blob: d33c8f23daba8e91056e27ee14b3463a0056bb9c [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_coding/neteq/audio_decoder_impl.h"
#include <assert.h>
#include <stdlib.h>
#include <string>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/common_audio/resampler/include/resampler.h"
#ifdef WEBRTC_CODEC_CELT
#include "webrtc/modules/audio_coding/codecs/celt/include/celt_interface.h"
#endif
#include "webrtc/modules/audio_coding/codecs/g711/include/g711_interface.h"
#include "webrtc/modules/audio_coding/codecs/g722/include/g722_interface.h"
#include "webrtc/modules/audio_coding/codecs/ilbc/interface/ilbc.h"
#include "webrtc/modules/audio_coding/codecs/isac/fix/interface/isacfix.h"
#include "webrtc/modules/audio_coding/codecs/isac/main/interface/isac.h"
#include "webrtc/modules/audio_coding/codecs/opus/interface/opus_interface.h"
#include "webrtc/modules/audio_coding/codecs/pcm16b/include/pcm16b.h"
#include "webrtc/system_wrappers/interface/data_log.h"
#include "webrtc/test/testsupport/fileutils.h"
namespace webrtc {
class AudioDecoderTest : public ::testing::Test {
protected:
AudioDecoderTest()
: input_fp_(NULL),
input_(NULL),
encoded_(NULL),
decoded_(NULL),
frame_size_(0),
data_length_(0),
encoded_bytes_(0),
channels_(1),
decoder_(NULL) {
input_file_ = webrtc::test::ProjectRootPath() +
"resources/audio_coding/testfile32kHz.pcm";
}
virtual ~AudioDecoderTest() {}
virtual void SetUp() {
// Create arrays.
ASSERT_GT(data_length_, 0u) << "The test must set data_length_ > 0";
input_ = new int16_t[data_length_];
// Longest encoded data is produced by PCM16b with 2 bytes per sample.
encoded_ = new uint8_t[data_length_ * 2];
decoded_ = new int16_t[data_length_ * channels_];
// Open input file.
input_fp_ = fopen(input_file_.c_str(), "rb");
ASSERT_TRUE(input_fp_ != NULL) << "Failed to open file " << input_file_;
// Read data to |input_|.
ASSERT_EQ(data_length_,
fread(input_, sizeof(int16_t), data_length_, input_fp_)) <<
"Could not read enough data from file";
// Logging to view input and output in Matlab.
// Use 'gyp -Denable_data_logging=1' to enable logging.
DataLog::CreateLog();
DataLog::AddTable("CodecTest");
DataLog::AddColumn("CodecTest", "input", 1);
DataLog::AddColumn("CodecTest", "output", 1);
}
virtual void TearDown() {
delete decoder_;
decoder_ = NULL;
// Close input file.
fclose(input_fp_);
// Delete arrays.
delete [] input_;
input_ = NULL;
delete [] encoded_;
encoded_ = NULL;
delete [] decoded_;
decoded_ = NULL;
// Close log.
DataLog::ReturnLog();
}
virtual void InitEncoder() { }
// This method must be implemented for all tests derived from this class.
virtual int EncodeFrame(const int16_t* input, size_t input_len,
uint8_t* output) = 0;
// Encodes and decodes audio. The absolute difference between the input and
// output is compared vs |tolerance|, and the mean-squared error is compared
// with |mse|. The encoded stream should contain |expected_bytes|. For stereo
// audio, the absolute difference between the two channels is compared vs
// |channel_diff_tolerance|.
void EncodeDecodeTest(size_t expected_bytes, int tolerance, double mse,
int delay = 0, int channel_diff_tolerance = 0) {
ASSERT_GE(tolerance, 0) << "Test must define a tolerance >= 0";
ASSERT_GE(channel_diff_tolerance, 0) <<
"Test must define a channel_diff_tolerance >= 0";
size_t processed_samples = 0u;
encoded_bytes_ = 0u;
InitEncoder();
EXPECT_EQ(0, decoder_->Init());
while (processed_samples + frame_size_ <= data_length_) {
size_t enc_len = EncodeFrame(&input_[processed_samples], frame_size_,
&encoded_[encoded_bytes_]);
AudioDecoder::SpeechType speech_type;
size_t dec_len = decoder_->Decode(&encoded_[encoded_bytes_], enc_len,
&decoded_[processed_samples *
channels_],
&speech_type);
EXPECT_EQ(frame_size_ * channels_, dec_len);
encoded_bytes_ += enc_len;
processed_samples += frame_size_;
}
// For some codecs it doesn't make sense to check expected number of bytes,
// since the number can vary for different platforms. Opus and iSAC are
// such codecs. In this case expected_bytes is set to 0.
if (expected_bytes) {
EXPECT_EQ(expected_bytes, encoded_bytes_);
}
CompareInputOutput(processed_samples, tolerance, delay);
if (channels_ == 2)
CompareTwoChannels(processed_samples, channel_diff_tolerance);
EXPECT_LE(MseInputOutput(processed_samples, delay), mse);
}
// The absolute difference between the input and output (the first channel) is
// compared vs |tolerance|. The parameter |delay| is used to correct for codec
// delays.
virtual void CompareInputOutput(size_t num_samples, int tolerance,
int delay) const {
assert(num_samples <= data_length_);
for (unsigned int n = 0; n < num_samples - delay; ++n) {
ASSERT_NEAR(input_[n], decoded_[channels_ * n + delay], tolerance) <<
"Exit test on first diff; n = " << n;
DataLog::InsertCell("CodecTest", "input", input_[n]);
DataLog::InsertCell("CodecTest", "output", decoded_[channels_ * n]);
DataLog::NextRow("CodecTest");
}
}
// The absolute difference between the two channels in a stereo is compared vs
// |tolerance|.
virtual void CompareTwoChannels(size_t samples_per_channel,
int tolerance) const {
assert(samples_per_channel <= data_length_);
for (unsigned int n = 0; n < samples_per_channel; ++n)
ASSERT_NEAR(decoded_[channels_ * n], decoded_[channels_ * n + 1],
tolerance) << "Stereo samples differ.";
}
// Calculates mean-squared error between input and output (the first channel).
// The parameter |delay| is used to correct for codec delays.
virtual double MseInputOutput(size_t num_samples, int delay) const {
assert(num_samples <= data_length_);
if (num_samples == 0) return 0.0;
double squared_sum = 0.0;
for (unsigned int n = 0; n < num_samples - delay; ++n) {
squared_sum += (input_[n] - decoded_[channels_ * n + delay]) *
(input_[n] - decoded_[channels_ * n + delay]);
}
return squared_sum / (num_samples - delay);
}
// Encodes a payload and decodes it twice with decoder re-init before each
// decode. Verifies that the decoded result is the same.
void ReInitTest() {
int16_t* output1 = decoded_;
int16_t* output2 = decoded_ + frame_size_;
InitEncoder();
size_t enc_len = EncodeFrame(input_, frame_size_, encoded_);
size_t dec_len;
AudioDecoder::SpeechType speech_type1, speech_type2;
EXPECT_EQ(0, decoder_->Init());
dec_len = decoder_->Decode(encoded_, enc_len, output1, &speech_type1);
EXPECT_EQ(frame_size_ * channels_, dec_len);
// Re-init decoder and decode again.
EXPECT_EQ(0, decoder_->Init());
dec_len = decoder_->Decode(encoded_, enc_len, output2, &speech_type2);
EXPECT_EQ(frame_size_ * channels_, dec_len);
for (unsigned int n = 0; n < frame_size_; ++n) {
ASSERT_EQ(output1[n], output2[n]) << "Exit test on first diff; n = " << n;
}
EXPECT_EQ(speech_type1, speech_type2);
}
// Call DecodePlc and verify that the correct number of samples is produced.
void DecodePlcTest() {
InitEncoder();
size_t enc_len = EncodeFrame(input_, frame_size_, encoded_);
AudioDecoder::SpeechType speech_type;
EXPECT_EQ(0, decoder_->Init());
size_t dec_len =
decoder_->Decode(encoded_, enc_len, decoded_, &speech_type);
EXPECT_EQ(frame_size_ * channels_, dec_len);
// Call DecodePlc and verify that we get one frame of data.
// (Overwrite the output from the above Decode call, but that does not
// matter.)
dec_len = decoder_->DecodePlc(1, decoded_);
EXPECT_EQ(frame_size_ * channels_, dec_len);
}
std::string input_file_;
FILE* input_fp_;
int16_t* input_;
uint8_t* encoded_;
int16_t* decoded_;
size_t frame_size_;
size_t data_length_;
size_t encoded_bytes_;
size_t channels_;
AudioDecoder* decoder_;
};
class AudioDecoderPcmUTest : public AudioDecoderTest {
protected:
AudioDecoderPcmUTest() : AudioDecoderTest() {
frame_size_ = 160;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderPcmU;
assert(decoder_);
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
int enc_len_bytes =
WebRtcG711_EncodeU(NULL, const_cast<int16_t*>(input),
static_cast<int>(input_len_samples),
reinterpret_cast<int16_t*>(output));
EXPECT_EQ(input_len_samples, static_cast<size_t>(enc_len_bytes));
return enc_len_bytes;
}
};
class AudioDecoderPcmATest : public AudioDecoderTest {
protected:
AudioDecoderPcmATest() : AudioDecoderTest() {
frame_size_ = 160;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderPcmA;
assert(decoder_);
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
int enc_len_bytes =
WebRtcG711_EncodeA(NULL, const_cast<int16_t*>(input),
static_cast<int>(input_len_samples),
reinterpret_cast<int16_t*>(output));
EXPECT_EQ(input_len_samples, static_cast<size_t>(enc_len_bytes));
return enc_len_bytes;
}
};
class AudioDecoderPcm16BTest : public AudioDecoderTest {
protected:
AudioDecoderPcm16BTest() : AudioDecoderTest() {
frame_size_ = 160;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderPcm16B(kDecoderPCM16B);
assert(decoder_);
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
int enc_len_bytes = WebRtcPcm16b_EncodeW16(
const_cast<int16_t*>(input), static_cast<int>(input_len_samples),
reinterpret_cast<int16_t*>(output));
EXPECT_EQ(2 * input_len_samples, static_cast<size_t>(enc_len_bytes));
return enc_len_bytes;
}
};
class AudioDecoderIlbcTest : public AudioDecoderTest {
protected:
AudioDecoderIlbcTest() : AudioDecoderTest() {
frame_size_ = 240;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderIlbc;
assert(decoder_);
WebRtcIlbcfix_EncoderCreate(&encoder_);
}
~AudioDecoderIlbcTest() {
WebRtcIlbcfix_EncoderFree(encoder_);
}
virtual void InitEncoder() {
ASSERT_EQ(0, WebRtcIlbcfix_EncoderInit(encoder_, 30)); // 30 ms.
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
int enc_len_bytes =
WebRtcIlbcfix_Encode(encoder_, input,
static_cast<int>(input_len_samples),
reinterpret_cast<int16_t*>(output));
EXPECT_EQ(50, enc_len_bytes);
return enc_len_bytes;
}
// Overload the default test since iLBC's function WebRtcIlbcfix_NetEqPlc does
// not return any data. It simply resets a few states and returns 0.
void DecodePlcTest() {
InitEncoder();
size_t enc_len = EncodeFrame(input_, frame_size_, encoded_);
AudioDecoder::SpeechType speech_type;
EXPECT_EQ(0, decoder_->Init());
size_t dec_len =
decoder_->Decode(encoded_, enc_len, decoded_, &speech_type);
EXPECT_EQ(frame_size_, dec_len);
// Simply call DecodePlc and verify that we get 0 as return value.
EXPECT_EQ(0, decoder_->DecodePlc(1, decoded_));
}
iLBC_encinst_t* encoder_;
};
class AudioDecoderIsacFloatTest : public AudioDecoderTest {
protected:
AudioDecoderIsacFloatTest() : AudioDecoderTest() {
input_size_ = 160;
frame_size_ = 480;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderIsac;
assert(decoder_);
WebRtcIsac_Create(&encoder_);
WebRtcIsac_SetEncSampRate(encoder_, 16000);
}
~AudioDecoderIsacFloatTest() {
WebRtcIsac_Free(encoder_);
}
virtual void InitEncoder() {
ASSERT_EQ(0, WebRtcIsac_EncoderInit(encoder_, 1)); // Fixed mode.
ASSERT_EQ(0, WebRtcIsac_Control(encoder_, 32000, 30)); // 32 kbps, 30 ms.
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
// Insert 3 * 10 ms. Expect non-zero output on third call.
EXPECT_EQ(0, WebRtcIsac_Encode(encoder_, input,
reinterpret_cast<int16_t*>(output)));
input += input_size_;
EXPECT_EQ(0, WebRtcIsac_Encode(encoder_, input,
reinterpret_cast<int16_t*>(output)));
input += input_size_;
int enc_len_bytes =
WebRtcIsac_Encode(encoder_, input, reinterpret_cast<int16_t*>(output));
EXPECT_GT(enc_len_bytes, 0);
return enc_len_bytes;
}
ISACStruct* encoder_;
int input_size_;
};
class AudioDecoderIsacSwbTest : public AudioDecoderTest {
protected:
AudioDecoderIsacSwbTest() : AudioDecoderTest() {
input_size_ = 320;
frame_size_ = 960;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderIsacSwb;
assert(decoder_);
WebRtcIsac_Create(&encoder_);
WebRtcIsac_SetEncSampRate(encoder_, 32000);
}
~AudioDecoderIsacSwbTest() {
WebRtcIsac_Free(encoder_);
}
virtual void InitEncoder() {
ASSERT_EQ(0, WebRtcIsac_EncoderInit(encoder_, 1)); // Fixed mode.
ASSERT_EQ(0, WebRtcIsac_Control(encoder_, 32000, 30)); // 32 kbps, 30 ms.
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
// Insert 3 * 10 ms. Expect non-zero output on third call.
EXPECT_EQ(0, WebRtcIsac_Encode(encoder_, input,
reinterpret_cast<int16_t*>(output)));
input += input_size_;
EXPECT_EQ(0, WebRtcIsac_Encode(encoder_, input,
reinterpret_cast<int16_t*>(output)));
input += input_size_;
int enc_len_bytes =
WebRtcIsac_Encode(encoder_, input, reinterpret_cast<int16_t*>(output));
EXPECT_GT(enc_len_bytes, 0);
return enc_len_bytes;
}
ISACStruct* encoder_;
int input_size_;
};
// This test is identical to AudioDecoderIsacSwbTest, except that it creates
// an AudioDecoderIsacFb decoder object.
class AudioDecoderIsacFbTest : public AudioDecoderIsacSwbTest {
protected:
AudioDecoderIsacFbTest() : AudioDecoderIsacSwbTest() {
// Delete the |decoder_| that was created by AudioDecoderIsacSwbTest and
// create an AudioDecoderIsacFb object instead.
delete decoder_;
decoder_ = new AudioDecoderIsacFb;
assert(decoder_);
}
};
class AudioDecoderIsacFixTest : public AudioDecoderTest {
protected:
AudioDecoderIsacFixTest() : AudioDecoderTest() {
input_size_ = 160;
frame_size_ = 480;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderIsacFix;
assert(decoder_);
WebRtcIsacfix_Create(&encoder_);
}
~AudioDecoderIsacFixTest() {
WebRtcIsacfix_Free(encoder_);
}
virtual void InitEncoder() {
ASSERT_EQ(0, WebRtcIsacfix_EncoderInit(encoder_, 1)); // Fixed mode.
ASSERT_EQ(0,
WebRtcIsacfix_Control(encoder_, 32000, 30)); // 32 kbps, 30 ms.
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
// Insert 3 * 10 ms. Expect non-zero output on third call.
EXPECT_EQ(0, WebRtcIsacfix_Encode(encoder_, input,
reinterpret_cast<int16_t*>(output)));
input += input_size_;
EXPECT_EQ(0, WebRtcIsacfix_Encode(encoder_, input,
reinterpret_cast<int16_t*>(output)));
input += input_size_;
int enc_len_bytes = WebRtcIsacfix_Encode(
encoder_, input, reinterpret_cast<int16_t*>(output));
EXPECT_GT(enc_len_bytes, 0);
return enc_len_bytes;
}
ISACFIX_MainStruct* encoder_;
int input_size_;
};
class AudioDecoderG722Test : public AudioDecoderTest {
protected:
AudioDecoderG722Test() : AudioDecoderTest() {
frame_size_ = 160;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderG722;
assert(decoder_);
WebRtcG722_CreateEncoder(&encoder_);
}
~AudioDecoderG722Test() {
WebRtcG722_FreeEncoder(encoder_);
}
virtual void InitEncoder() {
ASSERT_EQ(0, WebRtcG722_EncoderInit(encoder_));
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
int enc_len_bytes =
WebRtcG722_Encode(encoder_, const_cast<int16_t*>(input),
static_cast<int>(input_len_samples),
reinterpret_cast<int16_t*>(output));
EXPECT_EQ(80, enc_len_bytes);
return enc_len_bytes;
}
G722EncInst* encoder_;
};
class AudioDecoderG722StereoTest : public AudioDecoderG722Test {
protected:
AudioDecoderG722StereoTest() : AudioDecoderG722Test() {
channels_ = 2;
// Delete the |decoder_| that was created by AudioDecoderG722Test and
// create an AudioDecoderG722Stereo object instead.
delete decoder_;
decoder_ = new AudioDecoderG722Stereo;
assert(decoder_);
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
uint8_t* temp_output = new uint8_t[data_length_ * 2];
// Encode a mono payload using the base test class.
int mono_enc_len_bytes =
AudioDecoderG722Test::EncodeFrame(input, input_len_samples,
temp_output);
// The bit-stream consists of 4-bit samples:
// +--------+--------+--------+
// | s0 s1 | s2 s3 | s4 s5 |
// +--------+--------+--------+
//
// Duplicate them to the |output| such that the stereo stream becomes:
// +--------+--------+--------+
// | s0 s0 | s1 s1 | s2 s2 |
// +--------+--------+--------+
EXPECT_LE(mono_enc_len_bytes * 2, static_cast<int>(data_length_ * 2));
uint8_t* output_ptr = output;
for (int i = 0; i < mono_enc_len_bytes; ++i) {
*output_ptr = (temp_output[i] & 0xF0) + (temp_output[i] >> 4);
++output_ptr;
*output_ptr = (temp_output[i] << 4) + (temp_output[i] & 0x0F);
++output_ptr;
}
delete [] temp_output;
return mono_enc_len_bytes * 2;
}
};
#ifdef WEBRTC_CODEC_CELT
class AudioDecoderCeltTest : public AudioDecoderTest {
protected:
static const int kEncodingRateBitsPerSecond = 64000;
AudioDecoderCeltTest() : AudioDecoderTest(), encoder_(NULL) {
frame_size_ = 640;
data_length_ = 10 * frame_size_;
decoder_ = AudioDecoder::CreateAudioDecoder(kDecoderCELT_32);
assert(decoder_);
WebRtcCelt_CreateEnc(&encoder_, static_cast<int>(channels_));
}
~AudioDecoderCeltTest() {
WebRtcCelt_FreeEnc(encoder_);
}
virtual void InitEncoder() {
assert(encoder_);
ASSERT_EQ(0, WebRtcCelt_EncoderInit(
encoder_, static_cast<int>(channels_), kEncodingRateBitsPerSecond));
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
assert(encoder_);
return WebRtcCelt_Encode(encoder_, input, output);
}
CELT_encinst_t* encoder_;
};
class AudioDecoderCeltStereoTest : public AudioDecoderTest {
protected:
static const int kEncodingRateBitsPerSecond = 64000;
AudioDecoderCeltStereoTest() : AudioDecoderTest(), encoder_(NULL) {
channels_ = 2;
frame_size_ = 640;
data_length_ = 10 * frame_size_;
decoder_ = AudioDecoder::CreateAudioDecoder(kDecoderCELT_32_2ch);
assert(decoder_);
stereo_input_ = new int16_t[frame_size_ * channels_];
WebRtcCelt_CreateEnc(&encoder_, static_cast<int>(channels_));
}
~AudioDecoderCeltStereoTest() {
delete [] stereo_input_;
WebRtcCelt_FreeEnc(encoder_);
}
virtual void InitEncoder() {
assert(encoder_);
ASSERT_EQ(0, WebRtcCelt_EncoderInit(
encoder_, static_cast<int>(channels_), kEncodingRateBitsPerSecond));
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) {
assert(encoder_);
assert(stereo_input_);
for (size_t n = 0; n < frame_size_; ++n) {
stereo_input_[n * 2] = stereo_input_[n * 2 + 1] = input[n];
}
return WebRtcCelt_Encode(encoder_, stereo_input_, output);
}
int16_t* stereo_input_;
CELT_encinst_t* encoder_;
};
#endif
class AudioDecoderOpusTest : public AudioDecoderTest {
protected:
AudioDecoderOpusTest() : AudioDecoderTest() {
frame_size_ = 480;
data_length_ = 10 * frame_size_;
decoder_ = new AudioDecoderOpus(kDecoderOpus);
assert(decoder_);
WebRtcOpus_EncoderCreate(&encoder_, 1);
}
~AudioDecoderOpusTest() {
WebRtcOpus_EncoderFree(encoder_);
}
virtual void SetUp() OVERRIDE {
AudioDecoderTest::SetUp();
// Upsample from 32 to 48 kHz.
// Because Opus is 48 kHz codec but the input file is 32 kHz, so the data
// read in |AudioDecoderTest::SetUp| has to be upsampled.
// |AudioDecoderTest::SetUp| has read |data_length_| samples, which is more
// than necessary after upsampling, so the end of audio that has been read
// is unused and the end of the buffer is overwritten by the resampled data.
Resampler rs;
rs.Reset(32000, 48000, kResamplerSynchronous);
const int before_resamp_len_samples = static_cast<int>(data_length_) * 2
/ 3;
int16_t* before_resamp_input = new int16_t[before_resamp_len_samples];
memcpy(before_resamp_input, input_,
sizeof(int16_t) * before_resamp_len_samples);
int resamp_len_samples;
EXPECT_EQ(0, rs.Push(before_resamp_input, before_resamp_len_samples,
input_, static_cast<int>(data_length_),
resamp_len_samples));
EXPECT_EQ(static_cast<int>(data_length_), resamp_len_samples);
delete[] before_resamp_input;
}
virtual void InitEncoder() {}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) OVERRIDE {
int enc_len_bytes = WebRtcOpus_Encode(encoder_, const_cast<int16_t*>(input),
static_cast<int16_t>(input_len_samples),
static_cast<int16_t>(data_length_), output);
EXPECT_GT(enc_len_bytes, 0);
return enc_len_bytes;
}
OpusEncInst* encoder_;
};
class AudioDecoderOpusStereoTest : public AudioDecoderOpusTest {
protected:
AudioDecoderOpusStereoTest() : AudioDecoderOpusTest() {
channels_ = 2;
WebRtcOpus_EncoderFree(encoder_);
delete decoder_;
decoder_ = new AudioDecoderOpus(kDecoderOpus_2ch);
assert(decoder_);
WebRtcOpus_EncoderCreate(&encoder_, 2);
}
virtual int EncodeFrame(const int16_t* input, size_t input_len_samples,
uint8_t* output) OVERRIDE {
// Create stereo by duplicating each sample in |input|.
const int input_stereo_samples = static_cast<int>(input_len_samples) * 2;
int16_t* input_stereo = new int16_t[input_stereo_samples];
for (size_t i = 0; i < input_len_samples; i++)
input_stereo[i * 2] = input_stereo[i * 2 + 1] = input[i];
int enc_len_bytes = WebRtcOpus_Encode(
encoder_, input_stereo, static_cast<int16_t>(input_len_samples),
static_cast<int16_t>(data_length_), output);
EXPECT_GT(enc_len_bytes, 0);
delete[] input_stereo;
return enc_len_bytes;
}
};
TEST_F(AudioDecoderPcmUTest, EncodeDecode) {
int tolerance = 251;
double mse = 1734.0;
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCMu));
EncodeDecodeTest(data_length_, tolerance, mse);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderPcmATest, EncodeDecode) {
int tolerance = 308;
double mse = 1931.0;
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCMa));
EncodeDecodeTest(data_length_, tolerance, mse);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderPcm16BTest, EncodeDecode) {
int tolerance = 0;
double mse = 0.0;
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16B));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bwb));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bswb32kHz));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bswb48kHz));
EncodeDecodeTest(2 * data_length_, tolerance, mse);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderIlbcTest, EncodeDecode) {
int tolerance = 6808;
double mse = 2.13e6;
int delay = 80; // Delay from input to output.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderILBC));
EncodeDecodeTest(500, tolerance, mse, delay);
ReInitTest();
EXPECT_TRUE(decoder_->HasDecodePlc());
DecodePlcTest();
}
TEST_F(AudioDecoderIsacFloatTest, EncodeDecode) {
int tolerance = 3399;
double mse = 434951.0;
int delay = 48; // Delay from input to output.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISAC));
EncodeDecodeTest(0, tolerance, mse, delay);
ReInitTest();
EXPECT_TRUE(decoder_->HasDecodePlc());
DecodePlcTest();
}
TEST_F(AudioDecoderIsacSwbTest, EncodeDecode) {
int tolerance = 19757;
double mse = 8.18e6;
int delay = 160; // Delay from input to output.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISACswb));
EncodeDecodeTest(0, tolerance, mse, delay);
ReInitTest();
EXPECT_TRUE(decoder_->HasDecodePlc());
DecodePlcTest();
}
TEST_F(AudioDecoderIsacFbTest, EncodeDecode) {
int tolerance = 19757;
double mse = 8.18e6;
int delay = 160; // Delay from input to output.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISACswb));
EncodeDecodeTest(0, tolerance, mse, delay);
ReInitTest();
EXPECT_TRUE(decoder_->HasDecodePlc());
DecodePlcTest();
}
TEST_F(AudioDecoderIsacFixTest, DISABLED_EncodeDecode) {
int tolerance = 11034;
double mse = 3.46e6;
int delay = 54; // Delay from input to output.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISAC));
EncodeDecodeTest(735, tolerance, mse, delay);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderG722Test, EncodeDecode) {
int tolerance = 6176;
double mse = 238630.0;
int delay = 22; // Delay from input to output.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderG722));
EncodeDecodeTest(data_length_ / 2, tolerance, mse, delay);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderG722StereoTest, CreateAndDestroy) {
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderG722_2ch));
}
TEST_F(AudioDecoderG722StereoTest, EncodeDecode) {
int tolerance = 6176;
int channel_diff_tolerance = 0;
double mse = 238630.0;
int delay = 22; // Delay from input to output.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderG722_2ch));
EncodeDecodeTest(data_length_, tolerance, mse, delay, channel_diff_tolerance);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderOpusTest, EncodeDecode) {
int tolerance = 6176;
double mse = 238630.0;
int delay = 22; // Delay from input to output.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderOpus));
EncodeDecodeTest(0, tolerance, mse, delay);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
TEST_F(AudioDecoderOpusStereoTest, EncodeDecode) {
int tolerance = 6176;
int channel_diff_tolerance = 0;
double mse = 238630.0;
int delay = 22; // Delay from input to output.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderOpus_2ch));
EncodeDecodeTest(0, tolerance, mse, delay, channel_diff_tolerance);
ReInitTest();
EXPECT_FALSE(decoder_->HasDecodePlc());
}
#ifdef WEBRTC_CODEC_CELT
// In the two following CELT tests, the low amplitude of the test signal allow
// us to have such low error thresholds, i.e. |tolerance|, |mse|. Furthermore,
// in general, stereo signals with identical channels do not result in identical
// encoded channels.
TEST_F(AudioDecoderCeltTest, EncodeDecode) {
int tolerance = 20;
double mse = 17.0;
int delay = 80; // Delay from input to output in samples.
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCELT_32));
EncodeDecodeTest(1600, tolerance, mse, delay);
ReInitTest();
EXPECT_TRUE(decoder_->HasDecodePlc());
DecodePlcTest();
}
TEST_F(AudioDecoderCeltStereoTest, EncodeDecode) {
int tolerance = 20;
// If both channels are identical, CELT not necessarily decodes identical
// channels. However, for this input this is the case.
int channel_diff_tolerance = 0;
double mse = 20.0;
// Delay from input to output in samples, accounting for stereo.
int delay = 160;
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCELT_32_2ch));
EncodeDecodeTest(1600, tolerance, mse, delay, channel_diff_tolerance);
ReInitTest();
EXPECT_TRUE(decoder_->HasDecodePlc());
DecodePlcTest();
}
#endif
TEST(AudioDecoder, CodecSampleRateHz) {
EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCMu));
EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCMa));
EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCMu_2ch));
EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCMa_2ch));
EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderILBC));
EXPECT_EQ(16000, AudioDecoder::CodecSampleRateHz(kDecoderISAC));
EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderISACswb));
EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderISACfb));
EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16B));
EXPECT_EQ(16000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16Bwb));
EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16Bswb32kHz));
EXPECT_EQ(48000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16Bswb48kHz));
EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16B_2ch));
EXPECT_EQ(16000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16Bwb_2ch));
EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16Bswb32kHz_2ch));
EXPECT_EQ(48000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16Bswb48kHz_2ch));
EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderPCM16B_5ch));
EXPECT_EQ(16000, AudioDecoder::CodecSampleRateHz(kDecoderG722));
EXPECT_EQ(16000, AudioDecoder::CodecSampleRateHz(kDecoderG722_2ch));
EXPECT_EQ(-1, AudioDecoder::CodecSampleRateHz(kDecoderRED));
EXPECT_EQ(-1, AudioDecoder::CodecSampleRateHz(kDecoderAVT));
EXPECT_EQ(8000, AudioDecoder::CodecSampleRateHz(kDecoderCNGnb));
EXPECT_EQ(16000, AudioDecoder::CodecSampleRateHz(kDecoderCNGwb));
EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderCNGswb32kHz));
EXPECT_EQ(48000, AudioDecoder::CodecSampleRateHz(kDecoderOpus));
EXPECT_EQ(48000, AudioDecoder::CodecSampleRateHz(kDecoderOpus_2ch));
// TODO(tlegrand): Change 32000 to 48000 below once ACM has 48 kHz support.
EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderCNGswb48kHz));
EXPECT_EQ(-1, AudioDecoder::CodecSampleRateHz(kDecoderArbitrary));
#ifdef WEBRTC_CODEC_CELT
EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderCELT_32));
EXPECT_EQ(32000, AudioDecoder::CodecSampleRateHz(kDecoderCELT_32_2ch));
#else
EXPECT_EQ(-1, AudioDecoder::CodecSampleRateHz(kDecoderCELT_32));
EXPECT_EQ(-1, AudioDecoder::CodecSampleRateHz(kDecoderCELT_32_2ch));
#endif
}
TEST(AudioDecoder, CodecSupported) {
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCMu));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCMa));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCMu_2ch));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCMa_2ch));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderILBC));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISAC));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISACswb));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderISACfb));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16B));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bwb));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bswb32kHz));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bswb48kHz));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16B_2ch));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bwb_2ch));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bswb32kHz_2ch));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16Bswb48kHz_2ch));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderPCM16B_5ch));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderG722));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderG722_2ch));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderRED));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderAVT));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCNGnb));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCNGwb));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCNGswb32kHz));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCNGswb48kHz));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderArbitrary));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderOpus));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderOpus_2ch));
#ifdef WEBRTC_CODEC_CELT
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCELT_32));
EXPECT_TRUE(AudioDecoder::CodecSupported(kDecoderCELT_32_2ch));
#else
EXPECT_FALSE(AudioDecoder::CodecSupported(kDecoderCELT_32));
EXPECT_FALSE(AudioDecoder::CodecSupported(kDecoderCELT_32_2ch));
#endif
}
} // namespace webrtc