blob: cff5dd185451a79c64685aa88c550a8c06019ec9 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
#include "webrtc/modules/bitrate_controller/bitrate_controller_impl.h"
#include <algorithm>
#include <utility>
#include "webrtc/modules/rtp_rtcp/interface/rtp_rtcp_defines.h"
namespace webrtc {
class BitrateControllerImpl::RtcpBandwidthObserverImpl
: public RtcpBandwidthObserver {
public:
explicit RtcpBandwidthObserverImpl(BitrateControllerImpl* owner)
: owner_(owner) {
}
virtual ~RtcpBandwidthObserverImpl() {
}
// Received RTCP REMB or TMMBR.
virtual void OnReceivedEstimatedBitrate(const uint32_t bitrate) OVERRIDE {
owner_->OnReceivedEstimatedBitrate(bitrate);
}
// Received RTCP receiver block.
virtual void OnReceivedRtcpReceiverReport(
const ReportBlockList& report_blocks,
uint16_t rtt,
int64_t now_ms) OVERRIDE {
if (report_blocks.empty())
return;
int fraction_lost_aggregate = 0;
int total_number_of_packets = 0;
// Compute the a weighted average of the fraction loss from all report
// blocks.
for (ReportBlockList::const_iterator it = report_blocks.begin();
it != report_blocks.end(); ++it) {
std::map<uint32_t, uint32_t>::iterator seq_num_it =
ssrc_to_last_received_extended_high_seq_num_.find(it->sourceSSRC);
int number_of_packets = 0;
if (seq_num_it != ssrc_to_last_received_extended_high_seq_num_.end())
number_of_packets = it->extendedHighSeqNum -
seq_num_it->second;
fraction_lost_aggregate += number_of_packets * it->fractionLost;
total_number_of_packets += number_of_packets;
// Update last received for this SSRC.
ssrc_to_last_received_extended_high_seq_num_[it->sourceSSRC] =
it->extendedHighSeqNum;
}
if (total_number_of_packets == 0)
fraction_lost_aggregate = 0;
else
fraction_lost_aggregate = (fraction_lost_aggregate +
total_number_of_packets / 2) / total_number_of_packets;
if (fraction_lost_aggregate > 255)
return;
owner_->OnReceivedRtcpReceiverReport(fraction_lost_aggregate, rtt,
total_number_of_packets, now_ms);
}
private:
std::map<uint32_t, uint32_t> ssrc_to_last_received_extended_high_seq_num_;
BitrateControllerImpl* owner_;
};
BitrateController* BitrateController::CreateBitrateController(
Clock* clock,
bool enforce_min_bitrate) {
return new BitrateControllerImpl(clock, enforce_min_bitrate);
}
BitrateControllerImpl::BitrateControllerImpl(Clock* clock, bool enforce_min_bitrate)
: clock_(clock),
last_bitrate_update_ms_(clock_->TimeInMilliseconds()),
critsect_(CriticalSectionWrapper::CreateCriticalSection()),
bandwidth_estimation_(),
bitrate_observers_(),
enforce_min_bitrate_(enforce_min_bitrate),
reserved_bitrate_bps_(0),
last_bitrate_bps_(0),
last_fraction_loss_(0),
last_rtt_ms_(0),
last_enforce_min_bitrate_(!enforce_min_bitrate_),
bitrate_observers_modified_(false),
last_reserved_bitrate_bps_(0) {}
BitrateControllerImpl::~BitrateControllerImpl() {
BitrateObserverConfList::iterator it = bitrate_observers_.begin();
while (it != bitrate_observers_.end()) {
delete it->second;
bitrate_observers_.erase(it);
it = bitrate_observers_.begin();
}
delete critsect_;
}
RtcpBandwidthObserver* BitrateControllerImpl::CreateRtcpBandwidthObserver() {
return new RtcpBandwidthObserverImpl(this);
}
BitrateControllerImpl::BitrateObserverConfList::iterator
BitrateControllerImpl::FindObserverConfigurationPair(const BitrateObserver*
observer) {
BitrateObserverConfList::iterator it = bitrate_observers_.begin();
for (; it != bitrate_observers_.end(); ++it) {
if (it->first == observer) {
return it;
}
}
return bitrate_observers_.end();
}
void BitrateControllerImpl::SetBitrateObserver(
BitrateObserver* observer,
const uint32_t start_bitrate,
const uint32_t min_bitrate,
const uint32_t max_bitrate) {
CriticalSectionScoped cs(critsect_);
BitrateObserverConfList::iterator it = FindObserverConfigurationPair(
observer);
if (it != bitrate_observers_.end()) {
// Update current configuration.
it->second->start_bitrate_ = start_bitrate;
it->second->min_bitrate_ = min_bitrate;
it->second->max_bitrate_ = max_bitrate;
// Set the send-side bandwidth to the max of the sum of start bitrates and
// the current estimate, so that if the user wants to immediately use more
// bandwidth, that can be enforced.
uint32_t sum_start_bitrate = 0;
BitrateObserverConfList::iterator it;
for (it = bitrate_observers_.begin(); it != bitrate_observers_.end();
++it) {
sum_start_bitrate += it->second->start_bitrate_;
}
uint32_t current_estimate;
uint8_t loss;
uint32_t rtt;
bandwidth_estimation_.CurrentEstimate(&current_estimate, &loss, &rtt);
bandwidth_estimation_.SetSendBitrate(std::max(sum_start_bitrate,
current_estimate));
} else {
// Add new settings.
bitrate_observers_.push_back(BitrateObserverConfiguration(observer,
new BitrateConfiguration(start_bitrate, min_bitrate, max_bitrate)));
bitrate_observers_modified_ = true;
// TODO(andresp): This is a ugly way to set start bitrate.
//
// Only change start bitrate if we have exactly one observer. By definition
// you can only have one start bitrate, once we have our first estimate we
// will adapt from there.
if (bitrate_observers_.size() == 1) {
bandwidth_estimation_.SetSendBitrate(start_bitrate);
}
}
UpdateMinMaxBitrate();
}
void BitrateControllerImpl::UpdateMinMaxBitrate() {
uint32_t sum_min_bitrate = 0;
uint32_t sum_max_bitrate = 0;
BitrateObserverConfList::iterator it;
for (it = bitrate_observers_.begin(); it != bitrate_observers_.end(); ++it) {
sum_min_bitrate += it->second->min_bitrate_;
sum_max_bitrate += it->second->max_bitrate_;
}
if (sum_max_bitrate == 0) {
// No max configured use 1Gbit/s.
sum_max_bitrate = 1000000000;
}
if (enforce_min_bitrate_ == false) {
// If not enforcing min bitrate, allow the bandwidth estimation to
// go as low as 10 kbps.
sum_min_bitrate = std::min(sum_min_bitrate, 10000u);
}
bandwidth_estimation_.SetMinMaxBitrate(sum_min_bitrate,
sum_max_bitrate);
}
void BitrateControllerImpl::RemoveBitrateObserver(BitrateObserver* observer) {
CriticalSectionScoped cs(critsect_);
BitrateObserverConfList::iterator it = FindObserverConfigurationPair(
observer);
if (it != bitrate_observers_.end()) {
delete it->second;
bitrate_observers_.erase(it);
bitrate_observers_modified_ = true;
}
}
void BitrateControllerImpl::EnforceMinBitrate(bool enforce_min_bitrate) {
CriticalSectionScoped cs(critsect_);
enforce_min_bitrate_ = enforce_min_bitrate;
UpdateMinMaxBitrate();
}
void BitrateControllerImpl::SetReservedBitrate(uint32_t reserved_bitrate_bps) {
CriticalSectionScoped cs(critsect_);
reserved_bitrate_bps_ = reserved_bitrate_bps;
MaybeTriggerOnNetworkChanged();
}
void BitrateControllerImpl::OnReceivedEstimatedBitrate(const uint32_t bitrate) {
CriticalSectionScoped cs(critsect_);
bandwidth_estimation_.UpdateReceiverEstimate(bitrate);
MaybeTriggerOnNetworkChanged();
}
int32_t BitrateControllerImpl::TimeUntilNextProcess() {
enum { kBitrateControllerUpdateIntervalMs = 25 };
CriticalSectionScoped cs(critsect_);
int time_since_update_ms =
clock_->TimeInMilliseconds() - last_bitrate_update_ms_;
return std::max(0, kBitrateControllerUpdateIntervalMs - time_since_update_ms);
}
int32_t BitrateControllerImpl::Process() {
if (TimeUntilNextProcess() > 0)
return 0;
{
CriticalSectionScoped cs(critsect_);
bandwidth_estimation_.UpdateEstimate(clock_->TimeInMilliseconds());
MaybeTriggerOnNetworkChanged();
}
last_bitrate_update_ms_ = clock_->TimeInMilliseconds();
return 0;
}
void BitrateControllerImpl::OnReceivedRtcpReceiverReport(
const uint8_t fraction_loss,
const uint32_t rtt,
const int number_of_packets,
const uint32_t now_ms) {
CriticalSectionScoped cs(critsect_);
bandwidth_estimation_.UpdateReceiverBlock(
fraction_loss, rtt, number_of_packets, now_ms);
MaybeTriggerOnNetworkChanged();
}
void BitrateControllerImpl::MaybeTriggerOnNetworkChanged() {
uint32_t bitrate;
uint8_t fraction_loss;
uint32_t rtt;
bandwidth_estimation_.CurrentEstimate(&bitrate, &fraction_loss, &rtt);
bitrate -= std::min(bitrate, reserved_bitrate_bps_);
if (bitrate_observers_modified_ ||
bitrate != last_bitrate_bps_ ||
fraction_loss != last_fraction_loss_ ||
rtt != last_rtt_ms_ ||
last_enforce_min_bitrate_ != enforce_min_bitrate_ ||
last_reserved_bitrate_bps_ != reserved_bitrate_bps_) {
last_bitrate_bps_ = bitrate;
last_fraction_loss_ = fraction_loss;
last_rtt_ms_ = rtt;
last_enforce_min_bitrate_ = enforce_min_bitrate_;
last_reserved_bitrate_bps_ = reserved_bitrate_bps_;
bitrate_observers_modified_ = false;
OnNetworkChanged(bitrate, fraction_loss, rtt);
}
}
void BitrateControllerImpl::OnNetworkChanged(const uint32_t bitrate,
const uint8_t fraction_loss,
const uint32_t rtt) {
// Sanity check.
if (bitrate_observers_.empty())
return;
uint32_t sum_min_bitrates = 0;
BitrateObserverConfList::iterator it;
for (it = bitrate_observers_.begin(); it != bitrate_observers_.end(); ++it) {
sum_min_bitrates += it->second->min_bitrate_;
}
if (bitrate <= sum_min_bitrates)
return LowRateAllocation(bitrate, fraction_loss, rtt, sum_min_bitrates);
else
return NormalRateAllocation(bitrate, fraction_loss, rtt, sum_min_bitrates);
}
void BitrateControllerImpl::NormalRateAllocation(uint32_t bitrate,
uint8_t fraction_loss,
uint32_t rtt,
uint32_t sum_min_bitrates) {
uint32_t number_of_observers = bitrate_observers_.size();
uint32_t bitrate_per_observer = (bitrate - sum_min_bitrates) /
number_of_observers;
// Use map to sort list based on max bitrate.
ObserverSortingMap list_max_bitrates;
BitrateObserverConfList::iterator it;
for (it = bitrate_observers_.begin(); it != bitrate_observers_.end(); ++it) {
list_max_bitrates.insert(std::pair<uint32_t, ObserverConfiguration*>(
it->second->max_bitrate_,
new ObserverConfiguration(it->first, it->second->min_bitrate_)));
}
ObserverSortingMap::iterator max_it = list_max_bitrates.begin();
while (max_it != list_max_bitrates.end()) {
number_of_observers--;
uint32_t observer_allowance = max_it->second->min_bitrate_ +
bitrate_per_observer;
if (max_it->first < observer_allowance) {
// We have more than enough for this observer.
// Carry the remainder forward.
uint32_t remainder = observer_allowance - max_it->first;
if (number_of_observers != 0) {
bitrate_per_observer += remainder / number_of_observers;
}
max_it->second->observer_->OnNetworkChanged(max_it->first, fraction_loss,
rtt);
} else {
max_it->second->observer_->OnNetworkChanged(observer_allowance,
fraction_loss, rtt);
}
delete max_it->second;
list_max_bitrates.erase(max_it);
// Prepare next iteration.
max_it = list_max_bitrates.begin();
}
}
void BitrateControllerImpl::LowRateAllocation(uint32_t bitrate,
uint8_t fraction_loss,
uint32_t rtt,
uint32_t sum_min_bitrates) {
if (enforce_min_bitrate_) {
// Min bitrate to all observers.
BitrateControllerImpl::BitrateObserverConfList::iterator it;
for (it = bitrate_observers_.begin(); it != bitrate_observers_.end();
++it) {
it->first->OnNetworkChanged(it->second->min_bitrate_, fraction_loss, rtt);
}
// Set sum of min to current send bitrate.
bandwidth_estimation_.SetSendBitrate(sum_min_bitrates);
} else {
// Allocate up to |min_bitrate_| to one observer at a time, until
// |bitrate| is depleted.
uint32_t remainder = bitrate;
BitrateControllerImpl::BitrateObserverConfList::iterator it;
for (it = bitrate_observers_.begin(); it != bitrate_observers_.end();
++it) {
uint32_t allocation = std::min(remainder, it->second->min_bitrate_);
it->first->OnNetworkChanged(allocation, fraction_loss, rtt);
remainder -= allocation;
}
// Set |bitrate| to current send bitrate.
bandwidth_estimation_.SetSendBitrate(bitrate);
}
}
bool BitrateControllerImpl::AvailableBandwidth(uint32_t* bandwidth) const {
CriticalSectionScoped cs(critsect_);
uint32_t bitrate;
uint8_t fraction_loss;
uint32_t rtt;
bandwidth_estimation_.CurrentEstimate(&bitrate, &fraction_loss, &rtt);
if (bitrate) {
*bandwidth = bitrate - std::min(bitrate, reserved_bitrate_bps_);
return true;
}
return false;
}
} // namespace webrtc