blob: f646babda52b3916dce8ede5a095f912b53d8dcf [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkAnnotation.h"
#include "SkBitmapHeap.h"
#include "SkCanvas.h"
#include "SkColorFilter.h"
#include "SkData.h"
#include "SkDrawLooper.h"
#include "SkDevice.h"
#include "SkGPipe.h"
#include "SkGPipePriv.h"
#include "SkImageFilter.h"
#include "SkMaskFilter.h"
#include "SkOrderedWriteBuffer.h"
#include "SkPaint.h"
#include "SkPathEffect.h"
#include "SkPictureFlat.h"
#include "SkRasterizer.h"
#include "SkRRect.h"
#include "SkShader.h"
#include "SkStream.h"
#include "SkTSearch.h"
#include "SkTypeface.h"
#include "SkWriter32.h"
enum {
kSizeOfFlatRRect = sizeof(SkRect) + 4 * sizeof(SkVector)
};
static bool isCrossProcess(uint32_t flags) {
return SkToBool(flags & SkGPipeWriter::kCrossProcess_Flag);
}
static SkFlattenable* get_paintflat(const SkPaint& paint, unsigned paintFlat) {
SkASSERT(paintFlat < kCount_PaintFlats);
switch (paintFlat) {
case kColorFilter_PaintFlat: return paint.getColorFilter();
case kDrawLooper_PaintFlat: return paint.getLooper();
case kMaskFilter_PaintFlat: return paint.getMaskFilter();
case kPathEffect_PaintFlat: return paint.getPathEffect();
case kRasterizer_PaintFlat: return paint.getRasterizer();
case kShader_PaintFlat: return paint.getShader();
case kImageFilter_PaintFlat: return paint.getImageFilter();
case kXfermode_PaintFlat: return paint.getXfermode();
case kAnnotation_PaintFlat: return paint.getAnnotation();
}
SkDEBUGFAIL("never gets here");
return NULL;
}
static size_t writeTypeface(SkWriter32* writer, SkTypeface* typeface) {
SkASSERT(typeface);
SkDynamicMemoryWStream stream;
typeface->serialize(&stream);
size_t size = stream.getOffset();
if (writer) {
writer->write32(size);
SkAutoDataUnref data(stream.copyToData());
writer->writePad(data->data(), size);
}
return 4 + SkAlign4(size);
}
///////////////////////////////////////////////////////////////////////////////
class FlattenableHeap : public SkFlatController {
public:
FlattenableHeap(int numFlatsToKeep, SkNamedFactorySet* fset, bool isCrossProcess)
: fNumFlatsToKeep(numFlatsToKeep) {
SkASSERT((isCrossProcess && fset != NULL) || (!isCrossProcess && NULL == fset));
if (isCrossProcess) {
this->setNamedFactorySet(fset);
this->setWriteBufferFlags(SkFlattenableWriteBuffer::kCrossProcess_Flag);
}
}
~FlattenableHeap() {
fPointers.freeAll();
}
virtual void* allocThrow(size_t bytes) SK_OVERRIDE;
virtual void unalloc(void* ptr) SK_OVERRIDE;
void setBitmapStorage(SkBitmapHeap* heap) {
this->setBitmapHeap(heap);
}
const SkFlatData* flatToReplace() const;
// Mark an SkFlatData as one that should not be returned by flatToReplace.
// Takes the result of SkFlatData::index() as its parameter.
void markFlatForKeeping(int index) {
*fFlatsThatMustBeKept.append() = index;
}
void markAllFlatsSafeToDelete() {
fFlatsThatMustBeKept.reset();
}
private:
// Keep track of the indices (i.e. the result of SkFlatData::index()) of
// flats that must be kept, since they are on the current paint.
SkTDArray<int> fFlatsThatMustBeKept;
SkTDArray<void*> fPointers;
const int fNumFlatsToKeep;
};
void FlattenableHeap::unalloc(void* ptr) {
int indexToRemove = fPointers.rfind(ptr);
if (indexToRemove >= 0) {
sk_free(ptr);
fPointers.remove(indexToRemove);
}
}
void* FlattenableHeap::allocThrow(size_t bytes) {
void* ptr = sk_malloc_throw(bytes);
*fPointers.append() = ptr;
return ptr;
}
const SkFlatData* FlattenableHeap::flatToReplace() const {
// First, determine whether we should replace one.
if (fPointers.count() > fNumFlatsToKeep) {
// Look through the flattenable heap.
// TODO: Return the LRU flat.
for (int i = 0; i < fPointers.count(); i++) {
SkFlatData* potential = (SkFlatData*)fPointers[i];
// Make sure that it is not one that must be kept.
bool mustKeep = false;
for (int j = 0; j < fFlatsThatMustBeKept.count(); j++) {
if (potential->index() == fFlatsThatMustBeKept[j]) {
mustKeep = true;
break;
}
}
if (!mustKeep) {
return potential;
}
}
}
return NULL;
}
///////////////////////////////////////////////////////////////////////////////
class FlatDictionary : public SkFlatDictionary<SkFlattenable> {
public:
FlatDictionary(FlattenableHeap* heap)
: SkFlatDictionary<SkFlattenable>(heap) {
fFlattenProc = &flattenFlattenableProc;
// No need to define fUnflattenProc since the writer will never
// unflatten the data.
}
static void flattenFlattenableProc(SkOrderedWriteBuffer& buffer,
const void* obj) {
buffer.writeFlattenable((SkFlattenable*)obj);
}
};
///////////////////////////////////////////////////////////////////////////////
class SkGPipeCanvas : public SkCanvas {
public:
SkGPipeCanvas(SkGPipeController*, SkWriter32*, uint32_t flags,
uint32_t width, uint32_t height);
virtual ~SkGPipeCanvas();
void finish() {
if (!fDone) {
if (this->needOpBytes()) {
this->writeOp(kDone_DrawOp);
this->doNotify();
if (shouldFlattenBitmaps(fFlags)) {
// In this case, a BitmapShuttle is reffed by the SkBitmapHeap
// and refs this canvas. Unref the SkBitmapHeap to end the
// circular reference. When shouldFlattenBitmaps is false,
// there is no circular reference, so the SkBitmapHeap can be
// safely unreffed in the destructor.
fBitmapHeap->unref();
// This eliminates a similar circular reference (Canvas owns
// the FlattenableHeap which holds a ref to the SkBitmapHeap).
fFlattenableHeap.setBitmapStorage(NULL);
fBitmapHeap = NULL;
}
}
fDone = true;
}
}
void flushRecording(bool detachCurrentBlock);
size_t freeMemoryIfPossible(size_t bytesToFree);
size_t storageAllocatedForRecording() {
return (NULL == fBitmapHeap) ? 0 : fBitmapHeap->bytesAllocated();
}
// overrides from SkCanvas
virtual int save(SaveFlags) SK_OVERRIDE;
virtual int saveLayer(const SkRect* bounds, const SkPaint*,
SaveFlags) SK_OVERRIDE;
virtual void restore() SK_OVERRIDE;
virtual bool isDrawingToLayer() const SK_OVERRIDE;
virtual bool translate(SkScalar dx, SkScalar dy) SK_OVERRIDE;
virtual bool scale(SkScalar sx, SkScalar sy) SK_OVERRIDE;
virtual bool rotate(SkScalar degrees) SK_OVERRIDE;
virtual bool skew(SkScalar sx, SkScalar sy) SK_OVERRIDE;
virtual bool concat(const SkMatrix& matrix) SK_OVERRIDE;
virtual void setMatrix(const SkMatrix& matrix) SK_OVERRIDE;
virtual bool clipRect(const SkRect&, SkRegion::Op op, bool doAntiAlias = false) SK_OVERRIDE;
virtual bool clipRRect(const SkRRect&, SkRegion::Op op, bool doAntiAlias = false) SK_OVERRIDE;
virtual bool clipPath(const SkPath& path, SkRegion::Op op,
bool doAntiAlias = false) SK_OVERRIDE;
virtual bool clipRegion(const SkRegion& region, SkRegion::Op op) SK_OVERRIDE;
virtual void clear(SkColor) SK_OVERRIDE;
virtual void drawPaint(const SkPaint& paint) SK_OVERRIDE;
virtual void drawPoints(PointMode, size_t count, const SkPoint pts[],
const SkPaint&) SK_OVERRIDE;
virtual void drawOval(const SkRect&, const SkPaint&) SK_OVERRIDE;
virtual void drawRect(const SkRect& rect, const SkPaint&) SK_OVERRIDE;
virtual void drawRRect(const SkRRect&, const SkPaint&) SK_OVERRIDE;
virtual void drawPath(const SkPath& path, const SkPaint&) SK_OVERRIDE;
virtual void drawBitmap(const SkBitmap&, SkScalar left, SkScalar top,
const SkPaint*) SK_OVERRIDE;
virtual void drawBitmapRectToRect(const SkBitmap&, const SkRect* src,
const SkRect& dst, const SkPaint* paint,
DrawBitmapRectFlags flags) SK_OVERRIDE;
virtual void drawBitmapMatrix(const SkBitmap&, const SkMatrix&,
const SkPaint*) SK_OVERRIDE;
virtual void drawBitmapNine(const SkBitmap& bitmap, const SkIRect& center,
const SkRect& dst, const SkPaint* paint = NULL) SK_OVERRIDE;
virtual void drawSprite(const SkBitmap&, int left, int top,
const SkPaint*) SK_OVERRIDE;
virtual void drawText(const void* text, size_t byteLength, SkScalar x,
SkScalar y, const SkPaint&) SK_OVERRIDE;
virtual void drawPosText(const void* text, size_t byteLength,
const SkPoint pos[], const SkPaint&) SK_OVERRIDE;
virtual void drawPosTextH(const void* text, size_t byteLength,
const SkScalar xpos[], SkScalar constY,
const SkPaint&) SK_OVERRIDE;
virtual void drawTextOnPath(const void* text, size_t byteLength,
const SkPath& path, const SkMatrix* matrix,
const SkPaint&) SK_OVERRIDE;
virtual void drawPicture(SkPicture& picture) SK_OVERRIDE;
virtual void drawVertices(VertexMode, int vertexCount,
const SkPoint vertices[], const SkPoint texs[],
const SkColor colors[], SkXfermode*,
const uint16_t indices[], int indexCount,
const SkPaint&) SK_OVERRIDE;
virtual void drawData(const void*, size_t) SK_OVERRIDE;
virtual void beginCommentGroup(const char* description) SK_OVERRIDE;
virtual void addComment(const char* kywd, const char* value) SK_OVERRIDE;
virtual void endCommentGroup() SK_OVERRIDE;
/**
* Flatten an SkBitmap to send to the reader, where it will be referenced
* according to slot.
*/
bool shuttleBitmap(const SkBitmap&, int32_t slot);
private:
enum {
kNoSaveLayer = -1,
};
SkNamedFactorySet* fFactorySet;
int fFirstSaveLayerStackLevel;
SkBitmapHeap* fBitmapHeap;
SkGPipeController* fController;
SkWriter32& fWriter;
size_t fBlockSize; // amount allocated for writer
size_t fBytesNotified;
bool fDone;
const uint32_t fFlags;
SkRefCntSet fTypefaceSet;
uint32_t getTypefaceID(SkTypeface*);
inline void writeOp(DrawOps op, unsigned flags, unsigned data) {
fWriter.write32(DrawOp_packOpFlagData(op, flags, data));
}
inline void writeOp(DrawOps op) {
fWriter.write32(DrawOp_packOpFlagData(op, 0, 0));
}
bool needOpBytes(size_t size = 0);
inline void doNotify() {
if (!fDone) {
size_t bytes = fWriter.size() - fBytesNotified;
if (bytes > 0) {
fController->notifyWritten(bytes);
fBytesNotified += bytes;
}
}
}
// Should be called after any calls to an SkFlatDictionary::findAndReplace
// if a new SkFlatData was added when in cross process mode
void flattenFactoryNames();
FlattenableHeap fFlattenableHeap;
FlatDictionary fFlatDictionary;
int fCurrFlatIndex[kCount_PaintFlats];
int flattenToIndex(SkFlattenable* obj, PaintFlats);
// Common code used by drawBitmap*. Behaves differently depending on the
// type of SkBitmapHeap being used, which is determined by the flags used.
bool commonDrawBitmap(const SkBitmap& bm, DrawOps op, unsigned flags,
size_t opBytesNeeded, const SkPaint* paint);
SkPaint fPaint;
void writePaint(const SkPaint&);
class AutoPipeNotify {
public:
AutoPipeNotify(SkGPipeCanvas* canvas) : fCanvas(canvas) {}
~AutoPipeNotify() { fCanvas->doNotify(); }
private:
SkGPipeCanvas* fCanvas;
};
friend class AutoPipeNotify;
typedef SkCanvas INHERITED;
};
void SkGPipeCanvas::flattenFactoryNames() {
const char* name;
while ((name = fFactorySet->getNextAddedFactoryName()) != NULL) {
size_t len = strlen(name);
if (this->needOpBytes(len)) {
this->writeOp(kDef_Factory_DrawOp);
fWriter.writeString(name, len);
}
}
}
bool SkGPipeCanvas::shuttleBitmap(const SkBitmap& bm, int32_t slot) {
SkASSERT(shouldFlattenBitmaps(fFlags));
SkOrderedWriteBuffer buffer(1024);
buffer.setNamedFactoryRecorder(fFactorySet);
buffer.writeBitmap(bm);
this->flattenFactoryNames();
uint32_t size = buffer.size();
if (this->needOpBytes(size)) {
this->writeOp(kDef_Bitmap_DrawOp, 0, slot);
void* dst = static_cast<void*>(fWriter.reserve(size));
buffer.writeToMemory(dst);
return true;
}
return false;
}
// return 0 for NULL (or unflattenable obj), or index-base-1
// return ~(index-base-1) if an old flattenable was replaced
int SkGPipeCanvas::flattenToIndex(SkFlattenable* obj, PaintFlats paintflat) {
SkASSERT(!fDone && fBitmapHeap != NULL);
if (NULL == obj) {
return 0;
}
fBitmapHeap->deferAddingOwners();
bool added, replaced;
const SkFlatData* flat = fFlatDictionary.findAndReplace(*obj, fFlattenableHeap.flatToReplace(),
&added, &replaced);
fBitmapHeap->endAddingOwnersDeferral(added);
int index = flat->index();
if (added) {
if (isCrossProcess(fFlags)) {
this->flattenFactoryNames();
}
size_t flatSize = flat->flatSize();
if (this->needOpBytes(flatSize)) {
this->writeOp(kDef_Flattenable_DrawOp, paintflat, index);
fWriter.write(flat->data(), flatSize);
}
}
if (replaced) {
index = ~index;
}
return index;
}
///////////////////////////////////////////////////////////////////////////////
/**
* If SkBitmaps are to be flattened to send to the reader, this class is
* provided to the SkBitmapHeap to tell the SkGPipeCanvas to do so.
*/
class BitmapShuttle : public SkBitmapHeap::ExternalStorage {
public:
BitmapShuttle(SkGPipeCanvas*);
~BitmapShuttle();
virtual bool insert(const SkBitmap& bitmap, int32_t slot) SK_OVERRIDE;
private:
SkGPipeCanvas* fCanvas;
};
///////////////////////////////////////////////////////////////////////////////
#define MIN_BLOCK_SIZE (16 * 1024)
#define BITMAPS_TO_KEEP 5
#define FLATTENABLES_TO_KEEP 10
SkGPipeCanvas::SkGPipeCanvas(SkGPipeController* controller,
SkWriter32* writer, uint32_t flags,
uint32_t width, uint32_t height)
: fFactorySet(isCrossProcess(flags) ? SkNEW(SkNamedFactorySet) : NULL)
, fWriter(*writer)
, fFlags(flags)
, fFlattenableHeap(FLATTENABLES_TO_KEEP, fFactorySet, isCrossProcess(flags))
, fFlatDictionary(&fFlattenableHeap) {
fController = controller;
fDone = false;
fBlockSize = 0; // need first block from controller
fBytesNotified = 0;
fFirstSaveLayerStackLevel = kNoSaveLayer;
sk_bzero(fCurrFlatIndex, sizeof(fCurrFlatIndex));
// we need a device to limit our clip
// We don't allocate pixels for the bitmap
SkBitmap bitmap;
bitmap.setConfig(SkBitmap::kARGB_8888_Config, width, height);
SkDevice* device = SkNEW_ARGS(SkDevice, (bitmap));
this->setDevice(device)->unref();
// Tell the reader the appropriate flags to use.
if (this->needOpBytes()) {
this->writeOp(kReportFlags_DrawOp, fFlags, 0);
}
if (shouldFlattenBitmaps(flags)) {
BitmapShuttle* shuttle = SkNEW_ARGS(BitmapShuttle, (this));
fBitmapHeap = SkNEW_ARGS(SkBitmapHeap, (shuttle, BITMAPS_TO_KEEP));
shuttle->unref();
} else {
fBitmapHeap = SkNEW_ARGS(SkBitmapHeap,
(BITMAPS_TO_KEEP, controller->numberOfReaders()));
if (this->needOpBytes(sizeof(void*))) {
this->writeOp(kShareBitmapHeap_DrawOp);
fWriter.writePtr(static_cast<void*>(fBitmapHeap));
}
}
fFlattenableHeap.setBitmapStorage(fBitmapHeap);
this->doNotify();
}
SkGPipeCanvas::~SkGPipeCanvas() {
this->finish();
SkSafeUnref(fFactorySet);
SkSafeUnref(fBitmapHeap);
}
bool SkGPipeCanvas::needOpBytes(size_t needed) {
if (fDone) {
return false;
}
needed += 4; // size of DrawOp atom
if (fWriter.size() + needed > fBlockSize) {
// Before we wipe out any data that has already been written, read it
// out.
this->doNotify();
size_t blockSize = SkMax32(MIN_BLOCK_SIZE, needed);
void* block = fController->requestBlock(blockSize, &fBlockSize);
if (NULL == block) {
fDone = true;
return false;
}
SkASSERT(SkIsAlign4(fBlockSize));
fWriter.reset(block, fBlockSize);
fBytesNotified = 0;
}
return true;
}
uint32_t SkGPipeCanvas::getTypefaceID(SkTypeface* face) {
uint32_t id = 0; // 0 means default/null typeface
if (face) {
id = fTypefaceSet.find(face);
if (0 == id) {
id = fTypefaceSet.add(face);
size_t size = writeTypeface(NULL, face);
if (this->needOpBytes(size)) {
this->writeOp(kDef_Typeface_DrawOp);
writeTypeface(&fWriter, face);
}
}
}
return id;
}
///////////////////////////////////////////////////////////////////////////////
#define NOTIFY_SETUP(canvas) \
AutoPipeNotify apn(canvas)
int SkGPipeCanvas::save(SaveFlags flags) {
NOTIFY_SETUP(this);
if (this->needOpBytes()) {
this->writeOp(kSave_DrawOp, 0, flags);
}
return this->INHERITED::save(flags);
}
int SkGPipeCanvas::saveLayer(const SkRect* bounds, const SkPaint* paint,
SaveFlags saveFlags) {
NOTIFY_SETUP(this);
size_t size = 0;
unsigned opFlags = 0;
if (bounds) {
opFlags |= kSaveLayer_HasBounds_DrawOpFlag;
size += sizeof(SkRect);
}
if (paint) {
opFlags |= kSaveLayer_HasPaint_DrawOpFlag;
this->writePaint(*paint);
}
if (this->needOpBytes(size)) {
this->writeOp(kSaveLayer_DrawOp, opFlags, saveFlags);
if (bounds) {
fWriter.writeRect(*bounds);
}
}
if (kNoSaveLayer == fFirstSaveLayerStackLevel){
fFirstSaveLayerStackLevel = this->getSaveCount();
}
// we just pass on the save, so we don't create a layer
return this->INHERITED::save(saveFlags);
}
void SkGPipeCanvas::restore() {
NOTIFY_SETUP(this);
if (this->needOpBytes()) {
this->writeOp(kRestore_DrawOp);
}
this->INHERITED::restore();
if (this->getSaveCount() == fFirstSaveLayerStackLevel){
fFirstSaveLayerStackLevel = kNoSaveLayer;
}
}
bool SkGPipeCanvas::isDrawingToLayer() const {
return kNoSaveLayer != fFirstSaveLayerStackLevel;
}
bool SkGPipeCanvas::translate(SkScalar dx, SkScalar dy) {
if (dx || dy) {
NOTIFY_SETUP(this);
if (this->needOpBytes(2 * sizeof(SkScalar))) {
this->writeOp(kTranslate_DrawOp);
fWriter.writeScalar(dx);
fWriter.writeScalar(dy);
}
}
return this->INHERITED::translate(dx, dy);
}
bool SkGPipeCanvas::scale(SkScalar sx, SkScalar sy) {
if (sx || sy) {
NOTIFY_SETUP(this);
if (this->needOpBytes(2 * sizeof(SkScalar))) {
this->writeOp(kScale_DrawOp);
fWriter.writeScalar(sx);
fWriter.writeScalar(sy);
}
}
return this->INHERITED::scale(sx, sy);
}
bool SkGPipeCanvas::rotate(SkScalar degrees) {
if (degrees) {
NOTIFY_SETUP(this);
if (this->needOpBytes(sizeof(SkScalar))) {
this->writeOp(kRotate_DrawOp);
fWriter.writeScalar(degrees);
}
}
return this->INHERITED::rotate(degrees);
}
bool SkGPipeCanvas::skew(SkScalar sx, SkScalar sy) {
if (sx || sy) {
NOTIFY_SETUP(this);
if (this->needOpBytes(2 * sizeof(SkScalar))) {
this->writeOp(kSkew_DrawOp);
fWriter.writeScalar(sx);
fWriter.writeScalar(sy);
}
}
return this->INHERITED::skew(sx, sy);
}
bool SkGPipeCanvas::concat(const SkMatrix& matrix) {
if (!matrix.isIdentity()) {
NOTIFY_SETUP(this);
if (this->needOpBytes(matrix.writeToMemory(NULL))) {
this->writeOp(kConcat_DrawOp);
fWriter.writeMatrix(matrix);
}
}
return this->INHERITED::concat(matrix);
}
void SkGPipeCanvas::setMatrix(const SkMatrix& matrix) {
NOTIFY_SETUP(this);
if (this->needOpBytes(matrix.writeToMemory(NULL))) {
this->writeOp(kSetMatrix_DrawOp);
fWriter.writeMatrix(matrix);
}
this->INHERITED::setMatrix(matrix);
}
bool SkGPipeCanvas::clipRect(const SkRect& rect, SkRegion::Op rgnOp,
bool doAntiAlias) {
NOTIFY_SETUP(this);
if (this->needOpBytes(sizeof(SkRect))) {
unsigned flags = doAntiAlias & kClip_HasAntiAlias_DrawOpFlag;
this->writeOp(kClipRect_DrawOp, flags, rgnOp);
fWriter.writeRect(rect);
}
return this->INHERITED::clipRect(rect, rgnOp, doAntiAlias);
}
bool SkGPipeCanvas::clipRRect(const SkRRect& rrect, SkRegion::Op rgnOp,
bool doAntiAlias) {
NOTIFY_SETUP(this);
if (this->needOpBytes(kSizeOfFlatRRect)) {
unsigned flags = doAntiAlias & kClip_HasAntiAlias_DrawOpFlag;
this->writeOp(kClipRRect_DrawOp, flags, rgnOp);
fWriter.writeRRect(rrect);
}
return this->INHERITED::clipRRect(rrect, rgnOp, doAntiAlias);
}
bool SkGPipeCanvas::clipPath(const SkPath& path, SkRegion::Op rgnOp,
bool doAntiAlias) {
NOTIFY_SETUP(this);
if (this->needOpBytes(path.writeToMemory(NULL))) {
unsigned flags = doAntiAlias & kClip_HasAntiAlias_DrawOpFlag;
this->writeOp(kClipPath_DrawOp, flags, rgnOp);
fWriter.writePath(path);
}
// we just pass on the bounds of the path
return this->INHERITED::clipRect(path.getBounds(), rgnOp, doAntiAlias);
}
bool SkGPipeCanvas::clipRegion(const SkRegion& region, SkRegion::Op rgnOp) {
NOTIFY_SETUP(this);
if (this->needOpBytes(region.writeToMemory(NULL))) {
this->writeOp(kClipRegion_DrawOp, 0, rgnOp);
fWriter.writeRegion(region);
}
return this->INHERITED::clipRegion(region, rgnOp);
}
///////////////////////////////////////////////////////////////////////////////
void SkGPipeCanvas::clear(SkColor color) {
NOTIFY_SETUP(this);
unsigned flags = 0;
if (color) {
flags |= kClear_HasColor_DrawOpFlag;
}
if (this->needOpBytes(sizeof(SkColor))) {
this->writeOp(kDrawClear_DrawOp, flags, 0);
if (color) {
fWriter.write32(color);
}
}
}
void SkGPipeCanvas::drawPaint(const SkPaint& paint) {
NOTIFY_SETUP(this);
this->writePaint(paint);
if (this->needOpBytes()) {
this->writeOp(kDrawPaint_DrawOp);
}
}
void SkGPipeCanvas::drawPoints(PointMode mode, size_t count,
const SkPoint pts[], const SkPaint& paint) {
if (count) {
NOTIFY_SETUP(this);
this->writePaint(paint);
if (this->needOpBytes(4 + count * sizeof(SkPoint))) {
this->writeOp(kDrawPoints_DrawOp, mode, 0);
fWriter.write32(count);
fWriter.write(pts, count * sizeof(SkPoint));
}
}
}
void SkGPipeCanvas::drawOval(const SkRect& rect, const SkPaint& paint) {
NOTIFY_SETUP(this);
this->writePaint(paint);
if (this->needOpBytes(sizeof(SkRect))) {
this->writeOp(kDrawOval_DrawOp);
fWriter.writeRect(rect);
}
}
void SkGPipeCanvas::drawRect(const SkRect& rect, const SkPaint& paint) {
NOTIFY_SETUP(this);
this->writePaint(paint);
if (this->needOpBytes(sizeof(SkRect))) {
this->writeOp(kDrawRect_DrawOp);
fWriter.writeRect(rect);
}
}
void SkGPipeCanvas::drawRRect(const SkRRect& rrect, const SkPaint& paint) {
NOTIFY_SETUP(this);
this->writePaint(paint);
if (this->needOpBytes(kSizeOfFlatRRect)) {
this->writeOp(kDrawRRect_DrawOp);
fWriter.writeRRect(rrect);
}
}
void SkGPipeCanvas::drawPath(const SkPath& path, const SkPaint& paint) {
NOTIFY_SETUP(this);
this->writePaint(paint);
if (this->needOpBytes(path.writeToMemory(NULL))) {
this->writeOp(kDrawPath_DrawOp);
fWriter.writePath(path);
}
}
bool SkGPipeCanvas::commonDrawBitmap(const SkBitmap& bm, DrawOps op,
unsigned flags,
size_t opBytesNeeded,
const SkPaint* paint) {
if (paint != NULL) {
flags |= kDrawBitmap_HasPaint_DrawOpFlag;
this->writePaint(*paint);
}
if (this->needOpBytes(opBytesNeeded)) {
SkASSERT(fBitmapHeap != NULL);
int32_t bitmapIndex = fBitmapHeap->insert(bm);
if (SkBitmapHeap::INVALID_SLOT == bitmapIndex) {
return false;
}
this->writeOp(op, flags, bitmapIndex);
return true;
}
return false;
}
void SkGPipeCanvas::drawBitmap(const SkBitmap& bm, SkScalar left, SkScalar top,
const SkPaint* paint) {
NOTIFY_SETUP(this);
size_t opBytesNeeded = sizeof(SkScalar) * 2;
if (this->commonDrawBitmap(bm, kDrawBitmap_DrawOp, 0, opBytesNeeded, paint)) {
fWriter.writeScalar(left);
fWriter.writeScalar(top);
}
}
void SkGPipeCanvas::drawBitmapRectToRect(const SkBitmap& bm, const SkRect* src,
const SkRect& dst, const SkPaint* paint,
DrawBitmapRectFlags dbmrFlags) {
NOTIFY_SETUP(this);
size_t opBytesNeeded = sizeof(SkRect);
bool hasSrc = src != NULL;
unsigned flags;
if (hasSrc) {
flags = kDrawBitmap_HasSrcRect_DrawOpFlag;
opBytesNeeded += sizeof(int32_t) * 4;
} else {
flags = 0;
}
if (dbmrFlags & kBleed_DrawBitmapRectFlag) {
flags |= kDrawBitmap_Bleed_DrawOpFlag;
}
if (this->commonDrawBitmap(bm, kDrawBitmapRectToRect_DrawOp, flags, opBytesNeeded, paint)) {
if (hasSrc) {
fWriter.writeRect(*src);
}
fWriter.writeRect(dst);
}
}
void SkGPipeCanvas::drawBitmapMatrix(const SkBitmap& bm, const SkMatrix& matrix,
const SkPaint* paint) {
NOTIFY_SETUP(this);
size_t opBytesNeeded = matrix.writeToMemory(NULL);
if (this->commonDrawBitmap(bm, kDrawBitmapMatrix_DrawOp, 0, opBytesNeeded, paint)) {
fWriter.writeMatrix(matrix);
}
}
void SkGPipeCanvas::drawBitmapNine(const SkBitmap& bm, const SkIRect& center,
const SkRect& dst, const SkPaint* paint) {
NOTIFY_SETUP(this);
size_t opBytesNeeded = sizeof(int32_t) * 4 + sizeof(SkRect);
if (this->commonDrawBitmap(bm, kDrawBitmapNine_DrawOp, 0, opBytesNeeded, paint)) {
fWriter.write32(center.fLeft);
fWriter.write32(center.fTop);
fWriter.write32(center.fRight);
fWriter.write32(center.fBottom);
fWriter.writeRect(dst);
}
}
void SkGPipeCanvas::drawSprite(const SkBitmap& bm, int left, int top,
const SkPaint* paint) {
NOTIFY_SETUP(this);
size_t opBytesNeeded = sizeof(int32_t) * 2;
if (this->commonDrawBitmap(bm, kDrawSprite_DrawOp, 0, opBytesNeeded, paint)) {
fWriter.write32(left);
fWriter.write32(top);
}
}
void SkGPipeCanvas::drawText(const void* text, size_t byteLength, SkScalar x,
SkScalar y, const SkPaint& paint) {
if (byteLength) {
NOTIFY_SETUP(this);
this->writePaint(paint);
if (this->needOpBytes(4 + SkAlign4(byteLength) + 2 * sizeof(SkScalar))) {
this->writeOp(kDrawText_DrawOp);
fWriter.write32(byteLength);
fWriter.writePad(text, byteLength);
fWriter.writeScalar(x);
fWriter.writeScalar(y);
}
}
}
void SkGPipeCanvas::drawPosText(const void* text, size_t byteLength,
const SkPoint pos[], const SkPaint& paint) {
if (byteLength) {
NOTIFY_SETUP(this);
this->writePaint(paint);
int count = paint.textToGlyphs(text, byteLength, NULL);
if (this->needOpBytes(4 + SkAlign4(byteLength) + 4 + count * sizeof(SkPoint))) {
this->writeOp(kDrawPosText_DrawOp);
fWriter.write32(byteLength);
fWriter.writePad(text, byteLength);
fWriter.write32(count);
fWriter.write(pos, count * sizeof(SkPoint));
}
}
}
void SkGPipeCanvas::drawPosTextH(const void* text, size_t byteLength,
const SkScalar xpos[], SkScalar constY,
const SkPaint& paint) {
if (byteLength) {
NOTIFY_SETUP(this);
this->writePaint(paint);
int count = paint.textToGlyphs(text, byteLength, NULL);
if (this->needOpBytes(4 + SkAlign4(byteLength) + 4 + count * sizeof(SkScalar) + 4)) {
this->writeOp(kDrawPosTextH_DrawOp);
fWriter.write32(byteLength);
fWriter.writePad(text, byteLength);
fWriter.write32(count);
fWriter.write(xpos, count * sizeof(SkScalar));
fWriter.writeScalar(constY);
}
}
}
void SkGPipeCanvas::drawTextOnPath(const void* text, size_t byteLength,
const SkPath& path, const SkMatrix* matrix,
const SkPaint& paint) {
if (byteLength) {
NOTIFY_SETUP(this);
unsigned flags = 0;
size_t size = 4 + SkAlign4(byteLength) + path.writeToMemory(NULL);
if (matrix) {
flags |= kDrawTextOnPath_HasMatrix_DrawOpFlag;
size += matrix->writeToMemory(NULL);
}
this->writePaint(paint);
if (this->needOpBytes(size)) {
this->writeOp(kDrawTextOnPath_DrawOp, flags, 0);
fWriter.write32(byteLength);
fWriter.writePad(text, byteLength);
fWriter.writePath(path);
if (matrix) {
fWriter.writeMatrix(*matrix);
}
}
}
}
void SkGPipeCanvas::drawPicture(SkPicture& picture) {
// we want to playback the picture into individual draw calls
this->INHERITED::drawPicture(picture);
}
void SkGPipeCanvas::drawVertices(VertexMode mode, int vertexCount,
const SkPoint vertices[], const SkPoint texs[],
const SkColor colors[], SkXfermode*,
const uint16_t indices[], int indexCount,
const SkPaint& paint) {
if (0 == vertexCount) {
return;
}
NOTIFY_SETUP(this);
size_t size = 4 + vertexCount * sizeof(SkPoint);
this->writePaint(paint);
unsigned flags = 0;
if (texs) {
flags |= kDrawVertices_HasTexs_DrawOpFlag;
size += vertexCount * sizeof(SkPoint);
}
if (colors) {
flags |= kDrawVertices_HasColors_DrawOpFlag;
size += vertexCount * sizeof(SkColor);
}
if (indices && indexCount > 0) {
flags |= kDrawVertices_HasIndices_DrawOpFlag;
size += 4 + SkAlign4(indexCount * sizeof(uint16_t));
}
if (this->needOpBytes(size)) {
this->writeOp(kDrawVertices_DrawOp, flags, 0);
fWriter.write32(mode);
fWriter.write32(vertexCount);
fWriter.write(vertices, vertexCount * sizeof(SkPoint));
if (texs) {
fWriter.write(texs, vertexCount * sizeof(SkPoint));
}
if (colors) {
fWriter.write(colors, vertexCount * sizeof(SkColor));
}
// TODO: flatten xfermode
if (indices && indexCount > 0) {
fWriter.write32(indexCount);
fWriter.writePad(indices, indexCount * sizeof(uint16_t));
}
}
}
void SkGPipeCanvas::drawData(const void* ptr, size_t size) {
if (size && ptr) {
NOTIFY_SETUP(this);
unsigned data = 0;
if (size < (1 << DRAWOPS_DATA_BITS)) {
data = (unsigned)size;
}
if (this->needOpBytes(4 + SkAlign4(size))) {
this->writeOp(kDrawData_DrawOp, 0, data);
if (0 == data) {
fWriter.write32(size);
}
fWriter.writePad(ptr, size);
}
}
}
void SkGPipeCanvas::beginCommentGroup(const char* description) {
// ignore for now
}
void SkGPipeCanvas::addComment(const char* kywd, const char* value) {
// ignore for now
}
void SkGPipeCanvas::endCommentGroup() {
// ignore for now
}
void SkGPipeCanvas::flushRecording(bool detachCurrentBlock) {
doNotify();
if (detachCurrentBlock) {
// force a new block to be requested for the next recorded command
fBlockSize = 0;
}
}
size_t SkGPipeCanvas::freeMemoryIfPossible(size_t bytesToFree) {
return (NULL == fBitmapHeap) ? 0 : fBitmapHeap->freeMemoryIfPossible(bytesToFree);
}
///////////////////////////////////////////////////////////////////////////////
template <typename T> uint32_t castToU32(T value) {
union {
T fSrc;
uint32_t fDst;
} data;
data.fSrc = value;
return data.fDst;
}
void SkGPipeCanvas::writePaint(const SkPaint& paint) {
if (fDone) {
return;
}
SkPaint& base = fPaint;
uint32_t storage[32];
uint32_t* ptr = storage;
if (base.getFlags() != paint.getFlags()) {
*ptr++ = PaintOp_packOpData(kFlags_PaintOp, paint.getFlags());
base.setFlags(paint.getFlags());
}
if (base.getColor() != paint.getColor()) {
*ptr++ = PaintOp_packOp(kColor_PaintOp);
*ptr++ = paint.getColor();
base.setColor(paint.getColor());
}
if (base.getStyle() != paint.getStyle()) {
*ptr++ = PaintOp_packOpData(kStyle_PaintOp, paint.getStyle());
base.setStyle(paint.getStyle());
}
if (base.getStrokeJoin() != paint.getStrokeJoin()) {
*ptr++ = PaintOp_packOpData(kJoin_PaintOp, paint.getStrokeJoin());
base.setStrokeJoin(paint.getStrokeJoin());
}
if (base.getStrokeCap() != paint.getStrokeCap()) {
*ptr++ = PaintOp_packOpData(kCap_PaintOp, paint.getStrokeCap());
base.setStrokeCap(paint.getStrokeCap());
}
if (base.getStrokeWidth() != paint.getStrokeWidth()) {
*ptr++ = PaintOp_packOp(kWidth_PaintOp);
*ptr++ = castToU32(paint.getStrokeWidth());
base.setStrokeWidth(paint.getStrokeWidth());
}
if (base.getStrokeMiter() != paint.getStrokeMiter()) {
*ptr++ = PaintOp_packOp(kMiter_PaintOp);
*ptr++ = castToU32(paint.getStrokeMiter());
base.setStrokeMiter(paint.getStrokeMiter());
}
if (base.getTextEncoding() != paint.getTextEncoding()) {
*ptr++ = PaintOp_packOpData(kEncoding_PaintOp, paint.getTextEncoding());
base.setTextEncoding(paint.getTextEncoding());
}
if (base.getHinting() != paint.getHinting()) {
*ptr++ = PaintOp_packOpData(kHinting_PaintOp, paint.getHinting());
base.setHinting(paint.getHinting());
}
if (base.getTextAlign() != paint.getTextAlign()) {
*ptr++ = PaintOp_packOpData(kAlign_PaintOp, paint.getTextAlign());
base.setTextAlign(paint.getTextAlign());
}
if (base.getTextSize() != paint.getTextSize()) {
*ptr++ = PaintOp_packOp(kTextSize_PaintOp);
*ptr++ = castToU32(paint.getTextSize());
base.setTextSize(paint.getTextSize());
}
if (base.getTextScaleX() != paint.getTextScaleX()) {
*ptr++ = PaintOp_packOp(kTextScaleX_PaintOp);
*ptr++ = castToU32(paint.getTextScaleX());
base.setTextScaleX(paint.getTextScaleX());
}
if (base.getTextSkewX() != paint.getTextSkewX()) {
*ptr++ = PaintOp_packOp(kTextSkewX_PaintOp);
*ptr++ = castToU32(paint.getTextSkewX());
base.setTextSkewX(paint.getTextSkewX());
}
if (!SkTypeface::Equal(base.getTypeface(), paint.getTypeface())) {
if (isCrossProcess(fFlags)) {
uint32_t id = this->getTypefaceID(paint.getTypeface());
*ptr++ = PaintOp_packOpData(kTypeface_PaintOp, id);
} else if (this->needOpBytes(sizeof(void*))) {
// Add to the set for ref counting.
fTypefaceSet.add(paint.getTypeface());
// It is safe to write the typeface to the stream before the rest
// of the paint unless we ever send a kReset_PaintOp, which we
// currently never do.
this->writeOp(kSetTypeface_DrawOp);
fWriter.writePtr(paint.getTypeface());
}
base.setTypeface(paint.getTypeface());
}
// This is a new paint, so all old flats can be safely purged, if necessary.
fFlattenableHeap.markAllFlatsSafeToDelete();
for (int i = 0; i < kCount_PaintFlats; i++) {
int index = this->flattenToIndex(get_paintflat(paint, i), (PaintFlats)i);
bool replaced = index < 0;
if (replaced) {
index = ~index;
}
// Store the index of any flat that needs to be kept. 0 means no flat.
if (index > 0) {
fFlattenableHeap.markFlatForKeeping(index);
}
SkASSERT(index >= 0 && index <= fFlatDictionary.count());
if (index != fCurrFlatIndex[i] || replaced) {
*ptr++ = PaintOp_packOpFlagData(kFlatIndex_PaintOp, i, index);
fCurrFlatIndex[i] = index;
}
}
size_t size = (char*)ptr - (char*)storage;
if (size && this->needOpBytes(size)) {
this->writeOp(kPaintOp_DrawOp, 0, size);
fWriter.write(storage, size);
for (size_t i = 0; i < size/4; i++) {
// SkDebugf("[%d] %08X\n", i, storage[i]);
}
}
}
///////////////////////////////////////////////////////////////////////////////
#include "SkGPipe.h"
SkGPipeController::~SkGPipeController() {
SkSafeUnref(fCanvas);
}
void SkGPipeController::setCanvas(SkGPipeCanvas* canvas) {
SkRefCnt_SafeAssign(fCanvas, canvas);
}
///////////////////////////////////////////////////////////////////////////////
SkGPipeWriter::SkGPipeWriter()
: fWriter(0) {
fCanvas = NULL;
}
SkGPipeWriter::~SkGPipeWriter() {
this->endRecording();
}
SkCanvas* SkGPipeWriter::startRecording(SkGPipeController* controller, uint32_t flags,
uint32_t width, uint32_t height) {
if (NULL == fCanvas) {
fWriter.reset(NULL, 0);
fCanvas = SkNEW_ARGS(SkGPipeCanvas, (controller, &fWriter, flags, width, height));
}
controller->setCanvas(fCanvas);
return fCanvas;
}
void SkGPipeWriter::endRecording() {
if (fCanvas) {
fCanvas->finish();
fCanvas->unref();
fCanvas = NULL;
}
}
void SkGPipeWriter::flushRecording(bool detachCurrentBlock) {
if (fCanvas) {
fCanvas->flushRecording(detachCurrentBlock);
}
}
size_t SkGPipeWriter::freeMemoryIfPossible(size_t bytesToFree) {
if (fCanvas) {
return fCanvas->freeMemoryIfPossible(bytesToFree);
}
return 0;
}
size_t SkGPipeWriter::storageAllocatedForRecording() const {
return NULL == fCanvas ? 0 : fCanvas->storageAllocatedForRecording();
}
///////////////////////////////////////////////////////////////////////////////
BitmapShuttle::BitmapShuttle(SkGPipeCanvas* canvas) {
SkASSERT(canvas != NULL);
fCanvas = canvas;
fCanvas->ref();
}
BitmapShuttle::~BitmapShuttle() {
fCanvas->unref();
}
bool BitmapShuttle::insert(const SkBitmap& bitmap, int32_t slot) {
return fCanvas->shuttleBitmap(bitmap, slot);
}