blob: a1c7f496bd801b487fafddd6a2408f7bb3b0fb71 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/system_wrappers/interface/clock.h"
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
#include "webrtc/video_engine/include/vie_base.h"
#include "webrtc/video_engine/overuse_frame_detector.h"
namespace webrtc {
namespace {
const int kWidth = 640;
const int kHeight = 480;
const int kFrameInterval33ms = 33;
const int kProcessIntervalMs = 5000;
} // namespace
class MockCpuOveruseObserver : public CpuOveruseObserver {
public:
MockCpuOveruseObserver() {}
virtual ~MockCpuOveruseObserver() {}
MOCK_METHOD0(OveruseDetected, void());
MOCK_METHOD0(NormalUsage, void());
};
class CpuOveruseObserverImpl : public CpuOveruseObserver {
public:
CpuOveruseObserverImpl() :
overuse_(0),
normaluse_(0) {}
virtual ~CpuOveruseObserverImpl() {}
void OveruseDetected() { ++overuse_; }
void NormalUsage() { ++normaluse_; }
int overuse_;
int normaluse_;
};
class OveruseFrameDetectorTest : public ::testing::Test {
protected:
virtual void SetUp() {
clock_.reset(new SimulatedClock(1234));
observer_.reset(new MockCpuOveruseObserver());
overuse_detector_.reset(new OveruseFrameDetector(clock_.get()));
options_.low_capture_jitter_threshold_ms = 10.0f;
options_.high_capture_jitter_threshold_ms = 15.0f;
options_.min_process_count = 0;
overuse_detector_->SetOptions(options_);
overuse_detector_->SetObserver(observer_.get());
}
int InitialJitter() {
return ((options_.low_capture_jitter_threshold_ms +
options_.high_capture_jitter_threshold_ms) / 2.0f) + 0.5;
}
int InitialEncodeUsage() {
return ((options_.low_encode_usage_threshold_percent +
options_.high_encode_usage_threshold_percent) / 2.0f) + 0.5;
}
int InitialEncodeRsd() {
return std::max(
((options_.low_encode_time_rsd_threshold +
options_.high_encode_time_rsd_threshold) / 2.0f) + 0.5f, 0.0f);
}
void InsertFramesWithInterval(
size_t num_frames, int interval_ms, int width, int height) {
while (num_frames-- > 0) {
clock_->AdvanceTimeMilliseconds(interval_ms);
overuse_detector_->FrameCaptured(width, height);
}
}
void InsertAndEncodeFramesWithInterval(
int num_frames, int interval_ms, int width, int height, int encode_ms) {
while (num_frames-- > 0) {
overuse_detector_->FrameCaptured(width, height);
clock_->AdvanceTimeMilliseconds(encode_ms);
overuse_detector_->FrameEncoded(encode_ms);
clock_->AdvanceTimeMilliseconds(interval_ms - encode_ms);
}
}
void TriggerOveruse(int num_times) {
for (int i = 0; i < num_times; ++i) {
InsertFramesWithInterval(200, kFrameInterval33ms, kWidth, kHeight);
InsertFramesWithInterval(50, 110, kWidth, kHeight);
overuse_detector_->Process();
}
}
void TriggerNormalUsage() {
InsertFramesWithInterval(900, kFrameInterval33ms, kWidth, kHeight);
overuse_detector_->Process();
}
void TriggerOveruseWithEncodeUsage(int num_times) {
const int kEncodeTimeMs = 32;
for (int i = 0; i < num_times; ++i) {
InsertAndEncodeFramesWithInterval(
1000, kFrameInterval33ms, kWidth, kHeight, kEncodeTimeMs);
overuse_detector_->Process();
}
}
void TriggerOveruseWithEncodeRsd(int num_times) {
const int kEncodeTimeMs1 = 10;
const int kEncodeTimeMs2 = 25;
for (int i = 0; i < num_times; ++i) {
InsertAndEncodeFramesWithInterval(
200, kFrameInterval33ms, kWidth, kHeight, kEncodeTimeMs1);
InsertAndEncodeFramesWithInterval(
10, kFrameInterval33ms, kWidth, kHeight, kEncodeTimeMs2);
overuse_detector_->Process();
}
}
void TriggerNormalUsageWithEncodeTime() {
const int kEncodeTimeMs1 = 5;
const int kEncodeTimeMs2 = 6;
InsertAndEncodeFramesWithInterval(
1300, kFrameInterval33ms, kWidth, kHeight, kEncodeTimeMs1);
InsertAndEncodeFramesWithInterval(
1, kFrameInterval33ms, kWidth, kHeight, kEncodeTimeMs2);
overuse_detector_->Process();
}
int CaptureJitterMs() {
CpuOveruseMetrics metrics;
overuse_detector_->GetCpuOveruseMetrics(&metrics);
return metrics.capture_jitter_ms;
}
int AvgEncodeTimeMs() {
CpuOveruseMetrics metrics;
overuse_detector_->GetCpuOveruseMetrics(&metrics);
return metrics.avg_encode_time_ms;
}
int EncodeUsagePercent() {
CpuOveruseMetrics metrics;
overuse_detector_->GetCpuOveruseMetrics(&metrics);
return metrics.encode_usage_percent;
}
int EncodeRsd() {
CpuOveruseMetrics metrics;
overuse_detector_->GetCpuOveruseMetrics(&metrics);
return metrics.encode_rsd;
}
CpuOveruseOptions options_;
scoped_ptr<SimulatedClock> clock_;
scoped_ptr<MockCpuOveruseObserver> observer_;
scoped_ptr<OveruseFrameDetector> overuse_detector_;
};
// enable_capture_jitter_method = true;
// CaptureJitterMs() > high_capture_jitter_threshold_ms => overuse.
// CaptureJitterMs() < low_capture_jitter_threshold_ms => underuse.
TEST_F(OveruseFrameDetectorTest, TriggerOveruse) {
// capture_jitter > high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
TriggerOveruse(options_.high_threshold_consecutive_count);
}
TEST_F(OveruseFrameDetectorTest, OveruseAndRecover) {
// capture_jitter > high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
TriggerOveruse(options_.high_threshold_consecutive_count);
// capture_jitter < low => underuse
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1));
TriggerNormalUsage();
}
TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithNoObserver) {
overuse_detector_->SetObserver(NULL);
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0);
TriggerOveruse(options_.high_threshold_consecutive_count);
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0);
TriggerNormalUsage();
}
TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithMethodDisabled) {
options_.enable_capture_jitter_method = false;
options_.enable_encode_usage_method = false;
overuse_detector_->SetOptions(options_);
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0);
TriggerOveruse(options_.high_threshold_consecutive_count);
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0);
TriggerNormalUsage();
}
TEST_F(OveruseFrameDetectorTest, DoubleOveruseAndRecover) {
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(2);
TriggerOveruse(options_.high_threshold_consecutive_count);
TriggerOveruse(options_.high_threshold_consecutive_count);
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1));
TriggerNormalUsage();
}
TEST_F(OveruseFrameDetectorTest, TriggerNormalUsageWithMinProcessCount) {
CpuOveruseObserverImpl overuse_observer_;
overuse_detector_->SetObserver(&overuse_observer_);
options_.min_process_count = 1;
overuse_detector_->SetOptions(options_);
InsertFramesWithInterval(1200, kFrameInterval33ms, kWidth, kHeight);
overuse_detector_->Process();
EXPECT_EQ(0, overuse_observer_.normaluse_);
clock_->AdvanceTimeMilliseconds(kProcessIntervalMs);
overuse_detector_->Process();
EXPECT_EQ(1, overuse_observer_.normaluse_);
}
TEST_F(OveruseFrameDetectorTest, ConstantOveruseGivesNoNormalUsage) {
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0);
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(64);
for(size_t i = 0; i < 64; ++i) {
TriggerOveruse(options_.high_threshold_consecutive_count);
}
}
TEST_F(OveruseFrameDetectorTest, ConsecutiveCountTriggersOveruse) {
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
options_.high_threshold_consecutive_count = 2;
overuse_detector_->SetOptions(options_);
TriggerOveruse(2);
}
TEST_F(OveruseFrameDetectorTest, IncorrectConsecutiveCountTriggersNoOveruse) {
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0);
options_.high_threshold_consecutive_count = 2;
overuse_detector_->SetOptions(options_);
TriggerOveruse(1);
}
TEST_F(OveruseFrameDetectorTest, GetCpuOveruseMetrics) {
CpuOveruseMetrics metrics;
overuse_detector_->GetCpuOveruseMetrics(&metrics);
EXPECT_GT(metrics.capture_jitter_ms, 0);
EXPECT_GT(metrics.avg_encode_time_ms, 0);
EXPECT_GT(metrics.encode_usage_percent, 0);
EXPECT_GE(metrics.capture_queue_delay_ms_per_s, 0);
EXPECT_GE(metrics.encode_rsd, 0);
}
TEST_F(OveruseFrameDetectorTest, CaptureJitter) {
EXPECT_EQ(InitialJitter(), CaptureJitterMs());
InsertFramesWithInterval(1000, kFrameInterval33ms, kWidth, kHeight);
EXPECT_NE(InitialJitter(), CaptureJitterMs());
}
TEST_F(OveruseFrameDetectorTest, CaptureJitterResetAfterResolutionChange) {
EXPECT_EQ(InitialJitter(), CaptureJitterMs());
InsertFramesWithInterval(1000, kFrameInterval33ms, kWidth, kHeight);
EXPECT_NE(InitialJitter(), CaptureJitterMs());
// Verify reset.
InsertFramesWithInterval(1, kFrameInterval33ms, kWidth, kHeight + 1);
EXPECT_EQ(InitialJitter(), CaptureJitterMs());
}
TEST_F(OveruseFrameDetectorTest, CaptureJitterResetAfterFrameTimeout) {
EXPECT_EQ(InitialJitter(), CaptureJitterMs());
InsertFramesWithInterval(1000, kFrameInterval33ms, kWidth, kHeight);
EXPECT_NE(InitialJitter(), CaptureJitterMs());
InsertFramesWithInterval(
1, options_.frame_timeout_interval_ms, kWidth, kHeight);
EXPECT_NE(InitialJitter(), CaptureJitterMs());
// Verify reset.
InsertFramesWithInterval(
1, options_.frame_timeout_interval_ms + 1, kWidth, kHeight);
EXPECT_EQ(InitialJitter(), CaptureJitterMs());
}
TEST_F(OveruseFrameDetectorTest, CaptureJitterResetAfterChangingThreshold) {
EXPECT_EQ(InitialJitter(), CaptureJitterMs());
options_.high_capture_jitter_threshold_ms = 90.0f;
overuse_detector_->SetOptions(options_);
EXPECT_EQ(InitialJitter(), CaptureJitterMs());
options_.low_capture_jitter_threshold_ms = 30.0f;
overuse_detector_->SetOptions(options_);
EXPECT_EQ(InitialJitter(), CaptureJitterMs());
}
TEST_F(OveruseFrameDetectorTest, MinFrameSamplesBeforeUpdatingCaptureJitter) {
options_.min_frame_samples = 40;
overuse_detector_->SetOptions(options_);
InsertFramesWithInterval(40, kFrameInterval33ms, kWidth, kHeight);
EXPECT_EQ(InitialJitter(), CaptureJitterMs());
}
TEST_F(OveruseFrameDetectorTest, NoCaptureQueueDelay) {
EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 0);
overuse_detector_->FrameCaptured(kWidth, kHeight);
overuse_detector_->FrameProcessingStarted();
EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 0);
}
TEST_F(OveruseFrameDetectorTest, CaptureQueueDelay) {
overuse_detector_->FrameCaptured(kWidth, kHeight);
clock_->AdvanceTimeMilliseconds(100);
overuse_detector_->FrameProcessingStarted();
EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 100);
}
TEST_F(OveruseFrameDetectorTest, CaptureQueueDelayMultipleFrames) {
overuse_detector_->FrameCaptured(kWidth, kHeight);
clock_->AdvanceTimeMilliseconds(10);
overuse_detector_->FrameCaptured(kWidth, kHeight);
clock_->AdvanceTimeMilliseconds(20);
overuse_detector_->FrameProcessingStarted();
EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 30);
overuse_detector_->FrameProcessingStarted();
EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 20);
}
TEST_F(OveruseFrameDetectorTest, CaptureQueueDelayResetAtResolutionSwitch) {
overuse_detector_->FrameCaptured(kWidth, kHeight);
clock_->AdvanceTimeMilliseconds(10);
overuse_detector_->FrameCaptured(kWidth, kHeight + 1);
clock_->AdvanceTimeMilliseconds(20);
overuse_detector_->FrameProcessingStarted();
EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 20);
}
TEST_F(OveruseFrameDetectorTest, CaptureQueueDelayNoMatchingCapturedFrame) {
overuse_detector_->FrameCaptured(kWidth, kHeight);
clock_->AdvanceTimeMilliseconds(100);
overuse_detector_->FrameProcessingStarted();
EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 100);
// No new captured frame. The last delay should be reported.
overuse_detector_->FrameProcessingStarted();
EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 100);
}
TEST_F(OveruseFrameDetectorTest, EncodedFrame) {
const int kInitialAvgEncodeTimeInMs = 5;
EXPECT_EQ(kInitialAvgEncodeTimeInMs, AvgEncodeTimeMs());
for (int i = 0; i < 30; i++) {
clock_->AdvanceTimeMilliseconds(33);
overuse_detector_->FrameEncoded(2);
}
EXPECT_EQ(2, AvgEncodeTimeMs());
}
TEST_F(OveruseFrameDetectorTest, InitialEncodeUsage) {
EXPECT_EQ(InitialEncodeUsage(), EncodeUsagePercent());
}
TEST_F(OveruseFrameDetectorTest, EncodedUsage) {
const int kEncodeTimeMs = 5;
InsertAndEncodeFramesWithInterval(
1000, kFrameInterval33ms, kWidth, kHeight, kEncodeTimeMs);
EXPECT_EQ(kEncodeTimeMs * 100 / kFrameInterval33ms, EncodeUsagePercent());
}
TEST_F(OveruseFrameDetectorTest, EncodeUsageResetAfterChangingThreshold) {
EXPECT_EQ(InitialEncodeUsage(), EncodeUsagePercent());
options_.high_encode_usage_threshold_percent = 100;
overuse_detector_->SetOptions(options_);
EXPECT_EQ(InitialEncodeUsage(), EncodeUsagePercent());
options_.low_encode_usage_threshold_percent = 20;
overuse_detector_->SetOptions(options_);
EXPECT_EQ(InitialEncodeUsage(), EncodeUsagePercent());
}
// enable_encode_usage_method = true;
// EncodeUsagePercent() > high_encode_usage_threshold_percent => overuse.
// EncodeUsagePercent() < low_encode_usage_threshold_percent => underuse.
TEST_F(OveruseFrameDetectorTest, TriggerOveruseWithEncodeUsage) {
options_.enable_capture_jitter_method = false;
options_.enable_encode_usage_method = true;
overuse_detector_->SetOptions(options_);
// usage > high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
TriggerOveruseWithEncodeUsage(options_.high_threshold_consecutive_count);
}
TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithEncodeUsage) {
options_.enable_capture_jitter_method = false;
options_.enable_encode_usage_method = true;
overuse_detector_->SetOptions(options_);
// usage > high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
TriggerOveruseWithEncodeUsage(options_.high_threshold_consecutive_count);
// usage < low => underuse
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1));
TriggerNormalUsageWithEncodeTime();
}
TEST_F(OveruseFrameDetectorTest,
OveruseAndRecoverWithEncodeUsageMethodDisabled) {
options_.enable_capture_jitter_method = false;
options_.enable_encode_usage_method = false;
overuse_detector_->SetOptions(options_);
// usage > high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0);
TriggerOveruseWithEncodeUsage(options_.high_threshold_consecutive_count);
// usage < low => underuse
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0);
TriggerNormalUsageWithEncodeTime();
}
TEST_F(OveruseFrameDetectorTest, EncodeRsdResetAfterChangingThreshold) {
EXPECT_EQ(InitialEncodeRsd(), EncodeRsd());
options_.high_encode_time_rsd_threshold = 100;
overuse_detector_->SetOptions(options_);
EXPECT_EQ(InitialEncodeRsd(), EncodeRsd());
options_.low_encode_time_rsd_threshold = 20;
overuse_detector_->SetOptions(options_);
EXPECT_EQ(InitialEncodeRsd(), EncodeRsd());
}
// enable_encode_usage_method = true;
// low/high_encode_time_rsd_threshold >= 0
// EncodeUsagePercent() > high_encode_usage_threshold_percent ||
// EncodeRsd() > high_encode_time_rsd_threshold => overuse.
// EncodeUsagePercent() < low_encode_usage_threshold_percent &&
// EncodeRsd() < low_encode_time_rsd_threshold => underuse.
TEST_F(OveruseFrameDetectorTest, TriggerOveruseWithEncodeRsd) {
options_.enable_capture_jitter_method = false;
options_.enable_encode_usage_method = true;
options_.high_encode_time_rsd_threshold = 80;
overuse_detector_->SetOptions(options_);
// rsd > high, usage < high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
TriggerOveruseWithEncodeRsd(options_.high_threshold_consecutive_count);
EXPECT_LT(EncodeUsagePercent(), options_.high_encode_usage_threshold_percent);
}
TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithEncodeRsd) {
options_.enable_capture_jitter_method = false;
options_.enable_encode_usage_method = true;
options_.low_encode_time_rsd_threshold = 25;
options_.high_encode_time_rsd_threshold = 80;
overuse_detector_->SetOptions(options_);
// rsd > high, usage < high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
TriggerOveruseWithEncodeRsd(options_.high_threshold_consecutive_count);
EXPECT_LT(EncodeUsagePercent(), options_.high_encode_usage_threshold_percent);
// rsd < low, usage < low => underuse
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1));
TriggerNormalUsageWithEncodeTime();
}
TEST_F(OveruseFrameDetectorTest, NoUnderuseWithEncodeRsd_UsageGtLowThreshold) {
options_.enable_capture_jitter_method = false;
options_.enable_encode_usage_method = true;
options_.low_encode_usage_threshold_percent = 1;
options_.low_encode_time_rsd_threshold = 25;
options_.high_encode_time_rsd_threshold = 90;
overuse_detector_->SetOptions(options_);
// rsd < low, usage > low => no underuse
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0);
TriggerNormalUsageWithEncodeTime();
EXPECT_LT(EncodeRsd(), options_.low_encode_time_rsd_threshold);
EXPECT_GT(EncodeUsagePercent(), options_.low_encode_usage_threshold_percent);
}
TEST_F(OveruseFrameDetectorTest, NoUnderuseWithEncodeRsd_RsdGtLowThreshold) {
options_.enable_capture_jitter_method = false;
options_.enable_encode_usage_method = true;
options_.low_encode_usage_threshold_percent = 20;
options_.low_encode_time_rsd_threshold = 1;
options_.high_encode_time_rsd_threshold = 90;
overuse_detector_->SetOptions(options_);
// rsd > low, usage < low => no underuse
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0);
TriggerNormalUsageWithEncodeTime();
EXPECT_GT(EncodeRsd(), options_.low_encode_time_rsd_threshold);
EXPECT_LT(EncodeUsagePercent(), options_.low_encode_usage_threshold_percent);
}
} // namespace webrtc