blob: 0955066b1161d773147f419fbad1fe3258670375 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/video_engine/vie_encoder.h"
#include <assert.h>
#include <algorithm>
#include "webrtc/common_video/interface/video_image.h"
#include "webrtc/common_video/libyuv/include/webrtc_libyuv.h"
#include "webrtc/modules/pacing/include/paced_sender.h"
#include "webrtc/modules/rtp_rtcp/interface/rtp_rtcp.h"
#include "webrtc/modules/utility/interface/process_thread.h"
#include "webrtc/modules/video_coding/codecs/interface/video_codec_interface.h"
#include "webrtc/modules/video_coding/main/interface/video_coding.h"
#include "webrtc/modules/video_coding/main/interface/video_coding_defines.h"
#include "webrtc/modules/video_coding/main/source/encoded_frame.h"
#include "webrtc/system_wrappers/interface/clock.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/logging.h"
#include "webrtc/system_wrappers/interface/tick_util.h"
#include "webrtc/system_wrappers/interface/trace_event.h"
#include "webrtc/video_engine/include/vie_codec.h"
#include "webrtc/video_engine/include/vie_image_process.h"
#include "webrtc/frame_callback.h"
#include "webrtc/video_engine/vie_defines.h"
namespace webrtc {
// Margin on when we pause the encoder when the pacing buffer overflows relative
// to the configured buffer delay.
static const float kEncoderPausePacerMargin = 2.0f;
// Don't stop the encoder unless the delay is above this configured value.
static const int kMinPacingDelayMs = 200;
// Allow packets to be transmitted in up to 2 times max video bitrate if the
// bandwidth estimate allows it.
// TODO(holmer): Expose transmission start, min and max bitrates in the
// VideoEngine API and remove the kTransmissionMaxBitrateMultiplier.
static const int kTransmissionMaxBitrateMultiplier = 2;
static const float kStopPaddingThresholdMs = 2000;
std::vector<uint32_t> AllocateStreamBitrates(
uint32_t total_bitrate,
const SimulcastStream* stream_configs,
size_t number_of_streams) {
if (number_of_streams == 0) {
std::vector<uint32_t> stream_bitrates(1, 0);
stream_bitrates[0] = total_bitrate;
return stream_bitrates;
}
std::vector<uint32_t> stream_bitrates(number_of_streams, 0);
uint32_t bitrate_remainder = total_bitrate;
for (size_t i = 0; i < stream_bitrates.size() && bitrate_remainder > 0; ++i) {
if (stream_configs[i].maxBitrate * 1000 > bitrate_remainder) {
stream_bitrates[i] = bitrate_remainder;
} else {
stream_bitrates[i] = stream_configs[i].maxBitrate * 1000;
}
bitrate_remainder -= stream_bitrates[i];
}
return stream_bitrates;
}
class QMVideoSettingsCallback : public VCMQMSettingsCallback {
public:
explicit QMVideoSettingsCallback(VideoProcessingModule* vpm);
~QMVideoSettingsCallback();
// Update VPM with QM (quality modes: frame size & frame rate) settings.
int32_t SetVideoQMSettings(const uint32_t frame_rate,
const uint32_t width,
const uint32_t height);
private:
VideoProcessingModule* vpm_;
};
class ViEBitrateObserver : public BitrateObserver {
public:
explicit ViEBitrateObserver(ViEEncoder* owner)
: owner_(owner) {
}
virtual ~ViEBitrateObserver() {}
// Implements BitrateObserver.
virtual void OnNetworkChanged(const uint32_t bitrate_bps,
const uint8_t fraction_lost,
const uint32_t rtt) {
owner_->OnNetworkChanged(bitrate_bps, fraction_lost, rtt);
}
private:
ViEEncoder* owner_;
};
class ViEPacedSenderCallback : public PacedSender::Callback {
public:
explicit ViEPacedSenderCallback(ViEEncoder* owner)
: owner_(owner) {
}
virtual ~ViEPacedSenderCallback() {}
virtual bool TimeToSendPacket(uint32_t ssrc, uint16_t sequence_number,
int64_t capture_time_ms, bool retransmission) {
return owner_->TimeToSendPacket(ssrc, sequence_number, capture_time_ms,
retransmission);
}
virtual int TimeToSendPadding(int bytes) {
return owner_->TimeToSendPadding(bytes);
}
private:
ViEEncoder* owner_;
};
ViEEncoder::ViEEncoder(int32_t engine_id,
int32_t channel_id,
uint32_t number_of_cores,
const Config& config,
ProcessThread& module_process_thread,
BitrateController* bitrate_controller)
: engine_id_(engine_id),
channel_id_(channel_id),
number_of_cores_(number_of_cores),
vcm_(*webrtc::VideoCodingModule::Create()),
vpm_(*webrtc::VideoProcessingModule::Create(ViEModuleId(engine_id,
channel_id))),
callback_cs_(CriticalSectionWrapper::CreateCriticalSection()),
data_cs_(CriticalSectionWrapper::CreateCriticalSection()),
bitrate_controller_(bitrate_controller),
time_of_last_incoming_frame_ms_(0),
send_padding_(false),
min_transmit_bitrate_kbps_(0),
target_delay_ms_(0),
network_is_transmitting_(true),
encoder_paused_(false),
encoder_paused_and_dropped_frame_(false),
fec_enabled_(false),
nack_enabled_(false),
codec_observer_(NULL),
effect_filter_(NULL),
module_process_thread_(module_process_thread),
has_received_sli_(false),
picture_id_sli_(0),
has_received_rpsi_(false),
picture_id_rpsi_(0),
qm_callback_(NULL),
video_suspended_(false),
pre_encode_callback_(NULL) {
RtpRtcp::Configuration configuration;
configuration.id = ViEModuleId(engine_id_, channel_id_);
configuration.audio = false; // Video.
default_rtp_rtcp_.reset(RtpRtcp::CreateRtpRtcp(configuration));
bitrate_observer_.reset(new ViEBitrateObserver(this));
pacing_callback_.reset(new ViEPacedSenderCallback(this));
paced_sender_.reset(
new PacedSender(Clock::GetRealTimeClock(), pacing_callback_.get(),
PacedSender::kDefaultInitialPaceKbps, 0));
}
bool ViEEncoder::Init() {
if (vcm_.InitializeSender() != 0) {
return false;
}
vpm_.EnableTemporalDecimation(true);
// Enable/disable content analysis: off by default for now.
vpm_.EnableContentAnalysis(false);
if (module_process_thread_.RegisterModule(&vcm_) != 0 ||
module_process_thread_.RegisterModule(default_rtp_rtcp_.get()) != 0 ||
module_process_thread_.RegisterModule(paced_sender_.get()) != 0) {
return false;
}
if (qm_callback_) {
delete qm_callback_;
}
qm_callback_ = new QMVideoSettingsCallback(&vpm_);
#ifdef VIDEOCODEC_VP8
VideoCodecType codec_type = webrtc::kVideoCodecVP8;
#else
VideoCodecType codec_type = webrtc::kVideoCodecI420;
#endif
VideoCodec video_codec;
if (vcm_.Codec(codec_type, &video_codec) != VCM_OK) {
return false;
}
{
CriticalSectionScoped cs(data_cs_.get());
send_padding_ = video_codec.numberOfSimulcastStreams > 1;
}
if (vcm_.RegisterSendCodec(&video_codec, number_of_cores_,
default_rtp_rtcp_->MaxDataPayloadLength()) != 0) {
return false;
}
if (default_rtp_rtcp_->RegisterSendPayload(video_codec) != 0) {
return false;
}
if (vcm_.RegisterTransportCallback(this) != 0) {
return false;
}
if (vcm_.RegisterSendStatisticsCallback(this) != 0) {
return false;
}
if (vcm_.RegisterVideoQMCallback(qm_callback_) != 0) {
return false;
}
return true;
}
ViEEncoder::~ViEEncoder() {
if (bitrate_controller_) {
bitrate_controller_->RemoveBitrateObserver(bitrate_observer_.get());
}
module_process_thread_.DeRegisterModule(&vcm_);
module_process_thread_.DeRegisterModule(&vpm_);
module_process_thread_.DeRegisterModule(default_rtp_rtcp_.get());
module_process_thread_.DeRegisterModule(paced_sender_.get());
VideoCodingModule::Destroy(&vcm_);
VideoProcessingModule::Destroy(&vpm_);
delete qm_callback_;
}
int ViEEncoder::Owner() const {
return channel_id_;
}
void ViEEncoder::SetNetworkTransmissionState(bool is_transmitting) {
{
CriticalSectionScoped cs(data_cs_.get());
network_is_transmitting_ = is_transmitting;
}
if (is_transmitting) {
paced_sender_->Resume();
} else {
paced_sender_->Pause();
}
}
void ViEEncoder::Pause() {
CriticalSectionScoped cs(data_cs_.get());
encoder_paused_ = true;
}
void ViEEncoder::Restart() {
CriticalSectionScoped cs(data_cs_.get());
encoder_paused_ = false;
}
uint8_t ViEEncoder::NumberOfCodecs() {
return vcm_.NumberOfCodecs();
}
int32_t ViEEncoder::GetCodec(uint8_t list_index, VideoCodec* video_codec) {
if (vcm_.Codec(list_index, video_codec) != 0) {
return -1;
}
return 0;
}
int32_t ViEEncoder::RegisterExternalEncoder(webrtc::VideoEncoder* encoder,
uint8_t pl_type,
bool internal_source) {
if (encoder == NULL)
return -1;
if (vcm_.RegisterExternalEncoder(encoder, pl_type, internal_source) !=
VCM_OK) {
return -1;
}
return 0;
}
int32_t ViEEncoder::DeRegisterExternalEncoder(uint8_t pl_type) {
webrtc::VideoCodec current_send_codec;
if (vcm_.SendCodec(&current_send_codec) == VCM_OK) {
uint32_t current_bitrate_bps = 0;
if (vcm_.Bitrate(&current_bitrate_bps) != 0) {
LOG(LS_WARNING) << "Failed to get the current encoder target bitrate.";
}
current_send_codec.startBitrate = (current_bitrate_bps + 500) / 1000;
}
if (vcm_.RegisterExternalEncoder(NULL, pl_type) != VCM_OK) {
return -1;
}
// If the external encoder is the current send codec, use vcm internal
// encoder.
if (current_send_codec.plType == pl_type) {
uint16_t max_data_payload_length =
default_rtp_rtcp_->MaxDataPayloadLength();
{
CriticalSectionScoped cs(data_cs_.get());
send_padding_ = current_send_codec.numberOfSimulcastStreams > 1;
}
// TODO(mflodman): Unfortunately the VideoCodec that VCM has cached a
// raw pointer to an |extra_options| that's long gone. Clearing it here is
// a hack to prevent the following code from crashing. This should be fixed
// for realz. https://code.google.com/p/chromium/issues/detail?id=348222
current_send_codec.extra_options = NULL;
if (vcm_.RegisterSendCodec(&current_send_codec, number_of_cores_,
max_data_payload_length) != VCM_OK) {
LOG(LS_INFO) << "De-registered the currently used external encoder ("
<< static_cast<int>(pl_type) << ") and therefore tried to "
<< "register the corresponding internal encoder, but none "
<< "was supported.";
}
}
return 0;
}
int32_t ViEEncoder::SetEncoder(const webrtc::VideoCodec& video_codec) {
// Setting target width and height for VPM.
if (vpm_.SetTargetResolution(video_codec.width, video_codec.height,
video_codec.maxFramerate) != VPM_OK) {
return -1;
}
if (default_rtp_rtcp_->RegisterSendPayload(video_codec) != 0) {
return -1;
}
// Convert from kbps to bps.
std::vector<uint32_t> stream_bitrates = AllocateStreamBitrates(
video_codec.startBitrate * 1000,
video_codec.simulcastStream,
video_codec.numberOfSimulcastStreams);
default_rtp_rtcp_->SetTargetSendBitrate(stream_bitrates);
uint16_t max_data_payload_length =
default_rtp_rtcp_->MaxDataPayloadLength();
{
CriticalSectionScoped cs(data_cs_.get());
send_padding_ = video_codec.numberOfSimulcastStreams > 1;
}
if (vcm_.RegisterSendCodec(&video_codec, number_of_cores_,
max_data_payload_length) != VCM_OK) {
return -1;
}
// Set this module as sending right away, let the slave module in the channel
// start and stop sending.
if (default_rtp_rtcp_->SetSendingStatus(true) != 0) {
return -1;
}
bitrate_controller_->SetBitrateObserver(bitrate_observer_.get(),
video_codec.startBitrate * 1000,
video_codec.minBitrate * 1000,
kTransmissionMaxBitrateMultiplier *
video_codec.maxBitrate * 1000);
CriticalSectionScoped crit(data_cs_.get());
int pad_up_to_bitrate_kbps = video_codec.startBitrate;
if (pad_up_to_bitrate_kbps < min_transmit_bitrate_kbps_)
pad_up_to_bitrate_kbps = min_transmit_bitrate_kbps_;
paced_sender_->UpdateBitrate(
PacedSender::kDefaultPaceMultiplier * video_codec.startBitrate,
pad_up_to_bitrate_kbps);
return 0;
}
int32_t ViEEncoder::GetEncoder(VideoCodec* video_codec) {
if (vcm_.SendCodec(video_codec) != 0) {
return -1;
}
return 0;
}
int32_t ViEEncoder::GetCodecConfigParameters(
unsigned char config_parameters[kConfigParameterSize],
unsigned char& config_parameters_size) {
int32_t num_parameters =
vcm_.CodecConfigParameters(config_parameters, kConfigParameterSize);
if (num_parameters <= 0) {
config_parameters_size = 0;
return -1;
}
config_parameters_size = static_cast<unsigned char>(num_parameters);
return 0;
}
int32_t ViEEncoder::ScaleInputImage(bool enable) {
VideoFrameResampling resampling_mode = kFastRescaling;
// TODO(mflodman) What?
if (enable) {
// kInterpolation is currently not supported.
LOG_F(LS_ERROR) << "Not supported.";
return -1;
}
vpm_.SetInputFrameResampleMode(resampling_mode);
return 0;
}
bool ViEEncoder::TimeToSendPacket(uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_time_ms,
bool retransmission) {
return default_rtp_rtcp_->TimeToSendPacket(ssrc, sequence_number,
capture_time_ms, retransmission);
}
int ViEEncoder::TimeToSendPadding(int bytes) {
bool send_padding;
{
CriticalSectionScoped cs(data_cs_.get());
send_padding =
send_padding_ || video_suspended_ || min_transmit_bitrate_kbps_ > 0;
}
if (send_padding) {
return default_rtp_rtcp_->TimeToSendPadding(bytes);
}
return 0;
}
bool ViEEncoder::EncoderPaused() const {
// Pause video if paused by caller or as long as the network is down or the
// pacer queue has grown too large in buffered mode.
if (encoder_paused_) {
return true;
}
if (target_delay_ms_ > 0) {
// Buffered mode.
// TODO(pwestin): Workaround until nack is configured as a time and not
// number of packets.
return paced_sender_->QueueInMs() >=
std::max(static_cast<int>(target_delay_ms_ * kEncoderPausePacerMargin),
kMinPacingDelayMs);
}
return !network_is_transmitting_;
}
RtpRtcp* ViEEncoder::SendRtpRtcpModule() {
return default_rtp_rtcp_.get();
}
void ViEEncoder::DeliverFrame(int id,
I420VideoFrame* video_frame,
int num_csrcs,
const uint32_t CSRC[kRtpCsrcSize]) {
if (default_rtp_rtcp_->SendingMedia() == false) {
// We've paused or we have no channels attached, don't encode.
return;
}
{
CriticalSectionScoped cs(data_cs_.get());
time_of_last_incoming_frame_ms_ = TickTime::MillisecondTimestamp();
if (EncoderPaused()) {
if (!encoder_paused_and_dropped_frame_) {
TRACE_EVENT_ASYNC_BEGIN0("webrtc", "EncoderPaused", this);
}
encoder_paused_and_dropped_frame_ = true;
return;
}
if (encoder_paused_and_dropped_frame_) {
TRACE_EVENT_ASYNC_END0("webrtc", "EncoderPaused", this);
}
encoder_paused_and_dropped_frame_ = false;
}
// Convert render time, in ms, to RTP timestamp.
const int kMsToRtpTimestamp = 90;
const uint32_t time_stamp =
kMsToRtpTimestamp *
static_cast<uint32_t>(video_frame->render_time_ms());
TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", video_frame->render_time_ms(),
"Encode");
video_frame->set_timestamp(time_stamp);
// Make sure the CSRC list is correct.
if (num_csrcs > 0) {
uint32_t tempCSRC[kRtpCsrcSize];
for (int i = 0; i < num_csrcs; i++) {
if (CSRC[i] == 1) {
tempCSRC[i] = default_rtp_rtcp_->SSRC();
} else {
tempCSRC[i] = CSRC[i];
}
}
default_rtp_rtcp_->SetCSRCs(tempCSRC, (uint8_t) num_csrcs);
}
I420VideoFrame* decimated_frame = NULL;
// TODO(wuchengli): support texture frames.
if (video_frame->native_handle() == NULL) {
{
CriticalSectionScoped cs(callback_cs_.get());
if (effect_filter_) {
unsigned int length =
CalcBufferSize(kI420, video_frame->width(), video_frame->height());
scoped_ptr<uint8_t[]> video_buffer(new uint8_t[length]);
ExtractBuffer(*video_frame, length, video_buffer.get());
effect_filter_->Transform(length,
video_buffer.get(),
video_frame->ntp_time_ms(),
video_frame->timestamp(),
video_frame->width(),
video_frame->height());
}
}
// Pass frame via preprocessor.
const int ret = vpm_.PreprocessFrame(*video_frame, &decimated_frame);
if (ret == 1) {
// Drop this frame.
return;
}
if (ret != VPM_OK) {
return;
}
}
// If the frame was not resampled or scaled => use original.
if (decimated_frame == NULL) {
decimated_frame = video_frame;
}
{
CriticalSectionScoped cs(callback_cs_.get());
if (pre_encode_callback_)
pre_encode_callback_->FrameCallback(decimated_frame);
}
if (video_frame->native_handle() != NULL) {
// TODO(wuchengli): add texture support. http://crbug.com/362437
return;
}
#ifdef VIDEOCODEC_VP8
if (vcm_.SendCodec() == webrtc::kVideoCodecVP8) {
webrtc::CodecSpecificInfo codec_specific_info;
codec_specific_info.codecType = webrtc::kVideoCodecVP8;
{
CriticalSectionScoped cs(data_cs_.get());
codec_specific_info.codecSpecific.VP8.hasReceivedRPSI =
has_received_rpsi_;
codec_specific_info.codecSpecific.VP8.hasReceivedSLI =
has_received_sli_;
codec_specific_info.codecSpecific.VP8.pictureIdRPSI =
picture_id_rpsi_;
codec_specific_info.codecSpecific.VP8.pictureIdSLI =
picture_id_sli_;
has_received_sli_ = false;
has_received_rpsi_ = false;
}
vcm_.AddVideoFrame(*decimated_frame, vpm_.ContentMetrics(),
&codec_specific_info);
return;
}
#endif
vcm_.AddVideoFrame(*decimated_frame);
}
void ViEEncoder::DelayChanged(int id, int frame_delay) {
default_rtp_rtcp_->SetCameraDelay(frame_delay);
}
int ViEEncoder::GetPreferedFrameSettings(int* width,
int* height,
int* frame_rate) {
webrtc::VideoCodec video_codec;
memset(&video_codec, 0, sizeof(video_codec));
if (vcm_.SendCodec(&video_codec) != VCM_OK) {
return -1;
}
*width = video_codec.width;
*height = video_codec.height;
*frame_rate = video_codec.maxFramerate;
return 0;
}
int ViEEncoder::SendKeyFrame() {
return vcm_.IntraFrameRequest(0);
}
int32_t ViEEncoder::SendCodecStatistics(
uint32_t* num_key_frames, uint32_t* num_delta_frames) {
webrtc::VCMFrameCount sent_frames;
if (vcm_.SentFrameCount(sent_frames) != VCM_OK) {
return -1;
}
*num_key_frames = sent_frames.numKeyFrames;
*num_delta_frames = sent_frames.numDeltaFrames;
return 0;
}
int32_t ViEEncoder::PacerQueuingDelayMs() const {
return paced_sender_->QueueInMs();
}
int ViEEncoder::CodecTargetBitrate(uint32_t* bitrate) const {
if (vcm_.Bitrate(bitrate) != 0)
return -1;
return 0;
}
int32_t ViEEncoder::UpdateProtectionMethod(bool enable_nack) {
bool fec_enabled = false;
uint8_t dummy_ptype_red = 0;
uint8_t dummy_ptypeFEC = 0;
// Updated protection method to VCM to get correct packetization sizes.
// FEC has larger overhead than NACK -> set FEC if used.
int32_t error = default_rtp_rtcp_->GenericFECStatus(fec_enabled,
dummy_ptype_red,
dummy_ptypeFEC);
if (error) {
return -1;
}
if (fec_enabled_ == fec_enabled && nack_enabled_ == enable_nack) {
// No change needed, we're already in correct state.
return 0;
}
fec_enabled_ = fec_enabled;
nack_enabled_ = enable_nack;
// Set Video Protection for VCM.
if (fec_enabled && nack_enabled_) {
vcm_.SetVideoProtection(webrtc::kProtectionNackFEC, true);
} else {
vcm_.SetVideoProtection(webrtc::kProtectionFEC, fec_enabled_);
vcm_.SetVideoProtection(webrtc::kProtectionNackSender, nack_enabled_);
vcm_.SetVideoProtection(webrtc::kProtectionNackFEC, false);
}
if (fec_enabled_ || nack_enabled_) {
vcm_.RegisterProtectionCallback(this);
// The send codec must be registered to set correct MTU.
webrtc::VideoCodec codec;
if (vcm_.SendCodec(&codec) == 0) {
uint16_t max_pay_load = default_rtp_rtcp_->MaxDataPayloadLength();
uint32_t current_bitrate_bps = 0;
if (vcm_.Bitrate(&current_bitrate_bps) != 0) {
LOG_F(LS_WARNING) <<
"Failed to get the current encoder target bitrate.";
}
// Convert to start bitrate in kbps.
codec.startBitrate = (current_bitrate_bps + 500) / 1000;
if (vcm_.RegisterSendCodec(&codec, number_of_cores_, max_pay_load) != 0) {
return -1;
}
}
return 0;
} else {
// FEC and NACK are disabled.
vcm_.RegisterProtectionCallback(NULL);
}
return 0;
}
void ViEEncoder::SetSenderBufferingMode(int target_delay_ms) {
{
CriticalSectionScoped cs(data_cs_.get());
target_delay_ms_ = target_delay_ms;
}
if (target_delay_ms > 0) {
// Disable external frame-droppers.
vcm_.EnableFrameDropper(false);
vpm_.EnableTemporalDecimation(false);
// We don't put any limits on the pacer queue when running in buffered mode
// since the encoder will be paused if the queue grow too large.
paced_sender_->set_max_queue_length_ms(-1);
} else {
// Real-time mode - enable frame droppers.
vpm_.EnableTemporalDecimation(true);
vcm_.EnableFrameDropper(true);
paced_sender_->set_max_queue_length_ms(
PacedSender::kDefaultMaxQueueLengthMs);
}
}
int32_t ViEEncoder::SendData(
const FrameType frame_type,
const uint8_t payload_type,
const uint32_t time_stamp,
int64_t capture_time_ms,
const uint8_t* payload_data,
const uint32_t payload_size,
const webrtc::RTPFragmentationHeader& fragmentation_header,
const RTPVideoHeader* rtp_video_hdr) {
// New encoded data, hand over to the rtp module.
return default_rtp_rtcp_->SendOutgoingData(frame_type,
payload_type,
time_stamp,
capture_time_ms,
payload_data,
payload_size,
&fragmentation_header,
rtp_video_hdr);
}
int32_t ViEEncoder::ProtectionRequest(
const FecProtectionParams* delta_fec_params,
const FecProtectionParams* key_fec_params,
uint32_t* sent_video_rate_bps,
uint32_t* sent_nack_rate_bps,
uint32_t* sent_fec_rate_bps) {
default_rtp_rtcp_->SetFecParameters(delta_fec_params, key_fec_params);
default_rtp_rtcp_->BitrateSent(NULL, sent_video_rate_bps, sent_fec_rate_bps,
sent_nack_rate_bps);
return 0;
}
int32_t ViEEncoder::SendStatistics(const uint32_t bit_rate,
const uint32_t frame_rate) {
CriticalSectionScoped cs(callback_cs_.get());
if (codec_observer_) {
codec_observer_->OutgoingRate(channel_id_, frame_rate, bit_rate);
}
return 0;
}
int32_t ViEEncoder::RegisterCodecObserver(ViEEncoderObserver* observer) {
CriticalSectionScoped cs(callback_cs_.get());
if (observer && codec_observer_) {
LOG_F(LS_ERROR) << "Observer already set.";
return -1;
}
codec_observer_ = observer;
return 0;
}
void ViEEncoder::OnReceivedSLI(uint32_t /*ssrc*/,
uint8_t picture_id) {
CriticalSectionScoped cs(data_cs_.get());
picture_id_sli_ = picture_id;
has_received_sli_ = true;
}
void ViEEncoder::OnReceivedRPSI(uint32_t /*ssrc*/,
uint64_t picture_id) {
CriticalSectionScoped cs(data_cs_.get());
picture_id_rpsi_ = picture_id;
has_received_rpsi_ = true;
}
void ViEEncoder::OnReceivedIntraFrameRequest(uint32_t ssrc) {
// Key frame request from remote side, signal to VCM.
TRACE_EVENT0("webrtc", "OnKeyFrameRequest");
int idx = 0;
{
CriticalSectionScoped cs(data_cs_.get());
std::map<unsigned int, int>::iterator stream_it = ssrc_streams_.find(ssrc);
if (stream_it == ssrc_streams_.end()) {
LOG_F(LS_WARNING) << "ssrc not found: " << ssrc << ", map size "
<< ssrc_streams_.size();
return;
}
std::map<unsigned int, int64_t>::iterator time_it =
time_last_intra_request_ms_.find(ssrc);
if (time_it == time_last_intra_request_ms_.end()) {
time_last_intra_request_ms_[ssrc] = 0;
}
int64_t now = TickTime::MillisecondTimestamp();
if (time_last_intra_request_ms_[ssrc] + kViEMinKeyRequestIntervalMs > now) {
return;
}
time_last_intra_request_ms_[ssrc] = now;
idx = stream_it->second;
}
// Release the critsect before triggering key frame.
vcm_.IntraFrameRequest(idx);
}
void ViEEncoder::OnLocalSsrcChanged(uint32_t old_ssrc, uint32_t new_ssrc) {
CriticalSectionScoped cs(data_cs_.get());
std::map<unsigned int, int>::iterator it = ssrc_streams_.find(old_ssrc);
if (it == ssrc_streams_.end()) {
return;
}
ssrc_streams_[new_ssrc] = it->second;
ssrc_streams_.erase(it);
std::map<unsigned int, int64_t>::iterator time_it =
time_last_intra_request_ms_.find(old_ssrc);
int64_t last_intra_request_ms = 0;
if (time_it != time_last_intra_request_ms_.end()) {
last_intra_request_ms = time_it->second;
time_last_intra_request_ms_.erase(time_it);
}
time_last_intra_request_ms_[new_ssrc] = last_intra_request_ms;
}
bool ViEEncoder::SetSsrcs(const std::list<unsigned int>& ssrcs) {
VideoCodec codec;
if (vcm_.SendCodec(&codec) != 0)
return false;
if (codec.numberOfSimulcastStreams > 0 &&
ssrcs.size() != codec.numberOfSimulcastStreams) {
return false;
}
CriticalSectionScoped cs(data_cs_.get());
ssrc_streams_.clear();
time_last_intra_request_ms_.clear();
int idx = 0;
for (std::list<unsigned int>::const_iterator it = ssrcs.begin();
it != ssrcs.end(); ++it, ++idx) {
unsigned int ssrc = *it;
ssrc_streams_[ssrc] = idx;
}
return true;
}
void ViEEncoder::SetMinTransmitBitrate(int min_transmit_bitrate_kbps) {
assert(min_transmit_bitrate_kbps >= 0);
CriticalSectionScoped crit(data_cs_.get());
min_transmit_bitrate_kbps_ = min_transmit_bitrate_kbps;
}
// Called from ViEBitrateObserver.
void ViEEncoder::OnNetworkChanged(const uint32_t bitrate_bps,
const uint8_t fraction_lost,
const uint32_t round_trip_time_ms) {
LOG(LS_VERBOSE) << "OnNetworkChanged, bitrate" << bitrate_bps
<< " packet loss " << fraction_lost
<< " rtt " << round_trip_time_ms;
vcm_.SetChannelParameters(bitrate_bps, fraction_lost, round_trip_time_ms);
bool video_is_suspended = vcm_.VideoSuspended();
int bitrate_kbps = bitrate_bps / 1000;
VideoCodec send_codec;
if (vcm_.SendCodec(&send_codec) != 0) {
return;
}
SimulcastStream* stream_configs = send_codec.simulcastStream;
// Allocate the bandwidth between the streams.
std::vector<uint32_t> stream_bitrates = AllocateStreamBitrates(
bitrate_bps,
stream_configs,
send_codec.numberOfSimulcastStreams);
// Find the max amount of padding we can allow ourselves to send at this
// point, based on which streams are currently active and what our current
// available bandwidth is.
int pad_up_to_bitrate_kbps = 0;
if (send_codec.numberOfSimulcastStreams == 0) {
pad_up_to_bitrate_kbps = send_codec.minBitrate;
} else {
pad_up_to_bitrate_kbps =
stream_configs[send_codec.numberOfSimulcastStreams - 1].minBitrate;
for (int i = 0; i < send_codec.numberOfSimulcastStreams - 1; ++i) {
pad_up_to_bitrate_kbps += stream_configs[i].targetBitrate;
}
}
// Disable padding if only sending one stream and video isn't suspended and
// min-transmit bitrate isn't used (applied later).
if (!video_is_suspended && send_codec.numberOfSimulcastStreams <= 1)
pad_up_to_bitrate_kbps = 0;
{
CriticalSectionScoped cs(data_cs_.get());
// The amount of padding should decay to zero if no frames are being
// captured unless a min-transmit bitrate is used.
int64_t now_ms = TickTime::MillisecondTimestamp();
if (now_ms - time_of_last_incoming_frame_ms_ > kStopPaddingThresholdMs)
pad_up_to_bitrate_kbps = 0;
// Pad up to min bitrate.
if (pad_up_to_bitrate_kbps < min_transmit_bitrate_kbps_)
pad_up_to_bitrate_kbps = min_transmit_bitrate_kbps_;
// Padding may never exceed bitrate estimate.
if (pad_up_to_bitrate_kbps > bitrate_kbps)
pad_up_to_bitrate_kbps = bitrate_kbps;
paced_sender_->UpdateBitrate(
PacedSender::kDefaultPaceMultiplier * bitrate_kbps,
pad_up_to_bitrate_kbps);
default_rtp_rtcp_->SetTargetSendBitrate(stream_bitrates);
if (video_suspended_ == video_is_suspended)
return;
video_suspended_ = video_is_suspended;
}
// Video suspend-state changed, inform codec observer.
CriticalSectionScoped crit(callback_cs_.get());
if (codec_observer_) {
LOG(LS_INFO) << "Video suspended " << video_is_suspended
<< " for channel " << channel_id_;
codec_observer_->SuspendChange(channel_id_, video_is_suspended);
}
}
PacedSender* ViEEncoder::GetPacedSender() {
return paced_sender_.get();
}
int32_t ViEEncoder::RegisterEffectFilter(ViEEffectFilter* effect_filter) {
CriticalSectionScoped cs(callback_cs_.get());
if (effect_filter != NULL && effect_filter_ != NULL) {
LOG_F(LS_ERROR) << "Filter already set.";
return -1;
}
effect_filter_ = effect_filter;
return 0;
}
int ViEEncoder::StartDebugRecording(const char* fileNameUTF8) {
return vcm_.StartDebugRecording(fileNameUTF8);
}
int ViEEncoder::StopDebugRecording() {
return vcm_.StopDebugRecording();
}
void ViEEncoder::SuspendBelowMinBitrate() {
vcm_.SuspendBelowMinBitrate();
bitrate_controller_->EnforceMinBitrate(false);
}
void ViEEncoder::RegisterPreEncodeCallback(
I420FrameCallback* pre_encode_callback) {
CriticalSectionScoped cs(callback_cs_.get());
pre_encode_callback_ = pre_encode_callback;
}
void ViEEncoder::DeRegisterPreEncodeCallback() {
CriticalSectionScoped cs(callback_cs_.get());
pre_encode_callback_ = NULL;
}
void ViEEncoder::RegisterPostEncodeImageCallback(
EncodedImageCallback* post_encode_callback) {
vcm_.RegisterPostEncodeImageCallback(post_encode_callback);
}
void ViEEncoder::DeRegisterPostEncodeImageCallback() {
vcm_.RegisterPostEncodeImageCallback(NULL);
}
QMVideoSettingsCallback::QMVideoSettingsCallback(VideoProcessingModule* vpm)
: vpm_(vpm) {
}
QMVideoSettingsCallback::~QMVideoSettingsCallback() {
}
int32_t QMVideoSettingsCallback::SetVideoQMSettings(
const uint32_t frame_rate,
const uint32_t width,
const uint32_t height) {
return vpm_->SetTargetResolution(width, height, frame_rate);
}
} // namespace webrtc