blob: a6664d71621f141f11d0be8f58db2f0fcbd70326 [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/base/gunit.h"
#include "webrtc/base/stream.h"
namespace rtc {
///////////////////////////////////////////////////////////////////////////////
// TestStream
///////////////////////////////////////////////////////////////////////////////
class TestStream : public StreamInterface {
public:
TestStream() : pos_(0) { }
virtual StreamState GetState() const { return SS_OPEN; }
virtual StreamResult Read(void* buffer, size_t buffer_len,
size_t* read, int* error) {
unsigned char* uc_buffer = static_cast<unsigned char*>(buffer);
for (size_t i = 0; i < buffer_len; ++i) {
uc_buffer[i] = static_cast<unsigned char>(pos_++);
}
if (read)
*read = buffer_len;
return SR_SUCCESS;
}
virtual StreamResult Write(const void* data, size_t data_len,
size_t* written, int* error) {
if (error)
*error = -1;
return SR_ERROR;
}
virtual void Close() { }
virtual bool SetPosition(size_t position) {
pos_ = position;
return true;
}
virtual bool GetPosition(size_t* position) const {
if (position) *position = pos_;
return true;
}
virtual bool GetSize(size_t* size) const {
return false;
}
virtual bool GetAvailable(size_t* size) const {
return false;
}
private:
size_t pos_;
};
bool VerifyTestBuffer(unsigned char* buffer, size_t len,
unsigned char value) {
bool passed = true;
for (size_t i = 0; i < len; ++i) {
if (buffer[i] != value++) {
passed = false;
break;
}
}
// Ensure that we don't pass again without re-writing
memset(buffer, 0, len);
return passed;
}
void SeekTest(StreamInterface* stream, const unsigned char value) {
size_t bytes;
unsigned char buffer[13] = { 0 };
const size_t kBufSize = sizeof(buffer);
EXPECT_EQ(stream->Read(buffer, kBufSize, &bytes, NULL), SR_SUCCESS);
EXPECT_EQ(bytes, kBufSize);
EXPECT_TRUE(VerifyTestBuffer(buffer, kBufSize, value));
EXPECT_TRUE(stream->GetPosition(&bytes));
EXPECT_EQ(13U, bytes);
EXPECT_TRUE(stream->SetPosition(7));
EXPECT_EQ(stream->Read(buffer, kBufSize, &bytes, NULL), SR_SUCCESS);
EXPECT_EQ(bytes, kBufSize);
EXPECT_TRUE(VerifyTestBuffer(buffer, kBufSize, value + 7));
EXPECT_TRUE(stream->GetPosition(&bytes));
EXPECT_EQ(20U, bytes);
}
TEST(StreamSegment, TranslatesPosition) {
TestStream* test = new TestStream;
// Verify behavior of original stream
SeekTest(test, 0);
StreamSegment* segment = new StreamSegment(test);
// Verify behavior of adapted stream (all values offset by 20)
SeekTest(segment, 20);
delete segment;
}
TEST(StreamSegment, SupportsArtificialTermination) {
TestStream* test = new TestStream;
size_t bytes;
unsigned char buffer[5000] = { 0 };
const size_t kBufSize = sizeof(buffer);
{
StreamInterface* stream = test;
// Read a lot of bytes
EXPECT_EQ(stream->Read(buffer, kBufSize, &bytes, NULL), SR_SUCCESS);
EXPECT_EQ(bytes, kBufSize);
EXPECT_TRUE(VerifyTestBuffer(buffer, kBufSize, 0));
// Test seeking far ahead
EXPECT_TRUE(stream->SetPosition(12345));
// Read a bunch more bytes
EXPECT_EQ(stream->Read(buffer, kBufSize, &bytes, NULL), SR_SUCCESS);
EXPECT_EQ(bytes, kBufSize);
EXPECT_TRUE(VerifyTestBuffer(buffer, kBufSize, 12345 % 256));
}
// Create a segment of test stream in range [100,600)
EXPECT_TRUE(test->SetPosition(100));
StreamSegment* segment = new StreamSegment(test, 500);
{
StreamInterface* stream = segment;
EXPECT_EQ(stream->Read(buffer, kBufSize, &bytes, NULL), SR_SUCCESS);
EXPECT_EQ(500U, bytes);
EXPECT_TRUE(VerifyTestBuffer(buffer, 500, 100));
EXPECT_EQ(stream->Read(buffer, kBufSize, &bytes, NULL), SR_EOS);
// Test seeking past "end" of stream
EXPECT_FALSE(stream->SetPosition(12345));
EXPECT_FALSE(stream->SetPosition(501));
// Test seeking to end (edge case)
EXPECT_TRUE(stream->SetPosition(500));
EXPECT_EQ(stream->Read(buffer, kBufSize, &bytes, NULL), SR_EOS);
// Test seeking to start
EXPECT_TRUE(stream->SetPosition(0));
EXPECT_EQ(stream->Read(buffer, kBufSize, &bytes, NULL), SR_SUCCESS);
EXPECT_EQ(500U, bytes);
EXPECT_TRUE(VerifyTestBuffer(buffer, 500, 100));
EXPECT_EQ(stream->Read(buffer, kBufSize, &bytes, NULL), SR_EOS);
}
delete segment;
}
TEST(FifoBufferTest, TestAll) {
const size_t kSize = 16;
const char in[kSize * 2 + 1] = "0123456789ABCDEFGHIJKLMNOPQRSTUV";
char out[kSize * 2];
void* p;
const void* q;
size_t bytes;
FifoBuffer buf(kSize);
StreamInterface* stream = &buf;
// Test assumptions about base state
EXPECT_EQ(SS_OPEN, stream->GetState());
EXPECT_EQ(SR_BLOCK, stream->Read(out, kSize, &bytes, NULL));
EXPECT_TRUE(NULL != stream->GetReadData(&bytes));
EXPECT_EQ((size_t)0, bytes);
stream->ConsumeReadData(0);
EXPECT_TRUE(NULL != stream->GetWriteBuffer(&bytes));
EXPECT_EQ(kSize, bytes);
stream->ConsumeWriteBuffer(0);
// Try a full write
EXPECT_EQ(SR_SUCCESS, stream->Write(in, kSize, &bytes, NULL));
EXPECT_EQ(kSize, bytes);
// Try a write that should block
EXPECT_EQ(SR_BLOCK, stream->Write(in, kSize, &bytes, NULL));
// Try a full read
EXPECT_EQ(SR_SUCCESS, stream->Read(out, kSize, &bytes, NULL));
EXPECT_EQ(kSize, bytes);
EXPECT_EQ(0, memcmp(in, out, kSize));
// Try a read that should block
EXPECT_EQ(SR_BLOCK, stream->Read(out, kSize, &bytes, NULL));
// Try a too-big write
EXPECT_EQ(SR_SUCCESS, stream->Write(in, kSize * 2, &bytes, NULL));
EXPECT_EQ(bytes, kSize);
// Try a too-big read
EXPECT_EQ(SR_SUCCESS, stream->Read(out, kSize * 2, &bytes, NULL));
EXPECT_EQ(kSize, bytes);
EXPECT_EQ(0, memcmp(in, out, kSize));
// Try some small writes and reads
EXPECT_EQ(SR_SUCCESS, stream->Write(in, kSize / 2, &bytes, NULL));
EXPECT_EQ(kSize / 2, bytes);
EXPECT_EQ(SR_SUCCESS, stream->Read(out, kSize / 2, &bytes, NULL));
EXPECT_EQ(kSize / 2, bytes);
EXPECT_EQ(0, memcmp(in, out, kSize / 2));
EXPECT_EQ(SR_SUCCESS, stream->Write(in, kSize / 2, &bytes, NULL));
EXPECT_EQ(kSize / 2, bytes);
EXPECT_EQ(SR_SUCCESS, stream->Write(in, kSize / 2, &bytes, NULL));
EXPECT_EQ(kSize / 2, bytes);
EXPECT_EQ(SR_SUCCESS, stream->Read(out, kSize / 2, &bytes, NULL));
EXPECT_EQ(kSize / 2, bytes);
EXPECT_EQ(0, memcmp(in, out, kSize / 2));
EXPECT_EQ(SR_SUCCESS, stream->Read(out, kSize / 2, &bytes, NULL));
EXPECT_EQ(kSize / 2, bytes);
EXPECT_EQ(0, memcmp(in, out, kSize / 2));
// Try wraparound reads and writes in the following pattern
// WWWWWWWWWWWW.... 0123456789AB....
// RRRRRRRRXXXX.... ........89AB....
// WWWW....XXXXWWWW 4567....89AB0123
// XXXX....RRRRXXXX 4567........0123
// XXXXWWWWWWWWXXXX 4567012345670123
// RRRRXXXXXXXXRRRR ....01234567....
// ....RRRRRRRR.... ................
EXPECT_EQ(SR_SUCCESS, stream->Write(in, kSize * 3 / 4, &bytes, NULL));
EXPECT_EQ(kSize * 3 / 4, bytes);
EXPECT_EQ(SR_SUCCESS, stream->Read(out, kSize / 2, &bytes, NULL));
EXPECT_EQ(kSize / 2, bytes);
EXPECT_EQ(0, memcmp(in, out, kSize / 2));
EXPECT_EQ(SR_SUCCESS, stream->Write(in, kSize / 2, &bytes, NULL));
EXPECT_EQ(kSize / 2, bytes);
EXPECT_EQ(SR_SUCCESS, stream->Read(out, kSize / 4, &bytes, NULL));
EXPECT_EQ(kSize / 4 , bytes);
EXPECT_EQ(0, memcmp(in + kSize / 2, out, kSize / 4));
EXPECT_EQ(SR_SUCCESS, stream->Write(in, kSize / 2, &bytes, NULL));
EXPECT_EQ(kSize / 2, bytes);
EXPECT_EQ(SR_SUCCESS, stream->Read(out, kSize / 2, &bytes, NULL));
EXPECT_EQ(kSize / 2 , bytes);
EXPECT_EQ(0, memcmp(in, out, kSize / 2));
EXPECT_EQ(SR_SUCCESS, stream->Read(out, kSize / 2, &bytes, NULL));
EXPECT_EQ(kSize / 2 , bytes);
EXPECT_EQ(0, memcmp(in, out, kSize / 2));
// Use GetWriteBuffer to reset the read_position for the next tests
stream->GetWriteBuffer(&bytes);
stream->ConsumeWriteBuffer(0);
// Try using GetReadData to do a full read
EXPECT_EQ(SR_SUCCESS, stream->Write(in, kSize, &bytes, NULL));
q = stream->GetReadData(&bytes);
EXPECT_TRUE(NULL != q);
EXPECT_EQ(kSize, bytes);
EXPECT_EQ(0, memcmp(q, in, kSize));
stream->ConsumeReadData(kSize);
EXPECT_EQ(SR_BLOCK, stream->Read(out, kSize, &bytes, NULL));
// Try using GetReadData to do some small reads
EXPECT_EQ(SR_SUCCESS, stream->Write(in, kSize, &bytes, NULL));
q = stream->GetReadData(&bytes);
EXPECT_TRUE(NULL != q);
EXPECT_EQ(kSize, bytes);
EXPECT_EQ(0, memcmp(q, in, kSize / 2));
stream->ConsumeReadData(kSize / 2);
q = stream->GetReadData(&bytes);
EXPECT_TRUE(NULL != q);
EXPECT_EQ(kSize / 2, bytes);
EXPECT_EQ(0, memcmp(q, in + kSize / 2, kSize / 2));
stream->ConsumeReadData(kSize / 2);
EXPECT_EQ(SR_BLOCK, stream->Read(out, kSize, &bytes, NULL));
// Try using GetReadData in a wraparound case
// WWWWWWWWWWWWWWWW 0123456789ABCDEF
// RRRRRRRRRRRRXXXX ............CDEF
// WWWWWWWW....XXXX 01234567....CDEF
// ............RRRR 01234567........
// RRRRRRRR........ ................
EXPECT_EQ(SR_SUCCESS, stream->Write(in, kSize, &bytes, NULL));
EXPECT_EQ(SR_SUCCESS, stream->Read(out, kSize * 3 / 4, &bytes, NULL));
EXPECT_EQ(SR_SUCCESS, stream->Write(in, kSize / 2, &bytes, NULL));
q = stream->GetReadData(&bytes);
EXPECT_TRUE(NULL != q);
EXPECT_EQ(kSize / 4, bytes);
EXPECT_EQ(0, memcmp(q, in + kSize * 3 / 4, kSize / 4));
stream->ConsumeReadData(kSize / 4);
q = stream->GetReadData(&bytes);
EXPECT_TRUE(NULL != q);
EXPECT_EQ(kSize / 2, bytes);
EXPECT_EQ(0, memcmp(q, in, kSize / 2));
stream->ConsumeReadData(kSize / 2);
// Use GetWriteBuffer to reset the read_position for the next tests
stream->GetWriteBuffer(&bytes);
stream->ConsumeWriteBuffer(0);
// Try using GetWriteBuffer to do a full write
p = stream->GetWriteBuffer(&bytes);
EXPECT_TRUE(NULL != p);
EXPECT_EQ(kSize, bytes);
memcpy(p, in, kSize);
stream->ConsumeWriteBuffer(kSize);
EXPECT_EQ(SR_SUCCESS, stream->Read(out, kSize, &bytes, NULL));
EXPECT_EQ(kSize, bytes);
EXPECT_EQ(0, memcmp(in, out, kSize));
// Try using GetWriteBuffer to do some small writes
p = stream->GetWriteBuffer(&bytes);
EXPECT_TRUE(NULL != p);
EXPECT_EQ(kSize, bytes);
memcpy(p, in, kSize / 2);
stream->ConsumeWriteBuffer(kSize / 2);
p = stream->GetWriteBuffer(&bytes);
EXPECT_TRUE(NULL != p);
EXPECT_EQ(kSize / 2, bytes);
memcpy(p, in + kSize / 2, kSize / 2);
stream->ConsumeWriteBuffer(kSize / 2);
EXPECT_EQ(SR_SUCCESS, stream->Read(out, kSize, &bytes, NULL));
EXPECT_EQ(kSize, bytes);
EXPECT_EQ(0, memcmp(in, out, kSize));
// Try using GetWriteBuffer in a wraparound case
// WWWWWWWWWWWW.... 0123456789AB....
// RRRRRRRRXXXX.... ........89AB....
// ........XXXXWWWW ........89AB0123
// WWWW....XXXXXXXX 4567....89AB0123
// RRRR....RRRRRRRR ................
EXPECT_EQ(SR_SUCCESS, stream->Write(in, kSize * 3 / 4, &bytes, NULL));
EXPECT_EQ(SR_SUCCESS, stream->Read(out, kSize / 2, &bytes, NULL));
p = stream->GetWriteBuffer(&bytes);
EXPECT_TRUE(NULL != p);
EXPECT_EQ(kSize / 4, bytes);
memcpy(p, in, kSize / 4);
stream->ConsumeWriteBuffer(kSize / 4);
p = stream->GetWriteBuffer(&bytes);
EXPECT_TRUE(NULL != p);
EXPECT_EQ(kSize / 2, bytes);
memcpy(p, in + kSize / 4, kSize / 4);
stream->ConsumeWriteBuffer(kSize / 4);
EXPECT_EQ(SR_SUCCESS, stream->Read(out, kSize * 3 / 4, &bytes, NULL));
EXPECT_EQ(kSize * 3 / 4, bytes);
EXPECT_EQ(0, memcmp(in + kSize / 2, out, kSize / 4));
EXPECT_EQ(0, memcmp(in, out + kSize / 4, kSize / 4));
// Check that the stream is now empty
EXPECT_EQ(SR_BLOCK, stream->Read(out, kSize, &bytes, NULL));
// Try growing the buffer
EXPECT_EQ(SR_SUCCESS, stream->Write(in, kSize, &bytes, NULL));
EXPECT_EQ(kSize, bytes);
EXPECT_TRUE(buf.SetCapacity(kSize * 2));
EXPECT_EQ(SR_SUCCESS, stream->Write(in + kSize, kSize, &bytes, NULL));
EXPECT_EQ(kSize, bytes);
EXPECT_EQ(SR_SUCCESS, stream->Read(out, kSize * 2, &bytes, NULL));
EXPECT_EQ(kSize * 2, bytes);
EXPECT_EQ(0, memcmp(in, out, kSize * 2));
// Try shrinking the buffer
EXPECT_EQ(SR_SUCCESS, stream->Write(in, kSize, &bytes, NULL));
EXPECT_EQ(kSize, bytes);
EXPECT_TRUE(buf.SetCapacity(kSize));
EXPECT_EQ(SR_BLOCK, stream->Write(in, kSize, &bytes, NULL));
EXPECT_EQ(SR_SUCCESS, stream->Read(out, kSize, &bytes, NULL));
EXPECT_EQ(kSize, bytes);
EXPECT_EQ(0, memcmp(in, out, kSize));
// Write to the stream, close it, read the remaining bytes
EXPECT_EQ(SR_SUCCESS, stream->Write(in, kSize / 2, &bytes, NULL));
stream->Close();
EXPECT_EQ(SS_CLOSED, stream->GetState());
EXPECT_EQ(SR_EOS, stream->Write(in, kSize / 2, &bytes, NULL));
EXPECT_EQ(SR_SUCCESS, stream->Read(out, kSize / 2, &bytes, NULL));
EXPECT_EQ(0, memcmp(in, out, kSize / 2));
EXPECT_EQ(SR_EOS, stream->Read(out, kSize / 2, &bytes, NULL));
}
TEST(FifoBufferTest, FullBufferCheck) {
FifoBuffer buff(10);
buff.ConsumeWriteBuffer(10);
size_t free;
EXPECT_TRUE(buff.GetWriteBuffer(&free) != NULL);
EXPECT_EQ(0U, free);
}
TEST(FifoBufferTest, WriteOffsetAndReadOffset) {
const size_t kSize = 16;
const char in[kSize * 2 + 1] = "0123456789ABCDEFGHIJKLMNOPQRSTUV";
char out[kSize * 2];
FifoBuffer buf(kSize);
// Write 14 bytes.
EXPECT_EQ(SR_SUCCESS, buf.Write(in, 14, NULL, NULL));
// Make sure data is in |buf|.
size_t buffered;
EXPECT_TRUE(buf.GetBuffered(&buffered));
EXPECT_EQ(14u, buffered);
// Read 10 bytes.
buf.ConsumeReadData(10);
// There should be now 12 bytes of available space.
size_t remaining;
EXPECT_TRUE(buf.GetWriteRemaining(&remaining));
EXPECT_EQ(12u, remaining);
// Write at offset 12, this should fail.
EXPECT_EQ(SR_BLOCK, buf.WriteOffset(in, 10, 12, NULL));
// Write 8 bytes at offset 4, this wraps around the buffer.
EXPECT_EQ(SR_SUCCESS, buf.WriteOffset(in, 8, 4, NULL));
// Number of available space remains the same until we call
// ConsumeWriteBuffer().
EXPECT_TRUE(buf.GetWriteRemaining(&remaining));
EXPECT_EQ(12u, remaining);
buf.ConsumeWriteBuffer(12);
// There's 4 bytes bypassed and 4 bytes no read so skip them and verify the
// 8 bytes written.
size_t read;
EXPECT_EQ(SR_SUCCESS, buf.ReadOffset(out, 8, 8, &read));
EXPECT_EQ(8u, read);
EXPECT_EQ(0, memcmp(out, in, 8));
// There should still be 16 bytes available for reading.
EXPECT_TRUE(buf.GetBuffered(&buffered));
EXPECT_EQ(16u, buffered);
// Read at offset 16, this should fail since we don't have that much data.
EXPECT_EQ(SR_BLOCK, buf.ReadOffset(out, 10, 16, NULL));
}
TEST(AsyncWriteTest, TestWrite) {
FifoBuffer* buf = new FifoBuffer(100);
AsyncWriteStream stream(buf, Thread::Current());
EXPECT_EQ(SS_OPEN, stream.GetState());
// Write "abc". Will go to the logging thread, which is the current
// thread.
stream.Write("abc", 3, NULL, NULL);
char bytes[100];
size_t count;
// Messages on the thread's queue haven't been processed, so "abc"
// hasn't been written yet.
EXPECT_NE(SR_SUCCESS, buf->ReadOffset(&bytes, 3, 0, &count));
// Now we process the messages on the thread's queue, so "abc" has
// been written.
EXPECT_TRUE_WAIT(SR_SUCCESS == buf->ReadOffset(&bytes, 3, 0, &count), 10);
EXPECT_EQ(3u, count);
EXPECT_EQ(0, memcmp(bytes, "abc", 3));
// Write "def". Will go to the logging thread, which is the current
// thread.
stream.Write("d", 1, &count, NULL);
stream.Write("e", 1, &count, NULL);
stream.Write("f", 1, &count, NULL);
EXPECT_EQ(1u, count);
// Messages on the thread's queue haven't been processed, so "def"
// hasn't been written yet.
EXPECT_NE(SR_SUCCESS, buf->ReadOffset(&bytes, 3, 3, &count));
// Flush() causes the message to be processed, so "def" has now been
// written.
stream.Flush();
EXPECT_EQ(SR_SUCCESS, buf->ReadOffset(&bytes, 3, 3, &count));
EXPECT_EQ(3u, count);
EXPECT_EQ(0, memcmp(bytes, "def", 3));
// Write "xyz". Will go to the logging thread, which is the current
// thread.
stream.Write("xyz", 3, &count, NULL);
EXPECT_EQ(3u, count);
// Messages on the thread's queue haven't been processed, so "xyz"
// hasn't been written yet.
EXPECT_NE(SR_SUCCESS, buf->ReadOffset(&bytes, 3, 6, &count));
// Close() causes the message to be processed, so "xyz" has now been
// written.
stream.Close();
EXPECT_EQ(SR_SUCCESS, buf->ReadOffset(&bytes, 3, 6, &count));
EXPECT_EQ(3u, count);
EXPECT_EQ(0, memcmp(bytes, "xyz", 3));
EXPECT_EQ(SS_CLOSED, stream.GetState());
// Is't closed, so the writes should fail.
EXPECT_EQ(SR_ERROR, stream.Write("000", 3, NULL, NULL));
}
} // namespace rtc