blob: 93375a766df5cd0e0beec01cfaa1ae755c24b531 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/video_engine/overuse_frame_detector.h"
#include <assert.h>
#include <math.h>
#include <algorithm>
#include <list>
#include <map>
#include "webrtc/base/exp_filter.h"
#include "webrtc/system_wrappers/interface/clock.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/logging.h"
namespace webrtc {
// TODO(mflodman) Test different values for all of these to trigger correctly,
// avoid fluctuations etc.
namespace {
const int64_t kProcessIntervalMs = 5000;
// Weight factor to apply to the standard deviation.
const float kWeightFactor = 0.997f;
// Weight factor to apply to the average.
const float kWeightFactorMean = 0.98f;
// Delay between consecutive rampups. (Used for quick recovery.)
const int kQuickRampUpDelayMs = 10 * 1000;
// Delay between rampup attempts. Initially uses standard, scales up to max.
const int kStandardRampUpDelayMs = 40 * 1000;
const int kMaxRampUpDelayMs = 240 * 1000;
// Expontential back-off factor, to prevent annoying up-down behaviour.
const double kRampUpBackoffFactor = 2.0;
// Max number of overuses detected before always applying the rampup delay.
const int kMaxOverusesBeforeApplyRampupDelay = 4;
// The maximum exponent to use in VCMExpFilter.
const float kSampleDiffMs = 33.0f;
const float kMaxExp = 7.0f;
} // namespace
Statistics::Statistics() :
sum_(0.0),
count_(0),
filtered_samples_(new rtc::ExpFilter(kWeightFactorMean)),
filtered_variance_(new rtc::ExpFilter(kWeightFactor)) {
Reset();
}
void Statistics::SetOptions(const CpuOveruseOptions& options) {
options_ = options;
}
void Statistics::Reset() {
sum_ = 0.0;
count_ = 0;
filtered_variance_->Reset(kWeightFactor);
filtered_variance_->Apply(1.0f, InitialVariance());
}
void Statistics::AddSample(float sample_ms) {
sum_ += sample_ms;
++count_;
if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) {
// Initialize filtered samples.
filtered_samples_->Reset(kWeightFactorMean);
filtered_samples_->Apply(1.0f, InitialMean());
return;
}
float exp = sample_ms / kSampleDiffMs;
exp = std::min(exp, kMaxExp);
filtered_samples_->Apply(exp, sample_ms);
filtered_variance_->Apply(exp, (sample_ms - filtered_samples_->filtered()) *
(sample_ms - filtered_samples_->filtered()));
}
float Statistics::InitialMean() const {
if (count_ == 0)
return 0.0;
return sum_ / count_;
}
float Statistics::InitialVariance() const {
// Start in between the underuse and overuse threshold.
float average_stddev = (options_.low_capture_jitter_threshold_ms +
options_.high_capture_jitter_threshold_ms) / 2.0f;
return average_stddev * average_stddev;
}
float Statistics::Mean() const { return filtered_samples_->filtered(); }
float Statistics::StdDev() const {
return sqrt(std::max(filtered_variance_->filtered(), 0.0f));
}
uint64_t Statistics::Count() const { return count_; }
// Class for calculating the average encode time.
class OveruseFrameDetector::EncodeTimeAvg {
public:
EncodeTimeAvg()
: kWeightFactor(0.5f),
kInitialAvgEncodeTimeMs(5.0f),
filtered_encode_time_ms_(new rtc::ExpFilter(kWeightFactor)) {
filtered_encode_time_ms_->Apply(1.0f, kInitialAvgEncodeTimeMs);
}
~EncodeTimeAvg() {}
void AddEncodeSample(float encode_time_ms, int64_t diff_last_sample_ms) {
float exp = diff_last_sample_ms / kSampleDiffMs;
exp = std::min(exp, kMaxExp);
filtered_encode_time_ms_->Apply(exp, encode_time_ms);
}
int Value() const {
return static_cast<int>(filtered_encode_time_ms_->filtered() + 0.5);
}
private:
const float kWeightFactor;
const float kInitialAvgEncodeTimeMs;
scoped_ptr<rtc::ExpFilter> filtered_encode_time_ms_;
};
// Class for calculating the encode usage.
class OveruseFrameDetector::EncodeUsage {
public:
EncodeUsage()
: kWeightFactorFrameDiff(0.998f),
kWeightFactorEncodeTime(0.995f),
kInitialSampleDiffMs(40.0f),
kMaxSampleDiffMs(45.0f),
count_(0),
filtered_encode_time_ms_(new rtc::ExpFilter(kWeightFactorEncodeTime)),
filtered_frame_diff_ms_(new rtc::ExpFilter(kWeightFactorFrameDiff)) {
Reset();
}
~EncodeUsage() {}
void SetOptions(const CpuOveruseOptions& options) {
options_ = options;
}
void Reset() {
count_ = 0;
filtered_frame_diff_ms_->Reset(kWeightFactorFrameDiff);
filtered_frame_diff_ms_->Apply(1.0f, kInitialSampleDiffMs);
filtered_encode_time_ms_->Reset(kWeightFactorEncodeTime);
filtered_encode_time_ms_->Apply(1.0f, InitialEncodeTimeMs());
}
void AddSample(float sample_ms) {
float exp = sample_ms / kSampleDiffMs;
exp = std::min(exp, kMaxExp);
filtered_frame_diff_ms_->Apply(exp, sample_ms);
}
void AddEncodeSample(float encode_time_ms, int64_t diff_last_sample_ms) {
++count_;
float exp = diff_last_sample_ms / kSampleDiffMs;
exp = std::min(exp, kMaxExp);
filtered_encode_time_ms_->Apply(exp, encode_time_ms);
}
int Value() const {
if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) {
return static_cast<int>(InitialUsageInPercent() + 0.5f);
}
float frame_diff_ms = std::max(filtered_frame_diff_ms_->filtered(), 1.0f);
frame_diff_ms = std::min(frame_diff_ms, kMaxSampleDiffMs);
float encode_usage_percent =
100.0f * filtered_encode_time_ms_->filtered() / frame_diff_ms;
return static_cast<int>(encode_usage_percent + 0.5);
}
private:
float InitialUsageInPercent() const {
// Start in between the underuse and overuse threshold.
return (options_.low_encode_usage_threshold_percent +
options_.high_encode_usage_threshold_percent) / 2.0f;
}
float InitialEncodeTimeMs() const {
return InitialUsageInPercent() * kInitialSampleDiffMs / 100;
}
const float kWeightFactorFrameDiff;
const float kWeightFactorEncodeTime;
const float kInitialSampleDiffMs;
const float kMaxSampleDiffMs;
uint64_t count_;
CpuOveruseOptions options_;
scoped_ptr<rtc::ExpFilter> filtered_encode_time_ms_;
scoped_ptr<rtc::ExpFilter> filtered_frame_diff_ms_;
};
// Class for calculating the relative standard deviation of encode times.
class OveruseFrameDetector::EncodeTimeRsd {
public:
EncodeTimeRsd(Clock* clock)
: kWeightFactor(0.6f),
count_(0),
filtered_rsd_(new rtc::ExpFilter(kWeightFactor)),
hist_samples_(0),
hist_sum_(0.0f),
last_process_time_ms_(clock->TimeInMilliseconds()) {
Reset();
}
~EncodeTimeRsd() {}
void SetOptions(const CpuOveruseOptions& options) {
options_ = options;
}
void Reset() {
count_ = 0;
filtered_rsd_->Reset(kWeightFactor);
filtered_rsd_->Apply(1.0f, InitialValue());
hist_.clear();
hist_samples_ = 0;
hist_sum_ = 0.0f;
}
void AddEncodeSample(float encode_time_ms) {
int bin = static_cast<int>(encode_time_ms + 0.5f);
if (bin <= 0) {
// The frame was probably not encoded, skip possible dropped frame.
return;
}
++count_;
++hist_[bin];
++hist_samples_;
hist_sum_ += bin;
}
void Process(int64_t now) {
if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) {
// Have not received min number of frames since last reset.
return;
}
const int kMinHistSamples = 20;
if (hist_samples_ < kMinHistSamples) {
return;
}
const int64_t kMinDiffSinceLastProcessMs = 1000;
int64_t diff_last_process_ms = now - last_process_time_ms_;
if (now - last_process_time_ms_ <= kMinDiffSinceLastProcessMs) {
return;
}
last_process_time_ms_ = now;
// Calculate variance (using samples above the mean).
// Checks for a larger encode time of some frames while there is a small
// increase in the average time.
int mean = hist_sum_ / hist_samples_;
float variance = 0.0f;
int total_count = 0;
for (std::map<int,int>::iterator it = hist_.begin();
it != hist_.end(); ++it) {
int time = it->first;
int count = it->second;
if (time > mean) {
total_count += count;
for (int i = 0; i < count; ++i) {
variance += ((time - mean) * (time - mean));
}
}
}
variance /= std::max(total_count, 1);
float cov = sqrt(variance) / mean;
hist_.clear();
hist_samples_ = 0;
hist_sum_ = 0.0f;
float exp = static_cast<float>(diff_last_process_ms) / kProcessIntervalMs;
exp = std::min(exp, kMaxExp);
filtered_rsd_->Apply(exp, 100.0f * cov);
}
int Value() const {
return static_cast<int>(filtered_rsd_->filtered() + 0.5);
}
private:
float InitialValue() const {
// Start in between the underuse and overuse threshold.
return std::max(((options_.low_encode_time_rsd_threshold +
options_.high_encode_time_rsd_threshold) / 2.0f), 0.0f);
}
const float kWeightFactor;
uint32_t count_; // Number of encode samples since last reset.
CpuOveruseOptions options_;
scoped_ptr<rtc::ExpFilter> filtered_rsd_;
int hist_samples_;
float hist_sum_;
std::map<int,int> hist_; // Histogram of encode time of frames.
int64_t last_process_time_ms_;
};
// Class for calculating the capture queue delay change.
class OveruseFrameDetector::CaptureQueueDelay {
public:
CaptureQueueDelay()
: kWeightFactor(0.5f),
delay_ms_(0),
filtered_delay_ms_per_s_(new rtc::ExpFilter(kWeightFactor)) {
filtered_delay_ms_per_s_->Apply(1.0f, 0.0f);
}
~CaptureQueueDelay() {}
void FrameCaptured(int64_t now) {
const size_t kMaxSize = 200;
if (frames_.size() > kMaxSize) {
frames_.pop_front();
}
frames_.push_back(now);
}
void FrameProcessingStarted(int64_t now) {
if (frames_.empty()) {
return;
}
delay_ms_ = now - frames_.front();
frames_.pop_front();
}
void CalculateDelayChange(int64_t diff_last_sample_ms) {
if (diff_last_sample_ms <= 0) {
return;
}
float exp = static_cast<float>(diff_last_sample_ms) / kProcessIntervalMs;
exp = std::min(exp, kMaxExp);
filtered_delay_ms_per_s_->Apply(exp,
delay_ms_ * 1000.0f / diff_last_sample_ms);
ClearFrames();
}
void ClearFrames() {
frames_.clear();
}
int delay_ms() const {
return delay_ms_;
}
int Value() const {
return static_cast<int>(filtered_delay_ms_per_s_->filtered() + 0.5);
}
private:
const float kWeightFactor;
std::list<int64_t> frames_;
int delay_ms_;
scoped_ptr<rtc::ExpFilter> filtered_delay_ms_per_s_;
};
OveruseFrameDetector::OveruseFrameDetector(Clock* clock)
: crit_(CriticalSectionWrapper::CreateCriticalSection()),
observer_(NULL),
clock_(clock),
next_process_time_(clock_->TimeInMilliseconds()),
num_process_times_(0),
last_capture_time_(0),
last_overuse_time_(0),
checks_above_threshold_(0),
num_overuse_detections_(0),
last_rampup_time_(0),
in_quick_rampup_(false),
current_rampup_delay_ms_(kStandardRampUpDelayMs),
num_pixels_(0),
last_encode_sample_ms_(0),
encode_time_(new EncodeTimeAvg()),
encode_rsd_(new EncodeTimeRsd(clock)),
encode_usage_(new EncodeUsage()),
capture_queue_delay_(new CaptureQueueDelay()) {
}
OveruseFrameDetector::~OveruseFrameDetector() {
}
void OveruseFrameDetector::SetObserver(CpuOveruseObserver* observer) {
CriticalSectionScoped cs(crit_.get());
observer_ = observer;
}
void OveruseFrameDetector::SetOptions(const CpuOveruseOptions& options) {
assert(options.min_frame_samples > 0);
CriticalSectionScoped cs(crit_.get());
if (options_.Equals(options)) {
return;
}
options_ = options;
capture_deltas_.SetOptions(options);
encode_usage_->SetOptions(options);
encode_rsd_->SetOptions(options);
ResetAll(num_pixels_);
}
int OveruseFrameDetector::CaptureQueueDelayMsPerS() const {
CriticalSectionScoped cs(crit_.get());
return capture_queue_delay_->delay_ms();
}
void OveruseFrameDetector::GetCpuOveruseMetrics(
CpuOveruseMetrics* metrics) const {
CriticalSectionScoped cs(crit_.get());
metrics->capture_jitter_ms = static_cast<int>(capture_deltas_.StdDev() + 0.5);
metrics->avg_encode_time_ms = encode_time_->Value();
metrics->encode_rsd = encode_rsd_->Value();
metrics->encode_usage_percent = encode_usage_->Value();
metrics->capture_queue_delay_ms_per_s = capture_queue_delay_->Value();
}
int32_t OveruseFrameDetector::TimeUntilNextProcess() {
CriticalSectionScoped cs(crit_.get());
return next_process_time_ - clock_->TimeInMilliseconds();
}
bool OveruseFrameDetector::FrameSizeChanged(int num_pixels) const {
if (num_pixels != num_pixels_) {
return true;
}
return false;
}
bool OveruseFrameDetector::FrameTimeoutDetected(int64_t now) const {
if (last_capture_time_ == 0) {
return false;
}
return (now - last_capture_time_) > options_.frame_timeout_interval_ms;
}
void OveruseFrameDetector::ResetAll(int num_pixels) {
num_pixels_ = num_pixels;
capture_deltas_.Reset();
encode_usage_->Reset();
encode_rsd_->Reset();
capture_queue_delay_->ClearFrames();
last_capture_time_ = 0;
num_process_times_ = 0;
}
void OveruseFrameDetector::FrameCaptured(int width, int height) {
CriticalSectionScoped cs(crit_.get());
int64_t now = clock_->TimeInMilliseconds();
if (FrameSizeChanged(width * height) || FrameTimeoutDetected(now)) {
ResetAll(width * height);
}
if (last_capture_time_ != 0) {
capture_deltas_.AddSample(now - last_capture_time_);
encode_usage_->AddSample(now - last_capture_time_);
}
last_capture_time_ = now;
capture_queue_delay_->FrameCaptured(now);
}
void OveruseFrameDetector::FrameProcessingStarted() {
CriticalSectionScoped cs(crit_.get());
capture_queue_delay_->FrameProcessingStarted(clock_->TimeInMilliseconds());
}
void OveruseFrameDetector::FrameEncoded(int encode_time_ms) {
CriticalSectionScoped cs(crit_.get());
int64_t time = clock_->TimeInMilliseconds();
if (last_encode_sample_ms_ != 0) {
int64_t diff_ms = time - last_encode_sample_ms_;
encode_time_->AddEncodeSample(encode_time_ms, diff_ms);
encode_usage_->AddEncodeSample(encode_time_ms, diff_ms);
encode_rsd_->AddEncodeSample(encode_time_ms);
}
last_encode_sample_ms_ = time;
}
int32_t OveruseFrameDetector::Process() {
CriticalSectionScoped cs(crit_.get());
int64_t now = clock_->TimeInMilliseconds();
// Used to protect against Process() being called too often.
if (now < next_process_time_)
return 0;
int64_t diff_ms = now - next_process_time_ + kProcessIntervalMs;
next_process_time_ = now + kProcessIntervalMs;
++num_process_times_;
encode_rsd_->Process(now);
capture_queue_delay_->CalculateDelayChange(diff_ms);
if (num_process_times_ <= options_.min_process_count) {
return 0;
}
if (IsOverusing()) {
// If the last thing we did was going up, and now have to back down, we need
// to check if this peak was short. If so we should back off to avoid going
// back and forth between this load, the system doesn't seem to handle it.
bool check_for_backoff = last_rampup_time_ > last_overuse_time_;
if (check_for_backoff) {
if (now - last_rampup_time_ < kStandardRampUpDelayMs ||
num_overuse_detections_ > kMaxOverusesBeforeApplyRampupDelay) {
// Going up was not ok for very long, back off.
current_rampup_delay_ms_ *= kRampUpBackoffFactor;
if (current_rampup_delay_ms_ > kMaxRampUpDelayMs)
current_rampup_delay_ms_ = kMaxRampUpDelayMs;
} else {
// Not currently backing off, reset rampup delay.
current_rampup_delay_ms_ = kStandardRampUpDelayMs;
}
}
last_overuse_time_ = now;
in_quick_rampup_ = false;
checks_above_threshold_ = 0;
++num_overuse_detections_;
if (observer_ != NULL)
observer_->OveruseDetected();
} else if (IsUnderusing(now)) {
last_rampup_time_ = now;
in_quick_rampup_ = true;
if (observer_ != NULL)
observer_->NormalUsage();
}
int rampup_delay =
in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
LOG(LS_VERBOSE) << " Frame stats: capture avg: " << capture_deltas_.Mean()
<< " capture stddev " << capture_deltas_.StdDev()
<< " encode usage " << encode_usage_->Value()
<< " encode rsd " << encode_rsd_->Value()
<< " overuse detections " << num_overuse_detections_
<< " rampup delay " << rampup_delay;
return 0;
}
bool OveruseFrameDetector::IsOverusing() {
bool overusing = false;
if (options_.enable_capture_jitter_method) {
overusing = capture_deltas_.StdDev() >=
options_.high_capture_jitter_threshold_ms;
} else if (options_.enable_encode_usage_method) {
bool encode_usage_overuse =
encode_usage_->Value() >= options_.high_encode_usage_threshold_percent;
bool encode_rsd_overuse = false;
if (options_.high_encode_time_rsd_threshold > 0) {
encode_rsd_overuse =
(encode_rsd_->Value() >= options_.high_encode_time_rsd_threshold);
}
overusing = encode_usage_overuse || encode_rsd_overuse;
}
if (overusing) {
++checks_above_threshold_;
} else {
checks_above_threshold_ = 0;
}
return checks_above_threshold_ >= options_.high_threshold_consecutive_count;
}
bool OveruseFrameDetector::IsUnderusing(int64_t time_now) {
int delay = in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
if (time_now < last_rampup_time_ + delay)
return false;
bool underusing = false;
if (options_.enable_capture_jitter_method) {
underusing = capture_deltas_.StdDev() <
options_.low_capture_jitter_threshold_ms;
} else if (options_.enable_encode_usage_method) {
bool encode_usage_underuse =
encode_usage_->Value() < options_.low_encode_usage_threshold_percent;
bool encode_rsd_underuse = true;
if (options_.low_encode_time_rsd_threshold > 0) {
encode_rsd_underuse =
(encode_rsd_->Value() < options_.low_encode_time_rsd_threshold);
}
underusing = encode_usage_underuse && encode_rsd_underuse;
}
return underusing;
}
} // namespace webrtc