blob: 399c133cd1031e6671bb36cc5e3623f6ea676988 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file includes unit tests for the RTCPReceiver.
*/
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
// Note: This file has no directory. Lint warning must be ignored.
#include "webrtc/common_types.h"
#include "webrtc/modules/remote_bitrate_estimator/include/mock/mock_remote_bitrate_observer.h"
#include "webrtc/modules/remote_bitrate_estimator/include/remote_bitrate_estimator.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_receiver.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_sender.h"
#include "webrtc/modules/rtp_rtcp/source/rtp_rtcp_impl.h"
#include "webrtc/modules/rtp_rtcp/source/rtp_utility.h"
namespace webrtc {
namespace { // Anonymous namespace; hide utility functions and classes.
// A very simple packet builder class for building RTCP packets.
class PacketBuilder {
public:
static const int kMaxPacketSize = 1024;
struct ReportBlock {
ReportBlock(uint32_t ssrc, uint32_t extended_max, uint8_t fraction_loss,
uint32_t cumulative_loss, uint32_t jitter)
: ssrc(ssrc),
extended_max(extended_max),
fraction_loss(fraction_loss),
cumulative_loss(cumulative_loss),
jitter(jitter) {}
uint32_t ssrc;
uint32_t extended_max;
uint8_t fraction_loss;
uint32_t cumulative_loss;
uint32_t jitter;
};
PacketBuilder()
: pos_(0),
pos_of_len_(0) {
}
void Add8(uint8_t byte) {
EXPECT_LT(pos_, kMaxPacketSize - 1);
buffer_[pos_] = byte;
++pos_;
}
void Add16(uint16_t word) {
Add8(word >> 8);
Add8(word & 0xFF);
}
void Add32(uint32_t word) {
Add8(word >> 24);
Add8((word >> 16) & 0xFF);
Add8((word >> 8) & 0xFF);
Add8(word & 0xFF);
}
void Add64(uint32_t upper_half, uint32_t lower_half) {
Add32(upper_half);
Add32(lower_half);
}
// Set the 5-bit value in the 1st byte of the header
// and the payload type. Set aside room for the length field,
// and make provision for backpatching it.
// Note: No way to set the padding bit.
void AddRtcpHeader(int payload, int format_or_count) {
PatchLengthField();
Add8(0x80 | (format_or_count & 0x1F));
Add8(payload);
pos_of_len_ = pos_;
Add16(0xDEAD); // Initialize length to "clearly illegal".
}
void AddTmmbrBandwidth(int mantissa, int exponent, int overhead) {
// 6 bits exponent, 17 bits mantissa, 9 bits overhead.
uint32_t word = 0;
word |= (exponent << 26);
word |= ((mantissa & 0x1FFFF) << 9);
word |= (overhead & 0x1FF);
Add32(word);
}
void AddSrPacket(uint32_t sender_ssrc) {
AddRtcpHeader(200, 0);
Add32(sender_ssrc);
Add64(0x10203, 0x4050607); // NTP timestamp
Add32(0x10203); // RTP timestamp
Add32(0); // Sender's packet count
Add32(0); // Sender's octet count
}
void AddRrPacket(uint32_t sender_ssrc, uint32_t rtp_ssrc,
uint32_t extended_max, uint8_t fraction_loss,
uint32_t cumulative_loss, uint32_t jitter) {
ReportBlock report_block(rtp_ssrc, extended_max, fraction_loss,
cumulative_loss, jitter);
std::list<ReportBlock> report_block_vector(&report_block,
&report_block + 1);
AddRrPacketMultipleReportBlocks(sender_ssrc, report_block_vector);
}
void AddRrPacketMultipleReportBlocks(
uint32_t sender_ssrc, const std::list<ReportBlock>& report_blocks) {
AddRtcpHeader(201, report_blocks.size());
Add32(sender_ssrc);
for (std::list<ReportBlock>::const_iterator it = report_blocks.begin();
it != report_blocks.end(); ++it) {
AddReportBlock(it->ssrc, it->extended_max, it->fraction_loss,
it->cumulative_loss, it->jitter);
}
}
void AddReportBlock(uint32_t rtp_ssrc, uint32_t extended_max,
uint8_t fraction_loss, uint32_t cumulative_loss,
uint32_t jitter) {
Add32(rtp_ssrc);
Add32((fraction_loss << 24) + cumulative_loss);
Add32(extended_max);
Add32(jitter);
Add32(0); // Last SR.
Add32(0); // Delay since last SR.
}
void AddXrHeader(uint32_t sender_ssrc) {
AddRtcpHeader(207, 0);
Add32(sender_ssrc);
}
void AddXrReceiverReferenceTimeBlock(uint32_t ntp_sec, uint32_t ntp_frac) {
Add8(4); // Block type.
Add8(0); // Reserved.
Add16(2); // Length.
Add64(ntp_sec, ntp_frac); // NTP timestamp.
}
void AddXrDlrrBlock(std::vector<uint32_t>& remote_ssrc) {
ASSERT_LT(pos_ + 4 + static_cast<int>(remote_ssrc.size())*4,
kMaxPacketSize-1) << "Max buffer size reached.";
Add8(5); // Block type.
Add8(0); // Reserved.
Add16(remote_ssrc.size() * 3); // Length.
for (size_t i = 0; i < remote_ssrc.size(); ++i) {
Add32(remote_ssrc.at(i)); // Receiver SSRC.
Add32(0x10203); // Last RR.
Add32(0x40506); // Delay since last RR.
}
}
void AddXrUnknownBlock() {
Add8(6); // Block type.
Add8(0); // Reserved.
Add16(9); // Length.
Add32(0); // Receiver SSRC.
Add64(0, 0); // Remaining fields (RFC 3611) are set to zero.
Add64(0, 0);
Add64(0, 0);
Add64(0, 0);
}
void AddXrVoipBlock(uint32_t remote_ssrc, uint8_t loss) {
Add8(7); // Block type.
Add8(0); // Reserved.
Add16(8); // Length.
Add32(remote_ssrc); // Receiver SSRC.
Add8(loss); // Loss rate.
Add8(0); // Remaining statistics (RFC 3611) are set to zero.
Add16(0);
Add64(0, 0);
Add64(0, 0);
Add64(0, 0);
}
const uint8_t* packet() {
PatchLengthField();
return buffer_;
}
unsigned int length() {
return pos_;
}
private:
void PatchLengthField() {
if (pos_of_len_ > 0) {
// Backpatch the packet length. The client must have taken
// care of proper padding to 32-bit words.
int this_packet_length = (pos_ - pos_of_len_ - 2);
ASSERT_EQ(0, this_packet_length % 4)
<< "Packets must be a multiple of 32 bits long"
<< " pos " << pos_ << " pos_of_len " << pos_of_len_;
buffer_[pos_of_len_] = this_packet_length >> 10;
buffer_[pos_of_len_+1] = (this_packet_length >> 2) & 0xFF;
pos_of_len_ = 0;
}
}
int pos_;
// Where the length field of the current packet is.
// Note that 0 is not a legal value, so is used for "uninitialized".
int pos_of_len_;
uint8_t buffer_[kMaxPacketSize];
};
// This test transport verifies that no functions get called.
class TestTransport : public Transport,
public NullRtpData {
public:
explicit TestTransport()
: rtcp_receiver_(NULL) {
}
void SetRTCPReceiver(RTCPReceiver* rtcp_receiver) {
rtcp_receiver_ = rtcp_receiver;
}
virtual int SendPacket(int /*ch*/, const void* /*data*/, int /*len*/) {
ADD_FAILURE(); // FAIL() gives a compile error.
return -1;
}
// Injects an RTCP packet into the receiver.
virtual int SendRTCPPacket(int /* ch */, const void *packet, int packet_len) {
ADD_FAILURE();
return 0;
}
virtual int OnReceivedPayloadData(const uint8_t* payloadData,
const uint16_t payloadSize,
const WebRtcRTPHeader* rtpHeader) {
ADD_FAILURE();
return 0;
}
RTCPReceiver* rtcp_receiver_;
};
class RtcpReceiverTest : public ::testing::Test {
protected:
static const uint32_t kRemoteBitrateEstimatorMinBitrateBps = 30000;
RtcpReceiverTest()
: over_use_detector_options_(),
system_clock_(1335900000),
remote_bitrate_observer_(),
remote_bitrate_estimator_(
RemoteBitrateEstimatorFactory().Create(
&remote_bitrate_observer_,
&system_clock_,
kMimdControl,
kRemoteBitrateEstimatorMinBitrateBps)) {
test_transport_ = new TestTransport();
RtpRtcp::Configuration configuration;
configuration.id = 0;
configuration.audio = false;
configuration.clock = &system_clock_;
configuration.outgoing_transport = test_transport_;
configuration.remote_bitrate_estimator = remote_bitrate_estimator_.get();
rtp_rtcp_impl_ = new ModuleRtpRtcpImpl(configuration);
rtcp_receiver_ = new RTCPReceiver(0, &system_clock_, rtp_rtcp_impl_);
test_transport_->SetRTCPReceiver(rtcp_receiver_);
}
~RtcpReceiverTest() {
delete rtcp_receiver_;
delete rtp_rtcp_impl_;
delete test_transport_;
}
// Injects an RTCP packet into the receiver.
// Returns 0 for OK, non-0 for failure.
int InjectRtcpPacket(const uint8_t* packet,
uint16_t packet_len) {
RTCPUtility::RTCPParserV2 rtcpParser(packet,
packet_len,
true); // Allow non-compound RTCP
RTCPHelp::RTCPPacketInformation rtcpPacketInformation;
EXPECT_EQ(0, rtcp_receiver_->IncomingRTCPPacket(rtcpPacketInformation,
&rtcpParser));
rtcp_receiver_->TriggerCallbacksFromRTCPPacket(rtcpPacketInformation);
// The NACK list is on purpose not copied below as it isn't needed by the
// test.
rtcp_packet_info_.rtcpPacketTypeFlags =
rtcpPacketInformation.rtcpPacketTypeFlags;
rtcp_packet_info_.remoteSSRC = rtcpPacketInformation.remoteSSRC;
rtcp_packet_info_.applicationSubType =
rtcpPacketInformation.applicationSubType;
rtcp_packet_info_.applicationName = rtcpPacketInformation.applicationName;
rtcp_packet_info_.report_blocks = rtcpPacketInformation.report_blocks;
rtcp_packet_info_.rtt = rtcpPacketInformation.rtt;
rtcp_packet_info_.interArrivalJitter =
rtcpPacketInformation.interArrivalJitter;
rtcp_packet_info_.sliPictureId = rtcpPacketInformation.sliPictureId;
rtcp_packet_info_.rpsiPictureId = rtcpPacketInformation.rpsiPictureId;
rtcp_packet_info_.receiverEstimatedMaxBitrate =
rtcpPacketInformation.receiverEstimatedMaxBitrate;
rtcp_packet_info_.ntp_secs = rtcpPacketInformation.ntp_secs;
rtcp_packet_info_.ntp_frac = rtcpPacketInformation.ntp_frac;
rtcp_packet_info_.rtp_timestamp = rtcpPacketInformation.rtp_timestamp;
rtcp_packet_info_.xr_dlrr_item = rtcpPacketInformation.xr_dlrr_item;
if (rtcpPacketInformation.VoIPMetric) {
rtcp_packet_info_.AddVoIPMetric(rtcpPacketInformation.VoIPMetric);
}
return 0;
}
OverUseDetectorOptions over_use_detector_options_;
SimulatedClock system_clock_;
ModuleRtpRtcpImpl* rtp_rtcp_impl_;
RTCPReceiver* rtcp_receiver_;
TestTransport* test_transport_;
RTCPHelp::RTCPPacketInformation rtcp_packet_info_;
MockRemoteBitrateObserver remote_bitrate_observer_;
scoped_ptr<RemoteBitrateEstimator> remote_bitrate_estimator_;
};
TEST_F(RtcpReceiverTest, BrokenPacketIsIgnored) {
const uint8_t bad_packet[] = {0, 0, 0, 0};
EXPECT_EQ(0, InjectRtcpPacket(bad_packet, sizeof(bad_packet)));
EXPECT_EQ(0U, rtcp_packet_info_.rtcpPacketTypeFlags);
}
TEST_F(RtcpReceiverTest, InjectSrPacket) {
const uint32_t kSenderSsrc = 0x10203;
PacketBuilder p;
p.AddSrPacket(kSenderSsrc);
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
// The parser will note the remote SSRC on a SR from other than his
// expected peer, but will not flag that he's gotten a packet.
EXPECT_EQ(kSenderSsrc, rtcp_packet_info_.remoteSSRC);
EXPECT_EQ(0U,
kRtcpSr & rtcp_packet_info_.rtcpPacketTypeFlags);
}
TEST_F(RtcpReceiverTest, XrPacketWithZeroReportBlocksIgnored) {
PacketBuilder p;
p.AddXrHeader(0x2345);
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
EXPECT_EQ(0U, rtcp_packet_info_.rtcpPacketTypeFlags);
}
TEST_F(RtcpReceiverTest, InjectXrVoipPacket) {
const uint32_t kSourceSsrc = 0x123456;
std::set<uint32_t> ssrcs;
ssrcs.insert(kSourceSsrc);
rtcp_receiver_->SetSsrcs(kSourceSsrc, ssrcs);
const uint8_t kLossRate = 123;
PacketBuilder p;
p.AddXrHeader(0x2345);
p.AddXrVoipBlock(kSourceSsrc, kLossRate);
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
ASSERT_TRUE(rtcp_packet_info_.VoIPMetric != NULL);
EXPECT_EQ(kLossRate, rtcp_packet_info_.VoIPMetric->lossRate);
EXPECT_EQ(kRtcpXrVoipMetric, rtcp_packet_info_.rtcpPacketTypeFlags);
}
TEST_F(RtcpReceiverTest, InjectXrReceiverReferenceTimePacket) {
PacketBuilder p;
p.AddXrHeader(0x2345);
p.AddXrReceiverReferenceTimeBlock(0x10203, 0x40506);
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
EXPECT_EQ(kRtcpXrReceiverReferenceTime,
rtcp_packet_info_.rtcpPacketTypeFlags);
}
TEST_F(RtcpReceiverTest, InjectXrDlrrPacketWithNoSubBlock) {
const uint32_t kSourceSsrc = 0x123456;
std::set<uint32_t> ssrcs;
ssrcs.insert(kSourceSsrc);
rtcp_receiver_->SetSsrcs(kSourceSsrc, ssrcs);
std::vector<uint32_t> remote_ssrcs;
PacketBuilder p;
p.AddXrHeader(0x2345);
p.AddXrDlrrBlock(remote_ssrcs);
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
EXPECT_EQ(0U, rtcp_packet_info_.rtcpPacketTypeFlags);
EXPECT_FALSE(rtcp_packet_info_.xr_dlrr_item);
}
TEST_F(RtcpReceiverTest, XrDlrrPacketNotToUsIgnored) {
const uint32_t kSourceSsrc = 0x123456;
std::set<uint32_t> ssrcs;
ssrcs.insert(kSourceSsrc);
rtcp_receiver_->SetSsrcs(kSourceSsrc, ssrcs);
std::vector<uint32_t> remote_ssrcs;
remote_ssrcs.push_back(kSourceSsrc+1);
PacketBuilder p;
p.AddXrHeader(0x2345);
p.AddXrDlrrBlock(remote_ssrcs);
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
EXPECT_EQ(0U, rtcp_packet_info_.rtcpPacketTypeFlags);
EXPECT_FALSE(rtcp_packet_info_.xr_dlrr_item);
}
TEST_F(RtcpReceiverTest, InjectXrDlrrPacketWithSubBlock) {
const uint32_t kSourceSsrc = 0x123456;
std::set<uint32_t> ssrcs;
ssrcs.insert(kSourceSsrc);
rtcp_receiver_->SetSsrcs(kSourceSsrc, ssrcs);
std::vector<uint32_t> remote_ssrcs;
remote_ssrcs.push_back(kSourceSsrc);
PacketBuilder p;
p.AddXrHeader(0x2345);
p.AddXrDlrrBlock(remote_ssrcs);
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
// The parser should note the DLRR report block item, but not flag the packet
// since the RTT is not estimated.
EXPECT_TRUE(rtcp_packet_info_.xr_dlrr_item);
}
TEST_F(RtcpReceiverTest, InjectXrDlrrPacketWithMultipleSubBlocks) {
const uint32_t kSourceSsrc = 0x123456;
std::set<uint32_t> ssrcs;
ssrcs.insert(kSourceSsrc);
rtcp_receiver_->SetSsrcs(kSourceSsrc, ssrcs);
std::vector<uint32_t> remote_ssrcs;
remote_ssrcs.push_back(kSourceSsrc+2);
remote_ssrcs.push_back(kSourceSsrc+1);
remote_ssrcs.push_back(kSourceSsrc);
PacketBuilder p;
p.AddXrHeader(0x2345);
p.AddXrDlrrBlock(remote_ssrcs);
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
// The parser should note the DLRR report block item, but not flag the packet
// since the RTT is not estimated.
EXPECT_TRUE(rtcp_packet_info_.xr_dlrr_item);
}
TEST_F(RtcpReceiverTest, InjectXrPacketWithMultipleReportBlocks) {
const uint8_t kLossRate = 123;
const uint32_t kSourceSsrc = 0x123456;
std::set<uint32_t> ssrcs;
ssrcs.insert(kSourceSsrc);
rtcp_receiver_->SetSsrcs(kSourceSsrc, ssrcs);
std::vector<uint32_t> remote_ssrcs;
remote_ssrcs.push_back(kSourceSsrc);
PacketBuilder p;
p.AddXrHeader(0x2345);
p.AddXrDlrrBlock(remote_ssrcs);
p.AddXrVoipBlock(kSourceSsrc, kLossRate);
p.AddXrReceiverReferenceTimeBlock(0x10203, 0x40506);
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
EXPECT_EQ(static_cast<unsigned int>(kRtcpXrReceiverReferenceTime +
kRtcpXrVoipMetric),
rtcp_packet_info_.rtcpPacketTypeFlags);
// The parser should note the DLRR report block item, but not flag the packet
// since the RTT is not estimated.
EXPECT_TRUE(rtcp_packet_info_.xr_dlrr_item);
}
TEST_F(RtcpReceiverTest, InjectXrPacketWithUnknownReportBlock) {
const uint8_t kLossRate = 123;
const uint32_t kSourceSsrc = 0x123456;
std::set<uint32_t> ssrcs;
ssrcs.insert(kSourceSsrc);
rtcp_receiver_->SetSsrcs(kSourceSsrc, ssrcs);
std::vector<uint32_t> remote_ssrcs;
remote_ssrcs.push_back(kSourceSsrc);
PacketBuilder p;
p.AddXrHeader(0x2345);
p.AddXrVoipBlock(kSourceSsrc, kLossRate);
p.AddXrUnknownBlock();
p.AddXrReceiverReferenceTimeBlock(0x10203, 0x40506);
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
EXPECT_EQ(static_cast<unsigned int>(kRtcpXrReceiverReferenceTime +
kRtcpXrVoipMetric),
rtcp_packet_info_.rtcpPacketTypeFlags);
}
TEST(RtcpUtilityTest, MidNtp) {
const uint32_t kNtpSec = 0x12345678;
const uint32_t kNtpFrac = 0x23456789;
const uint32_t kNtpMid = 0x56782345;
EXPECT_EQ(kNtpMid, RTCPUtility::MidNtp(kNtpSec, kNtpFrac));
}
TEST_F(RtcpReceiverTest, TestXrRrRttInitiallyFalse) {
uint16_t rtt_ms;
EXPECT_FALSE(rtcp_receiver_->GetAndResetXrRrRtt(&rtt_ms));
}
TEST_F(RtcpReceiverTest, LastReceivedXrReferenceTimeInfoInitiallyFalse) {
RtcpReceiveTimeInfo info;
EXPECT_FALSE(rtcp_receiver_->LastReceivedXrReferenceTimeInfo(&info));
}
TEST_F(RtcpReceiverTest, GetLastReceivedXrReferenceTimeInfo) {
const uint32_t kSenderSsrc = 0x123456;
const uint32_t kNtpSec = 0x10203;
const uint32_t kNtpFrac = 0x40506;
const uint32_t kNtpMid = RTCPUtility::MidNtp(kNtpSec, kNtpFrac);
PacketBuilder p;
p.AddXrHeader(kSenderSsrc);
p.AddXrReceiverReferenceTimeBlock(kNtpSec, kNtpFrac);
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
EXPECT_EQ(kRtcpXrReceiverReferenceTime,
rtcp_packet_info_.rtcpPacketTypeFlags);
RtcpReceiveTimeInfo info;
EXPECT_TRUE(rtcp_receiver_->LastReceivedXrReferenceTimeInfo(&info));
EXPECT_EQ(kSenderSsrc, info.sourceSSRC);
EXPECT_EQ(kNtpMid, info.lastRR);
EXPECT_EQ(0U, info.delaySinceLastRR);
system_clock_.AdvanceTimeMilliseconds(1000);
EXPECT_TRUE(rtcp_receiver_->LastReceivedXrReferenceTimeInfo(&info));
EXPECT_EQ(65536U, info.delaySinceLastRR);
}
TEST_F(RtcpReceiverTest, ReceiveReportTimeout) {
const uint32_t kSenderSsrc = 0x10203;
const uint32_t kSourceSsrc = 0x40506;
const int64_t kRtcpIntervalMs = 1000;
std::set<uint32_t> ssrcs;
ssrcs.insert(kSourceSsrc);
rtcp_receiver_->SetSsrcs(kSourceSsrc, ssrcs);
uint32_t sequence_number = 1234;
system_clock_.AdvanceTimeMilliseconds(3 * kRtcpIntervalMs);
// No RR received, shouldn't trigger a timeout.
EXPECT_FALSE(rtcp_receiver_->RtcpRrTimeout(kRtcpIntervalMs));
EXPECT_FALSE(rtcp_receiver_->RtcpRrSequenceNumberTimeout(kRtcpIntervalMs));
// Add a RR and advance the clock just enough to not trigger a timeout.
PacketBuilder p1;
p1.AddRrPacket(kSenderSsrc, kSourceSsrc, sequence_number, 0, 0, 0);
EXPECT_EQ(0, InjectRtcpPacket(p1.packet(), p1.length()));
system_clock_.AdvanceTimeMilliseconds(3 * kRtcpIntervalMs - 1);
EXPECT_FALSE(rtcp_receiver_->RtcpRrTimeout(kRtcpIntervalMs));
EXPECT_FALSE(rtcp_receiver_->RtcpRrSequenceNumberTimeout(kRtcpIntervalMs));
// Add a RR with the same extended max as the previous RR to trigger a
// sequence number timeout, but not a RR timeout.
PacketBuilder p2;
p2.AddRrPacket(kSenderSsrc, kSourceSsrc, sequence_number, 0, 0, 0);
EXPECT_EQ(0, InjectRtcpPacket(p2.packet(), p2.length()));
system_clock_.AdvanceTimeMilliseconds(2);
EXPECT_FALSE(rtcp_receiver_->RtcpRrTimeout(kRtcpIntervalMs));
EXPECT_TRUE(rtcp_receiver_->RtcpRrSequenceNumberTimeout(kRtcpIntervalMs));
// Advance clock enough to trigger an RR timeout too.
system_clock_.AdvanceTimeMilliseconds(3 * kRtcpIntervalMs);
EXPECT_TRUE(rtcp_receiver_->RtcpRrTimeout(kRtcpIntervalMs));
// We should only get one timeout even though we still haven't received a new
// RR.
EXPECT_FALSE(rtcp_receiver_->RtcpRrTimeout(kRtcpIntervalMs));
EXPECT_FALSE(rtcp_receiver_->RtcpRrSequenceNumberTimeout(kRtcpIntervalMs));
// Add a new RR with increase sequence number to reset timers.
PacketBuilder p3;
sequence_number++;
p2.AddRrPacket(kSenderSsrc, kSourceSsrc, sequence_number, 0, 0, 0);
EXPECT_EQ(0, InjectRtcpPacket(p2.packet(), p2.length()));
EXPECT_FALSE(rtcp_receiver_->RtcpRrTimeout(kRtcpIntervalMs));
EXPECT_FALSE(rtcp_receiver_->RtcpRrSequenceNumberTimeout(kRtcpIntervalMs));
// Verify we can get a timeout again once we've received new RR.
system_clock_.AdvanceTimeMilliseconds(2 * kRtcpIntervalMs);
PacketBuilder p4;
p4.AddRrPacket(kSenderSsrc, kSourceSsrc, sequence_number, 0, 0, 0);
EXPECT_EQ(0, InjectRtcpPacket(p4.packet(), p4.length()));
system_clock_.AdvanceTimeMilliseconds(kRtcpIntervalMs + 1);
EXPECT_FALSE(rtcp_receiver_->RtcpRrTimeout(kRtcpIntervalMs));
EXPECT_TRUE(rtcp_receiver_->RtcpRrSequenceNumberTimeout(kRtcpIntervalMs));
system_clock_.AdvanceTimeMilliseconds(2 * kRtcpIntervalMs);
EXPECT_TRUE(rtcp_receiver_->RtcpRrTimeout(kRtcpIntervalMs));
}
TEST_F(RtcpReceiverTest, TmmbrReceivedWithNoIncomingPacket) {
// This call is expected to fail because no data has arrived.
EXPECT_EQ(-1, rtcp_receiver_->TMMBRReceived(0, 0, NULL));
}
TEST_F(RtcpReceiverTest, TwoReportBlocks) {
const uint32_t kSenderSsrc = 0x10203;
const int kNumSsrcs = 2;
const uint32_t kSourceSsrcs[kNumSsrcs] = {0x40506, 0x50607};
uint32_t sequence_numbers[kNumSsrcs] = {10, 12423};
std::set<uint32_t> ssrcs(kSourceSsrcs, kSourceSsrcs + kNumSsrcs);
rtcp_receiver_->SetSsrcs(kSourceSsrcs[0], ssrcs);
PacketBuilder packet;
std::list<PacketBuilder::ReportBlock> report_blocks;
report_blocks.push_back(PacketBuilder::ReportBlock(
kSourceSsrcs[0], sequence_numbers[0], 10, 5, 0));
report_blocks.push_back(PacketBuilder::ReportBlock(
kSourceSsrcs[1], sequence_numbers[1], 0, 0, 0));
packet.AddRrPacketMultipleReportBlocks(kSenderSsrc, report_blocks);
EXPECT_EQ(0, InjectRtcpPacket(packet.packet(), packet.length()));
ASSERT_EQ(2u, rtcp_packet_info_.report_blocks.size());
EXPECT_EQ(10, rtcp_packet_info_.report_blocks.front().fractionLost);
EXPECT_EQ(0, rtcp_packet_info_.report_blocks.back().fractionLost);
PacketBuilder packet2;
report_blocks.clear();
report_blocks.push_back(PacketBuilder::ReportBlock(
kSourceSsrcs[0], sequence_numbers[0], 0, 0, 0));
report_blocks.push_back(PacketBuilder::ReportBlock(
kSourceSsrcs[1], sequence_numbers[1], 20, 10, 0));
packet2.AddRrPacketMultipleReportBlocks(kSenderSsrc, report_blocks);
EXPECT_EQ(0, InjectRtcpPacket(packet2.packet(), packet2.length()));
ASSERT_EQ(2u, rtcp_packet_info_.report_blocks.size());
EXPECT_EQ(0, rtcp_packet_info_.report_blocks.front().fractionLost);
EXPECT_EQ(20, rtcp_packet_info_.report_blocks.back().fractionLost);
}
TEST_F(RtcpReceiverTest, TmmbrPacketAccepted) {
const uint32_t kMediaFlowSsrc = 0x2040608;
const uint32_t kSenderSsrc = 0x10203;
const uint32_t kMediaRecipientSsrc = 0x101;
std::set<uint32_t> ssrcs;
ssrcs.insert(kMediaFlowSsrc); // Matches "media source" above.
rtcp_receiver_->SetSsrcs(kMediaFlowSsrc, ssrcs);
PacketBuilder p;
p.AddSrPacket(kSenderSsrc);
// TMMBR packet.
p.AddRtcpHeader(205, 3);
p.Add32(kSenderSsrc);
p.Add32(kMediaRecipientSsrc);
p.Add32(kMediaFlowSsrc);
p.AddTmmbrBandwidth(30000, 0, 0); // 30 Kbits/sec bandwidth, no overhead.
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
EXPECT_EQ(1, rtcp_receiver_->TMMBRReceived(0, 0, NULL));
TMMBRSet candidate_set;
candidate_set.VerifyAndAllocateSet(1);
EXPECT_EQ(1, rtcp_receiver_->TMMBRReceived(1, 0, &candidate_set));
EXPECT_LT(0U, candidate_set.Tmmbr(0));
EXPECT_EQ(kMediaRecipientSsrc, candidate_set.Ssrc(0));
}
TEST_F(RtcpReceiverTest, TmmbrPacketNotForUsIgnored) {
const uint32_t kMediaFlowSsrc = 0x2040608;
const uint32_t kSenderSsrc = 0x10203;
const uint32_t kMediaRecipientSsrc = 0x101;
const uint32_t kOtherMediaFlowSsrc = 0x9999;
PacketBuilder p;
p.AddSrPacket(kSenderSsrc);
// TMMBR packet.
p.AddRtcpHeader(205, 3);
p.Add32(kSenderSsrc);
p.Add32(kMediaRecipientSsrc);
p.Add32(kOtherMediaFlowSsrc); // This SSRC is not what we're sending.
p.AddTmmbrBandwidth(30000, 0, 0);
std::set<uint32_t> ssrcs;
ssrcs.insert(kMediaFlowSsrc);
rtcp_receiver_->SetSsrcs(kMediaFlowSsrc, ssrcs);
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
EXPECT_EQ(0, rtcp_receiver_->TMMBRReceived(0, 0, NULL));
}
TEST_F(RtcpReceiverTest, TmmbrPacketZeroRateIgnored) {
const uint32_t kMediaFlowSsrc = 0x2040608;
const uint32_t kSenderSsrc = 0x10203;
const uint32_t kMediaRecipientSsrc = 0x101;
std::set<uint32_t> ssrcs;
ssrcs.insert(kMediaFlowSsrc); // Matches "media source" above.
rtcp_receiver_->SetSsrcs(kMediaFlowSsrc, ssrcs);
PacketBuilder p;
p.AddSrPacket(kSenderSsrc);
// TMMBR packet.
p.AddRtcpHeader(205, 3);
p.Add32(kSenderSsrc);
p.Add32(kMediaRecipientSsrc);
p.Add32(kMediaFlowSsrc);
p.AddTmmbrBandwidth(0, 0, 0); // Rate zero.
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
EXPECT_EQ(0, rtcp_receiver_->TMMBRReceived(0, 0, NULL));
}
TEST_F(RtcpReceiverTest, TmmbrThreeConstraintsTimeOut) {
const uint32_t kMediaFlowSsrc = 0x2040608;
const uint32_t kSenderSsrc = 0x10203;
const uint32_t kMediaRecipientSsrc = 0x101;
std::set<uint32_t> ssrcs;
ssrcs.insert(kMediaFlowSsrc); // Matches "media source" above.
rtcp_receiver_->SetSsrcs(kMediaFlowSsrc, ssrcs);
// Inject 3 packets "from" kMediaRecipientSsrc, Ssrc+1, Ssrc+2.
// The times of arrival are starttime + 0, starttime + 5 and starttime + 10.
for (uint32_t ssrc = kMediaRecipientSsrc;
ssrc < kMediaRecipientSsrc+3; ++ssrc) {
PacketBuilder p;
p.AddSrPacket(kSenderSsrc);
// TMMBR packet.
p.AddRtcpHeader(205, 3);
p.Add32(kSenderSsrc);
p.Add32(ssrc);
p.Add32(kMediaFlowSsrc);
p.AddTmmbrBandwidth(30000, 0, 0); // 30 Kbits/sec bandwidth, no overhead.
EXPECT_EQ(0, InjectRtcpPacket(p.packet(), p.length()));
// 5 seconds between each packet.
system_clock_.AdvanceTimeMilliseconds(5000);
}
// It is now starttime+15.
EXPECT_EQ(3, rtcp_receiver_->TMMBRReceived(0, 0, NULL));
TMMBRSet candidate_set;
candidate_set.VerifyAndAllocateSet(3);
EXPECT_EQ(3, rtcp_receiver_->TMMBRReceived(3, 0, &candidate_set));
EXPECT_LT(0U, candidate_set.Tmmbr(0));
// We expect the timeout to be 25 seconds. Advance the clock by 12
// seconds, timing out the first packet.
system_clock_.AdvanceTimeMilliseconds(12000);
// Odd behaviour: Just counting them does not trigger the timeout.
EXPECT_EQ(3, rtcp_receiver_->TMMBRReceived(0, 0, NULL));
// Odd behaviour: There's only one left after timeout, not 2.
EXPECT_EQ(1, rtcp_receiver_->TMMBRReceived(3, 0, &candidate_set));
EXPECT_EQ(kMediaRecipientSsrc + 2, candidate_set.Ssrc(0));
}
TEST_F(RtcpReceiverTest, Callbacks) {
class RtcpCallbackImpl : public RtcpStatisticsCallback {
public:
RtcpCallbackImpl() : RtcpStatisticsCallback(), ssrc_(0) {}
virtual ~RtcpCallbackImpl() {}
virtual void StatisticsUpdated(const RtcpStatistics& statistics,
uint32_t ssrc) {
stats_ = statistics;
ssrc_ = ssrc;
}
bool Matches(uint32_t ssrc, uint32_t extended_max, uint8_t fraction_loss,
uint32_t cumulative_loss, uint32_t jitter) {
return ssrc_ == ssrc &&
stats_.fraction_lost == fraction_loss &&
stats_.cumulative_lost == cumulative_loss &&
stats_.extended_max_sequence_number == extended_max &&
stats_.jitter == jitter;
}
RtcpStatistics stats_;
uint32_t ssrc_;
} callback;
rtcp_receiver_->RegisterRtcpStatisticsCallback(&callback);
const uint32_t kSenderSsrc = 0x10203;
const uint32_t kSourceSsrc = 0x123456;
const uint8_t fraction_loss = 3;
const uint32_t cumulative_loss = 7;
const uint32_t jitter = 9;
uint32_t sequence_number = 1234;
std::set<uint32_t> ssrcs;
ssrcs.insert(kSourceSsrc);
rtcp_receiver_->SetSsrcs(kSourceSsrc, ssrcs);
// First packet, all numbers should just propagate
PacketBuilder p1;
p1.AddRrPacket(kSenderSsrc, kSourceSsrc, sequence_number,
fraction_loss, cumulative_loss, jitter);
EXPECT_EQ(0, InjectRtcpPacket(p1.packet(), p1.length()));
EXPECT_TRUE(callback.Matches(kSourceSsrc, sequence_number, fraction_loss,
cumulative_loss, jitter));
rtcp_receiver_->RegisterRtcpStatisticsCallback(NULL);
// Add arbitrary numbers, callback should not be called (retain old values)
PacketBuilder p2;
p2.AddRrPacket(kSenderSsrc, kSourceSsrc, sequence_number + 1, 42, 137, 4711);
EXPECT_EQ(0, InjectRtcpPacket(p2.packet(), p2.length()));
EXPECT_TRUE(callback.Matches(kSourceSsrc, sequence_number, fraction_loss,
cumulative_loss, jitter));
}
} // Anonymous namespace
} // namespace webrtc