode */
if (id_insn->parser != X86_PARSER_GAS &&
op->type == YASM_INSN__OPERAND_MEMORY) {
if (info_ops[i].eas64) {
if (op->data.ea->disp.size != 64)
mismatch = 1;
} else if (op->data.ea->disp.size == 64)
mismatch = 1;
}
if (mismatch)
break;
/* Check target modifier */
switch (info_ops[i].targetmod) {
case OPTM_None:
if (op->targetmod != 0)
mismatch = 1;
break;
case OPTM_Near:
if (op->targetmod != X86_NEAR)
mismatch = 1;
break;
case OPTM_Short:
if (op->targetmod != X86_SHORT)
mismatch = 1;
break;
case OPTM_Far:
if (op->targetmod != X86_FAR)
mismatch = 1;
break;
case OPTM_To:
if (op->targetmod != X86_TO)
mismatch = 1;
break;
default:
yasm_internal_error(N_("invalid target modifier type"));
}
}
if (!mismatch) {
found = 1;
break;
}
}
if (!found)
return NULL;
return info;
}
static void
x86_match_error(x86_id_insn *id_insn, yasm_insn_operand **ops,
yasm_insn_operand **rev_ops, const unsigned int *size_lookup)
{
const x86_insn_info *i;
int ni;
int found;
int bypass;
/* Check for matching # of operands */
found = 0;
for (ni=id_insn->num_info, i=id_insn->group; ni>0; ni--, i++) {
if (id_insn->insn.num_operands == i->num_operands) {
found = 1;
break;
}
}
if (!found) {
yasm_error_set(YASM_ERROR_TYPE, N_("invalid number of operands"));
return;
}
for (bypass=1; bypass<9; bypass++) {
i = x86_find_match(id_insn, ops, rev_ops, size_lookup, bypass);
if (i)
break;
}
switch (bypass) {
case 1:
case 4:
yasm_error_set(YASM_ERROR_TYPE,
N_("invalid size for operand %d"), 1);
break;
case 2:
case 5:
yasm_error_set(YASM_ERROR_TYPE,
N_("invalid size for operand %d"), 2);
break;
case 3:
case 6:
yasm_error_set(YASM_ERROR_TYPE,
N_("invalid size for operand %d"), 3);
break;
case 7:
yasm_error_set(YASM_ERROR_TYPE,
N_("one of source operand 1 or 3 must match dest operand"));
break;
case 8:
{
unsigned int cpu0 = i->cpu0, cpu1 = i->cpu1, cpu2 = i->cpu2;
yasm_error_set(YASM_ERROR_TYPE,
N_("requires CPU%s"),
cpu_find_reverse(cpu0, cpu1, cpu2));
break;
}
default:
yasm_error_set(YASM_ERROR_TYPE,
N_("invalid combination of opcode and operands"));
}
}
static void
x86_id_insn_finalize(yasm_bytecode *bc, yasm_bytecode *prev_bc)
{
x86_id_insn *id_insn = (x86_id_insn *)bc->contents;
x86_insn *insn;
const x86_insn_info *info = id_insn->group;
unsigned int mode_bits = id_insn->mode_bits;
unsigned char *mod_data = id_insn->mod_data;
yasm_insn_operand *op, *ops[5], *rev_ops[5];
/*@null@*/ yasm_expr *imm;
unsigned char im_len;
unsigned char im_sign;
unsigned char spare;
unsigned char vexdata, vexreg;
unsigned int i;
unsigned int size_lookup[] = {0, 8, 16, 32, 64, 80, 128, 256, 0};
unsigned long do_postop = 0;
size_lookup[OPS_BITS] = mode_bits;
yasm_insn_finalize(&id_insn->insn);
/* Build local array of operands from list, since we know we have a max
* of 5 operands.
*/
if (id_insn->insn.num_operands > 5) {
yasm_error_set(YASM_ERROR_TYPE, N_("too many operands"));
return;
}
ops[0] = ops[1] = ops[2] = ops[3] = ops[4] = NULL;
for (i = 0, op = yasm_insn_ops_first(&id_insn->insn);
op && i < id_insn->insn.num_operands;
op = yasm_insn_op_next(op), i++)
ops[i] = op;
/* If we're running in GAS mode, build a reverse array of the operands
* as most GAS instructions have reversed operands from Intel style.
*/
if (id_insn->parser == X86_PARSER_GAS) {
rev_ops[0] = rev_ops[1] = rev_ops[2] = rev_ops[3] = rev_ops[4] = NULL;
for (i = id_insn->insn.num_operands-1,
op = yasm_insn_ops_first(&id_insn->insn);
op; op = yasm_insn_op_next(op), i--)
rev_ops[i] = op;
}
/* If we're running in GAS mode, look at the first insn_info to see
* if this is a relative jump (OPA_JmpRel). If so, run through the
* operands and adjust for dereferences / lack thereof.
*/
if (id_insn->parser == X86_PARSER_GAS
&& insn_operands[info->operands_index+0].action == OPA_JmpRel) {
for (i = 0, op = ops[0]; op; op = ops[++i]) {
if (!op->deref && (op->type == YASM_INSN__OPERAND_REG
|| (op->type == YASM_INSN__OPERAND_MEMORY
&& op->data.ea->strong)))
yasm_warn_set(YASM_WARN_GENERAL,
N_("indirect call without `*'"));
if (!op->deref && op->type == YASM_INSN__OPERAND_MEMORY
&& !op->data.ea->strong) {
/* Memory that is not dereferenced, and not strong, is
* actually an immediate for the purposes of relative jumps.
*/
if (op->data.ea->segreg != 0)
yasm_warn_set(YASM_WARN_GENERAL,
N_("skipping prefixes on this instruction"));
imm = op->data.ea->disp.abs;
op->data.ea->disp.abs = NULL;
yasm_x86__ea_destroy(op->data.ea);
op->type = YASM_INSN__OPERAND_IMM;
op->data.val = imm;
}
}
}
info = x86_find_match(id_insn, ops, rev_ops, size_lookup, 0);
if (!info) {
/* Didn't find a match */
x86_match_error(id_insn, ops, rev_ops, size_lookup);
return;
}
if (id_insn->insn.num_operands > 0) {
switch (insn_operands[info->operands_index+0].action) {
case OPA_JmpRel:
/* Shortcut to JmpRel */
x86_finalize_jmp(bc, prev_bc, info);
return;
case OPA_JmpFar:
/* Shortcut to JmpFar */
x86_finalize_jmpfar(bc, prev_bc, info);
return;
}
}
/* Copy what we can from info */
insn = yasm_xmalloc(sizeof(x86_insn));
x86_finalize_common(&insn->common, info, mode_bits);
x86_finalize_opcode(&insn->opcode, info);
insn->x86_ea = NULL;
imm = NULL;
insn->def_opersize_64 = info->def_opersize_64;
insn->special_prefix = info->special_prefix;
spare = info->spare;
vexdata = 0;
vexreg = 0;
im_len = 0;
im_sign = 0;
insn->postop = X86_POSTOP_NONE;
insn->rex = 0;
/* Move VEX/XOP data (stored in special prefix) to separate location to
* allow overriding of special prefix by modifiers.
*/
if ((insn->special_prefix & 0xF0) == 0xC0 ||
(insn->special_prefix & 0xF0) == 0x80) {
vexdata = insn->special_prefix;
insn->special_prefix = 0;
}
/* Apply modifiers */
for (i=0; i<NELEMS(info->modifiers); i++) {
switch (info->modifiers[i]) {
case MOD_Gap:
break;
case MOD_PreAdd:
insn->special_prefix += mod_data[i];
break;
case MOD_Op0Add:
insn->opcode.opcode[0] += mod_data[i];
break;
case MOD_Op1Add:
insn->opcode.opcode[1] += mod_data[i];
break;
case MOD_Op2Add:
insn->opcode.opcode[2] += mod_data[i];
break;
case MOD_SpAdd:
spare += mod_data[i];
break;
case MOD_OpSizeR:
insn->common.opersize = mod_data[i];
break;
case MOD_Imm8:
imm = yasm_expr_create_ident(yasm_expr_int(
yasm_intnum_create_uint(mod_data[i])), bc->line);
im_len = 8;
break;
case MOD_DOpS64R:
insn->def_opersize_64 = mod_data[i];
break;
case MOD_Op1AddSp:
insn->opcode.opcode[1] += mod_data[i]<<3;
break;
case MOD_SetVEX:
vexdata = mod_data[i];
break;
default:
break;
}
}
/* In 64-bit mode, if opersize is 64 and default is not 64,
* force REX byte.
*/
if (mode_bits == 64 && insn->common.opersize == 64 &&
insn->def_opersize_64 != 64)
insn->rex = 0x48;
/* Go through operands and assign */
if (id_insn->insn.num_operands > 0) {
yasm_insn_operand **use_ops = ops;
const x86_info_operand *info_ops =
&insn_operands[info->operands_index];
/* Use reversed operands in GAS mode if not otherwise specified */
if (id_insn->parser == X86_PARSER_GAS
&& !(info->gas_flags & GAS_NO_REV))
use_ops = rev_ops;
for (i = 0, op = use_ops[0]; op && i<info->num_operands;
op = use_ops[++i]) {
switch (info_ops[i].action) {
case OPA_None:
/* Throw away the operand contents */
switch (op->type) {
case YASM_INSN__OPERAND_REG:
case YASM_INSN__OPERAND_SEGREG:
break;
case YASM_INSN__OPERAND_MEMORY:
yasm_x86__ea_destroy(op->data.ea);
break;
case YASM_INSN__OPERAND_IMM:
yasm_expr_destroy(op->data.val);
break;
}
break;
case OPA_EA:
switch (op->type) {
case YASM_INSN__OPERAND_REG:
insn->x86_ea =
yasm_x86__ea_create_reg(insn->x86_ea,
(unsigned long)op->data.reg, &insn->rex,
mode_bits);
break;
case YASM_INSN__OPERAND_SEGREG:
yasm_internal_error(
N_("invalid operand conversion"));
case YASM_INSN__OPERAND_MEMORY:
if (op->seg)
yasm_error_set(YASM_ERROR_VALUE,
N_("invalid segment in effective address"));
insn->x86_ea = (x86_effaddr *)op->data.ea;
if (info_ops[i].type == OPT_MemOffs)
/* Special-case for MOV MemOffs instruction */
yasm_x86__ea_set_disponly(insn->x86_ea);
else if (id_insn->default_rel &&
!op->data.ea->not_pc_rel &&
op->data.ea->segreg != 0x6404 &&
op->data.ea->segreg != 0x6505 &&
!yasm_expr__contains(
op->data.ea->disp.abs, YASM_EXPR_REG))
/* Enable default PC-rel if no regs and segreg
* is not FS or GS.
*/
insn->x86_ea->ea.pc_rel = 1;
break;
case YASM_INSN__OPERAND_IMM:
insn->x86_ea =
yasm_x86__ea_create_imm(insn->x86_ea,
op->data.val,
size_lookup[info_ops[i].size]);
break;
}
break;
case OPA_EAVEX:
if (op->type != YASM_INSN__OPERAND_REG)
yasm_internal_error(N_("invalid operand conversion"));
insn->x86_ea =
yasm_x86__ea_create_reg(insn->x86_ea,
(unsigned long)op->data.reg, &insn->rex, mode_bits);
vexreg = op->data.reg & 0xF;
break;
case OPA_Imm:
if (op->seg)
yasm_error_set(YASM_ERROR_VALUE,
N_("immediate does not support segment"));
if (op->type == YASM_INSN__OPERAND_IMM) {
imm = op->data.val;
im_len = size_lookup[info_ops[i].size];
} else
yasm_internal_error(N_("invalid operand conversion"));
break;
case OPA_SImm:
if (op->seg)
yasm_error_set(YASM_ERROR_VALUE,
N_("immediate does not support segment"));
if (op->type == YASM_INSN__OPERAND_IMM) {
imm = op->data.val;
im_len = size_lookup[info_ops[i].size];
im_sign = 1;
} else
yasm_internal_error(N_("invalid operand conversion"));
break;
case OPA_Spare:
if (op->type == YASM_INSN__OPERAND_SEGREG)
spare = (unsigned char)(op->data.reg&7);
else if (op->type == YASM_INSN__OPERAND_REG) {
if (yasm_x86__set_rex_from_reg(&insn->rex, &spare,
op->data.reg, mode_bits, X86_REX_R))
return;
} else
yasm_internal_error(N_("invalid operand conversion"));
break;
case OPA_SpareVEX:
if (op->type != YASM_INSN__OPERAND_REG)
yasm_internal_error(N_("invalid operand conversion"));
if (yasm_x86__set_rex_from_reg(&insn->rex, &spare,
op->data.reg, mode_bits, X86_REX_R))
return;
vexreg = op->data.reg & 0xF;
break;
case OPA_Op0Add:
if (op->type == YASM_INSN__OPERAND_REG) {
unsigned char opadd;
if (yasm_x86__set_rex_from_reg(&insn->rex, &opadd,
op->data.reg, mode_bits, X86_REX_B))
return;
insn->opcode.opcode[0] += opadd;
} else
yasm_internal_error(N_("invalid operand conversion"));
break;
case OPA_Op1Add:
if (op->type == YASM_INSN__OPERAND_REG) {
unsigned char opadd;
if (yasm_x86__set_rex_from_reg(&insn->rex, &opadd,
op->data.reg, mode_bits, X86_REX_B))
return;
insn->opcode.opcode[1] += opadd;
} else
yasm_internal_error(N_("invalid operand conversion"));
break;
case OPA_SpareEA:
if (op->type == YASM_INSN__OPERAND_REG) {
insn->x86_ea =
yasm_x86__ea_create_reg(insn->x86_ea,
(unsigned long)op->data.reg, &insn->rex,
mode_bits);
if (!insn->x86_ea ||
yasm_x86__set_rex_from_reg(&insn->rex, &spare,
op->data.reg, mode_bits, X86_REX_R)) {
if (insn->x86_ea)
yasm_xfree(insn->x86_ea);
yasm_xfree(insn);
return;
}
} else
yasm_internal_error(N_("invalid operand conversion"));
break;
case OPA_AdSizeEA: {
const uintptr_t *regp = NULL;
/* Only implement this for OPT_MemrAX and OPT_MemEAX
* for now.
*/
if (op->type != YASM_INSN__OPERAND_MEMORY ||
!(regp = yasm_expr_get_reg(&op->data.ea->disp.abs, 0)))
yasm_internal_error(N_("invalid operand conversion"));
/* 64-bit mode does not allow 16-bit addresses */
if (mode_bits == 64 && *regp == (X86_REG16 | 0))
yasm_error_set(YASM_ERROR_TYPE,
N_("16-bit addresses not supported in 64-bit mode"));
else if (*regp == (X86_REG16 | 0))
insn->common.addrsize = 16;
else if (*regp == (X86_REG32 | 0))
insn->common.addrsize = 32;
else if (mode_bits == 64 && *regp == (X86_REG64 | 0))
insn->common.addrsize = 64;
else
yasm_error_set(YASM_ERROR_TYPE,
N_("unsupported address size"));
yasm_x86__ea_destroy(op->data.ea);
break;
}
case OPA_VEX:
if (op->type != YASM_INSN__OPERAND_REG)
yasm_internal_error(N_("invalid operand conversion"));
vexreg = op->data.reg & 0xF;
break;
case OPA_VEXImmSrc:
if (op->type != YASM_INSN__OPERAND_REG)
yasm_internal_error(N_("invalid operand conversion"));
if (!imm) {
imm = yasm_expr_create_ident(
yasm_expr_int(
yasm_intnum_create_uint((op->data.reg << 4)
& 0xF0)),
bc->line);
} else {
imm = yasm_expr_create(
YASM_EXPR_OR,
yasm_expr_expr(yasm_expr_create(
YASM_EXPR_AND,
yasm_expr_expr(imm),
yasm_expr_int(yasm_intnum_create_uint(0x0F)),
bc->line)),
yasm_expr_int(
yasm_intnum_create_uint((op->data.reg << 4)
& 0xF0)),
bc->line);
}
im_len = 8;
break;
case OPA_VEXImm:
if (op->type != YASM_INSN__OPERAND_IMM)
yasm_internal_error(N_("invalid operand conversion"));
if (!imm)
imm = op->data.val;
else {
imm = yasm_expr_create(
YASM_EXPR_OR,
yasm_expr_expr(yasm_expr_create(
YASM_EXPR_AND,
yasm_expr_expr(op->data.val),
yasm_expr_int(yasm_intnum_create_uint(0x0F)),
bc->line)),
yasm_expr_expr(yasm_expr_create(
YASM_EXPR_AND,
yasm_expr_expr(imm),
yasm_expr_int(yasm_intnum_create_uint(0xF0)),
bc->line)),
bc->line);
}
im_len = 8;
break;
default:
yasm_internal_error(N_("unknown operand action"));
}
if (info_ops[i].size == OPS_BITS)
insn->common.opersize = (unsigned char)mode_bits;
switch (info_ops[i].post_action) {
case OPAP_None:
break;
case OPAP_SImm8:
/* Check operand strictness; if strict and non-8-bit,
* pre-emptively expand to full size.
* For unspecified size case, still optimize.
*/
if (!(id_insn->force_strict || op->strict)
|| op->size == 0)
insn->postop = X86_POSTOP_SIGNEXT_IMM8;
else if (op->size != 8) {
insn->opcode.opcode[0] =
insn->opcode.opcode[insn->opcode.len];
insn->opcode.len = 1;
}
break;
case OPAP_ShortMov:
do_postop = OPAP_ShortMov;
break;
case OPAP_A16:
insn->postop = X86_POSTOP_ADDRESS16;
break;
case OPAP_SImm32Avail:
do_postop = OPAP_SImm32Avail;
break;
default:
yasm_internal_error(
N_("unknown operand postponed action"));
}
}
}
if (insn->x86_ea) {
yasm_x86__ea_init(insn->x86_ea, spare, prev_bc);
for (i=0; i<id_insn->insn.num_segregs; i++)
yasm_ea_set_segreg(&insn->x86_ea->ea, id_insn->insn.segregs[i]);
} else if (id_insn->insn.num_segregs > 0 && insn->special_prefix == 0) {
if (id_insn->insn.num_segregs > 1)
yasm_warn_set(YASM_WARN_GENERAL,
N_("multiple segment overrides, using leftmost"));
insn->special_prefix = (unsigned char)
(id_insn->insn.segregs[id_insn->insn.num_segregs-1]>>8);
} else if (id_insn->insn.num_segregs > 0)
yasm_internal_error(N_("unhandled segment prefix"));
if (imm) {
insn->imm = yasm_xmalloc(sizeof(yasm_value));
if (yasm_value_finalize_expr(insn->imm, imm, prev_bc, im_len))
yasm_error_set(YASM_ERROR_TOO_COMPLEX,
N_("immediate expression too complex"));
insn->imm->sign = im_sign;
} else
insn->imm = NULL;
yasm_x86__bc_apply_prefixes((x86_common *)insn, &insn->rex,
insn->def_opersize_64,
id_insn->insn.num_prefixes,
id_insn->insn.prefixes);
if (insn->postop == X86_POSTOP_ADDRESS16 && insn->common.addrsize) {
yasm_warn_set(YASM_WARN_GENERAL, N_("address size override ignored"));
insn->common.addrsize = 0;
}
/* Handle non-span-dependent post-ops here */
switch (do_postop) {
case OPAP_ShortMov:
/* Long (modrm+sib) mov instructions in amd64 can be optimized into
* short mov instructions if a 32-bit address override is applied in
* 64-bit mode to an EA of just an offset (no registers) and the
* target register is al/ax/eax/rax.
*
* We don't want to do this if we're in default rel mode.
*/
if (!id_insn->default_rel &&
insn->common.mode_bits == 64 &&
insn->common.addrsize == 32 &&
(!insn->x86_ea->ea.disp.abs ||
!yasm_expr__contains(insn->x86_ea->ea.disp.abs,
YASM_EXPR_REG))) {
yasm_x86__ea_set_disponly(insn->x86_ea);
/* Make the short form permanent. */
insn->opcode.opcode[0] = insn->opcode.opcode[1];
}
insn->opcode.opcode[1] = 0; /* avoid possible confusion */
break;
case OPAP_SImm32Avail:
/* Used for 64-bit mov immediate, which can take a sign-extended
* imm32 as well as imm64 values. The imm32 form is put in the
* second byte of the opcode and its ModRM byte is put in the third
* byte of the opcode.
*/
if (!insn->imm->abs ||
(yasm_expr_get_intnum(&insn->imm->abs, 0) &&
yasm_intnum_check_size(
yasm_expr_get_intnum(&insn->imm->abs, 0), 32, 0, 1))) {
/* Throwaway REX byte */
unsigned char rex_temp = 0;
/* Build ModRM EA - CAUTION: this depends on
* opcode 0 being a mov instruction!
*/
insn->x86_ea = yasm_x86__ea_create_reg(insn->x86_ea,
(unsigned long)insn->opcode.opcode[0]-0xB8, &rex_temp, 64);
/* Make the imm32s form permanent. */
insn->opcode.opcode[0] = insn->opcode.opcode[1];
insn->imm->size = 32;
}
insn->opcode.opcode[1] = 0; /* avoid possible confusion */
break;
default:
break;
}
/* Convert to VEX/XOP prefixes if requested.
* To save space in the insn structure, the VEX/XOP prefix is written into
* special_prefix and the first 2 bytes of the instruction are set to
* the second two VEX/XOP bytes. During calc_len() it may be shortened to
* one VEX byte (this can only be done after knowledge of REX value); this
* further optimization is not possible for XOP.
*/
if (vexdata) {
int xop = ((vexdata & 0xF0) == 0x80);
unsigned char vex1 = 0xE0; /* R=X=B=1, mmmmm=0 */
unsigned char vex2;
if (xop) {
/* Look at the first bytes of the opcode for the XOP mmmmm field.
* Leave R=X=B=1 for now.
*/
if (insn->opcode.opcode[0] != 0x08 &&
insn->opcode.opcode[0] != 0x09)
yasm_internal_error(N_("first opcode byte of XOP must be 0x08 or 0x09"));
vex1 |= insn->opcode.opcode[0];
/* Move opcode byte back one byte to make room for XOP prefix. */
insn->opcode.opcode[2] = insn->opcode.opcode[1];
} else {
/* Look at the first bytes of the opcode to see what leading bytes
* to encode in the VEX mmmmm field. Leave R=X=B=1 for now.
*/
if (insn->opcode.opcode[0] != 0x0F)
yasm_internal_error(N_("first opcode byte of VEX must be 0x0F"));
if (insn->opcode.opcode[1] == 0x38)
vex1 |= 0x02; /* implied 0x0F 0x38 */
else if (insn->opcode.opcode[1] == 0x3A)
vex1 |= 0x03; /* implied 0x0F 0x3A */
else {
/* Originally a 0F-only opcode; move opcode byte back one
* position to make room for VEX prefix.
*/
insn->opcode.opcode[2] = insn->opcode.opcode[1];
vex1 |= 0x01; /* implied 0x0F */
}
}
/* Check for update of special prefix by modifiers */
if (insn->special_prefix != 0) {
vexdata &= ~0x03;
switch (insn->special_prefix) {
case 0x66:
vexdata |= 0x01;
break;
case 0xF3:
vexdata |= 0x02;
break;
case 0xF2:
vexdata |= 0x03;
break;
default:
yasm_internal_error(N_("unrecognized special prefix"));
}
}
/* 2nd VEX byte is WvvvvLpp.
* W, L, pp come from vexdata
* vvvv comes from 1s complement of vexreg
*/
vex2 = (((vexdata & 0x8) << 4) | /* W */
((15 - (vexreg & 0xF)) << 3) | /* vvvv */
(vexdata & 0x7)); /* Lpp */
/* Save to special_prefix and opcode */
insn->special_prefix = xop ? 0x8F : 0xC4; /* VEX/XOP prefix */
insn->opcode.opcode[0] = vex1;
insn->opcode.opcode[1] = vex2;
insn->opcode.len = 3; /* two prefix bytes and 1 opcode byte */
}
x86_id_insn_clear_operands(id_insn);
/* Transform the bytecode */
yasm_x86__bc_transform_insn(bc, insn);
}
/* Static parse data structure for instructions */
typedef struct insnprefix_parse_data {
const char *name;
/* instruction parse group - NULL if prefix */
/*@null@*/ const x86_insn_info *group;
/* For instruction, number of elements in group.
* For prefix, prefix type shifted right by 8.
*/
unsigned int num_info:8;
/* For instruction, GAS suffix flags.
* For prefix, prefix value.
*/
unsigned int flags:8;
/* Instruction modifier data. */
unsigned int mod_data0:8;
unsigned int mod_data1:8;
unsigned int mod_data2:8;
/* Tests against BITS==64 and AVX */
unsigned int misc_flags:6;
/* CPU flags */
unsigned int cpu0:6;
unsigned int cpu1:6;
unsigned int cpu2:6;
} insnprefix_parse_data;
/* Pull in all parse data */
#include "x86insn_nasm.c"
#include "x86insn_gas.c"
static const char *
cpu_find_reverse(unsigned int cpu0, unsigned int cpu1, unsigned int cpu2)
{
static char cpuname[200];
wordptr cpu = BitVector_Create(128, TRUE);
if (cpu0 != CPU_Any)
BitVector_Bit_On(cpu, cpu0);
if (cpu1 != CPU_Any)
BitVector_Bit_On(cpu, cpu1);
if (cpu2 != CPU_Any)
BitVector_Bit_On(cpu, cpu2);
cpuname[0] = '\0';
if (BitVector_bit_test(cpu, CPU_Prot))
strcat(cpuname, " Protected");
if (BitVector_bit_test(cpu, CPU_Undoc))
strcat(cpuname, " Undocumented");
if (BitVector_bit_test(cpu, CPU_Obs))
strcat(cpuname, " Obsolete");
if (BitVector_bit_test(cpu, CPU_Priv))
strcat(cpuname, " Privileged");
if (BitVector_bit_test(cpu, CPU_FPU))
strcat(cpuname, " FPU");
if (BitVector_bit_test(cpu, CPU_MMX))
strcat(cpuname, " MMX");
if (BitVector_bit_test(cpu, CPU_SSE))
strcat(cpuname, " SSE");
if (BitVector_bit_test(cpu, CPU_SSE2))
strcat(cpuname, " SSE2");
if (BitVector_bit_test(cpu, CPU_SSE3))
strcat(cpuname, " SSE3");
if (BitVector_bit_test(cpu, CPU_3DNow))
strcat(cpuname, " 3DNow");
if (BitVector_bit_test(cpu, CPU_Cyrix))
strcat(cpuname, " Cyrix");
if (BitVector_bit_test(cpu, CPU_AMD))
strcat(cpuname, " AMD");
if (BitVector_bit_test(cpu, CPU_SMM))
strcat(cpuname, " SMM");
if (BitVector_bit_test(cpu, CPU_SVM))
strcat(cpuname, " SVM");
if (BitVector_bit_test(cpu, CPU_PadLock))
strcat(cpuname, " PadLock");
if (BitVector_bit_test(cpu, CPU_EM64T))
strcat(cpuname, " EM64T");
if (BitVector_bit_test(cpu, CPU_SSSE3))
strcat(cpuname, " SSSE3");
if (BitVector_bit_test(cpu, CPU_SSE41))
strcat(cpuname, " SSE4.1");
if (BitVector_bit_test(cpu, CPU_SSE42))
strcat(cpuname, " SSE4.2");
if (BitVector_bit_test(cpu, CPU_186))
strcat(cpuname, " 186");
if (BitVector_bit_test(cpu, CPU_286))
strcat(cpuname, " 286");
if (BitVector_bit_test(cpu, CPU_386))
strcat(cpuname, " 386");
if (BitVector_bit_test(cpu, CPU_486))
strcat(cpuname, " 486");
if (BitVector_bit_test(cpu, CPU_586))
strcat(cpuname, " 586");
if (BitVector_bit_test(cpu, CPU_686))
strcat(cpuname, " 686");
if (BitVector_bit_test(cpu, CPU_P3))
strcat(cpuname, " P3");
if (BitVector_bit_test(cpu, CPU_P4))
strcat(cpuname, " P4");
if (BitVector_bit_test(cpu, CPU_IA64))
strcat(cpuname, " IA64");
if (BitVector_bit_test(cpu, CPU_K6))
strcat(cpuname, " K6");
if (BitVector_bit_test(cpu, CPU_Athlon))
strcat(cpuname, " Athlon");
if (BitVector_bit_test(cpu, CPU_Hammer))
strcat(cpuname, " Hammer");
BitVector_Destroy(cpu);
return cpuname;
}
yasm_arch_insnprefix
yasm_x86__parse_check_insnprefix(yasm_arch *arch, const char *id,
size_t id_len, unsigned long line,
yasm_bytecode **bc, uintptr_t *prefix)
{
yasm_arch_x86 *arch_x86 = (yasm_arch_x86 *)arch;
/*@null@*/ const insnprefix_parse_data *pdata;
size_t i;
static char lcaseid[17];
*bc = (yasm_bytecode *)NULL;
*prefix = 0;
if (id_len > 16)
return YASM_ARCH_NOTINSNPREFIX;
for (i=0; i<id_len; i++)
lcaseid[i] = tolower(id[i]);
lcaseid[id_len] = '\0';
switch (PARSER(arch_x86)) {
case X86_PARSER_NASM:
pdata = insnprefix_nasm_find(lcaseid, id_len);
break;
case X86_PARSER_TASM:
pdata = insnprefix_nasm_find(lcaseid, id_len);
break;
case X86_PARSER_GAS:
pdata = insnprefix_gas_find(lcaseid, id_len);
break;
default:
pdata = NULL;
}
if (!pdata)
return YASM_ARCH_NOTINSNPREFIX;
if (pdata->group) {
x86_id_insn *id_insn;
wordptr cpu_enabled = arch_x86->cpu_enables[arch_x86->active_cpu];
unsigned int cpu0, cpu1, cpu2;
if (arch_x86->mode_bits != 64 && (pdata->misc_flags & ONLY_64)) {
yasm_warn_set(YASM_WARN_GENERAL,
N_("`%s' is an instruction in 64-bit mode"), id);
return YASM_ARCH_NOTINSNPREFIX;
}
if (arch_x86->mode_bits == 64 && (pdata->misc_flags & NOT_64)) {
yasm_error_set(YASM_ERROR_GENERAL,
N_("`%s' invalid in 64-bit mode"), id);
id_insn = yasm_xmalloc(sizeof(x86_id_insn));
yasm_insn_initialize(&id_insn->insn);
id_insn->group = not64_insn;
id_insn->cpu_enabled = cpu_enabled;
id_insn->mod_data[0] = 0;
id_insn->mod_data[1] = 0;
id_insn->mod_data[2] = 0;
id_insn->num_info = NELEMS(not64_insn);
id_insn->mode_bits = arch_x86->mode_bits;
id_insn->suffix = 0;
id_insn->misc_flags = 0;
id_insn->parser = PARSER(arch_x86);
id_insn->force_strict = arch_x86->force_strict != 0;
id_insn->default_rel = arch_x86->default_rel != 0;
*bc = yasm_bc_create_common(&x86_id_insn_callback, id_insn, line);
return YASM_ARCH_INSN;
}
cpu0 = pdata->cpu0;
cpu1 = pdata->cpu1;
cpu2 = pdata->cpu2;
if (!BitVector_bit_test(cpu_enabled, cpu0) ||
!BitVector_bit_test(cpu_enabled, cpu1) ||
!BitVector_bit_test(cpu_enabled, cpu2)) {
yasm_warn_set(YASM_WARN_GENERAL,
N_("`%s' is an instruction in CPU%s"), id,
cpu_find_reverse(cpu0, cpu1, cpu2));
return YASM_ARCH_NOTINSNPREFIX;
}
id_insn = yasm_xmalloc(sizeof(x86_id_insn));
yasm_insn_initialize(&id_insn->insn);
id_insn->group = pdata->group;
id_insn->cpu_enabled = cpu_enabled;
id_insn->mod_data[0] = pdata->mod_data0;
id_insn->mod_data[1] = pdata->mod_data1;
id_insn->mod_data[2] = pdata->mod_data2;
id_insn->num_info = pdata->num_info;
id_insn->mode_bits = arch_x86->mode_bits;
id_insn->suffix = pdata->flags;
id_insn->misc_flags = pdata->misc_flags;
id_insn->parser = PARSER(arch_x86);
id_insn->force_strict = arch_x86->force_strict != 0;
id_insn->default_rel = arch_x86->default_rel != 0;
*bc = yasm_bc_create_common(&x86_id_insn_callback, id_insn, line);
return YASM_ARCH_INSN;
} else {
unsigned long type = pdata->num_info<<8;
unsigned long value = pdata->flags;
if (arch_x86->mode_bits == 64 && type == X86_OPERSIZE && value == 32) {
yasm_error_set(YASM_ERROR_GENERAL,
N_("Cannot override data size to 32 bits in 64-bit mode"));
return YASM_ARCH_NOTINSNPREFIX;
}
if (arch_x86->mode_bits == 64 && type == X86_ADDRSIZE && value == 16) {
yasm_error_set(YASM_ERROR_GENERAL,
N_("Cannot override address size to 16 bits in 64-bit mode"));
return YASM_ARCH_NOTINSNPREFIX;
}
if (arch_x86->mode_bits != 64 && (pdata->misc_flags & ONLY_64)) {
yasm_warn_set(YASM_WARN_GENERAL,
N_("`%s' is a prefix in 64-bit mode"), id);
return YASM_ARCH_NOTINSNPREFIX;
}
*prefix = type|value;
return YASM_ARCH_PREFIX;
}
}
static void
x86_id_insn_destroy(void *contents)
{
x86_id_insn *id_insn = (x86_id_insn *)contents;
yasm_insn_delete(&id_insn->insn, yasm_x86__ea_destroy);
yasm_xfree(contents);
}
static void
x86_id_insn_print(const void *contents, FILE *f, int indent_level)
{
const x86_id_insn *id_insn = (const x86_id_insn *)contents;
yasm_insn_print(&id_insn->insn, f, indent_level);
/*TODO*/
}
/*@only@*/ yasm_bytecode *
yasm_x86__create_empty_insn(yasm_arch *arch, unsigned long line)
{
yasm_arch_x86 *arch_x86 = (yasm_arch_x86 *)arch;
x86_id_insn *id_insn = yasm_xmalloc(sizeof(x86_id_insn));
yasm_insn_initialize(&id_insn->insn);
id_insn->group = empty_insn;
id_insn->cpu_enabled = arch_x86->cpu_enables[arch_x86->active_cpu];
id_insn->mod_data[0] = 0;
id_insn->mod_data[1] = 0;
id_insn->mod_data[2] = 0;
id_insn->num_info = NELEMS(empty_insn);
id_insn->mode_bits = arch_x86->mode_bits;
id_insn->suffix = (PARSER(arch_x86) == X86_PARSER_GAS) ? SUF_Z : 0;
id_insn->misc_flags = 0;
id_insn->parser = PARSER(arch_x86);
id_insn->force_strict = arch_x86->force_strict != 0;
id_insn->default_rel = arch_x86->default_rel != 0;
return yasm_bc_create_common(&x86_id_insn_callback, id_insn, line);
}