blob: b0435928eb1b520e9f356778c909d744af9bece4 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGLProgram.h"
#include "GrAllocator.h"
#include "GrEffect.h"
#include "GrCoordTransform.h"
#include "GrDrawEffect.h"
#include "GrGLEffect.h"
#include "GrGpuGL.h"
#include "GrGLShaderVar.h"
#include "GrGLSL.h"
#include "SkXfermode.h"
SK_DEFINE_INST_COUNT(GrGLProgram)
#define GL_CALL(X) GR_GL_CALL(fGpu->glInterface(), X)
#define GL_CALL_RET(R, X) GR_GL_CALL_RET(fGpu->glInterface(), R, X)
GrGLProgram* GrGLProgram::Create(GrGpuGL* gpu,
const GrGLProgramDesc& desc,
const GrEffectStage* colorStages[],
const GrEffectStage* coverageStages[]) {
GrGLProgram* program = SkNEW_ARGS(GrGLProgram, (gpu, desc, colorStages, coverageStages));
if (!program->succeeded()) {
delete program;
program = NULL;
}
return program;
}
GrGLProgram::GrGLProgram(GrGpuGL* gpu,
const GrGLProgramDesc& desc,
const GrEffectStage* colorStages[],
const GrEffectStage* coverageStages[])
: fGpu(gpu)
, fUniformManager(gpu)
, fHasVertexShader(false)
, fNumTexCoordSets(0) {
fDesc = desc;
fProgramID = 0;
fDstCopyTexUnit = -1;
fColor = GrColor_ILLEGAL;
fColorFilterColor = GrColor_ILLEGAL;
if (fDesc.getHeader().fHasVertexCode ||
!fGpu->glCaps().fixedFunctionSupport() ||
!fGpu->glCaps().pathRenderingSupport()) {
GrGLFullShaderBuilder fullBuilder(fGpu, fUniformManager, fDesc);
if (this->genProgram(&fullBuilder, colorStages, coverageStages)) {
fUniformHandles.fViewMatrixUni = fullBuilder.getViewMatrixUniform();
fHasVertexShader = true;
}
} else {
GrGLFragmentOnlyShaderBuilder fragmentOnlyBuilder(fGpu, fUniformManager, fDesc);
if (this->genProgram(&fragmentOnlyBuilder, colorStages, coverageStages)) {
fNumTexCoordSets = fragmentOnlyBuilder.getNumTexCoordSets();
}
}
}
GrGLProgram::~GrGLProgram() {
if (fProgramID) {
GL_CALL(DeleteProgram(fProgramID));
}
}
void GrGLProgram::abandon() {
fProgramID = 0;
}
void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff,
GrBlendCoeff* dstCoeff) const {
switch (fDesc.getHeader().fCoverageOutput) {
case GrGLProgramDesc::kModulate_CoverageOutput:
break;
// The prog will write a coverage value to the secondary
// output and the dst is blended by one minus that value.
case GrGLProgramDesc::kSecondaryCoverage_CoverageOutput:
case GrGLProgramDesc::kSecondaryCoverageISA_CoverageOutput:
case GrGLProgramDesc::kSecondaryCoverageISC_CoverageOutput:
*dstCoeff = (GrBlendCoeff)GrGpu::kIS2C_GrBlendCoeff;
break;
case GrGLProgramDesc::kCombineWithDst_CoverageOutput:
// We should only have set this if the blend was specified as (1, 0)
SkASSERT(kOne_GrBlendCoeff == *srcCoeff && kZero_GrBlendCoeff == *dstCoeff);
break;
default:
GrCrash("Unexpected coverage output");
break;
}
}
namespace {
// given two blend coefficients determine whether the src
// and/or dst computation can be omitted.
inline void need_blend_inputs(SkXfermode::Coeff srcCoeff,
SkXfermode::Coeff dstCoeff,
bool* needSrcValue,
bool* needDstValue) {
if (SkXfermode::kZero_Coeff == srcCoeff) {
switch (dstCoeff) {
// these all read the src
case SkXfermode::kSC_Coeff:
case SkXfermode::kISC_Coeff:
case SkXfermode::kSA_Coeff:
case SkXfermode::kISA_Coeff:
*needSrcValue = true;
break;
default:
*needSrcValue = false;
break;
}
} else {
*needSrcValue = true;
}
if (SkXfermode::kZero_Coeff == dstCoeff) {
switch (srcCoeff) {
// these all read the dst
case SkXfermode::kDC_Coeff:
case SkXfermode::kIDC_Coeff:
case SkXfermode::kDA_Coeff:
case SkXfermode::kIDA_Coeff:
*needDstValue = true;
break;
default:
*needDstValue = false;
break;
}
} else {
*needDstValue = true;
}
}
/**
* Create a blend_coeff * value string to be used in shader code. Sets empty
* string if result is trivially zero.
*/
inline void blend_term_string(SkString* str, SkXfermode::Coeff coeff,
const char* src, const char* dst,
const char* value) {
switch (coeff) {
case SkXfermode::kZero_Coeff: /** 0 */
*str = "";
break;
case SkXfermode::kOne_Coeff: /** 1 */
*str = value;
break;
case SkXfermode::kSC_Coeff:
str->printf("(%s * %s)", src, value);
break;
case SkXfermode::kISC_Coeff:
str->printf("((vec4(1) - %s) * %s)", src, value);
break;
case SkXfermode::kDC_Coeff:
str->printf("(%s * %s)", dst, value);
break;
case SkXfermode::kIDC_Coeff:
str->printf("((vec4(1) - %s) * %s)", dst, value);
break;
case SkXfermode::kSA_Coeff: /** src alpha */
str->printf("(%s.a * %s)", src, value);
break;
case SkXfermode::kISA_Coeff: /** inverse src alpha (i.e. 1 - sa) */
str->printf("((1.0 - %s.a) * %s)", src, value);
break;
case SkXfermode::kDA_Coeff: /** dst alpha */
str->printf("(%s.a * %s)", dst, value);
break;
case SkXfermode::kIDA_Coeff: /** inverse dst alpha (i.e. 1 - da) */
str->printf("((1.0 - %s.a) * %s)", dst, value);
break;
default:
GrCrash("Unexpected xfer coeff.");
break;
}
}
/**
* Adds a line to the fragment shader code which modifies the color by
* the specified color filter.
*/
void add_color_filter(GrGLShaderBuilder* builder,
const char * outputVar,
SkXfermode::Coeff uniformCoeff,
SkXfermode::Coeff colorCoeff,
const char* filterColor,
const char* inColor) {
SkString colorStr, constStr;
blend_term_string(&colorStr, colorCoeff, filterColor, inColor, inColor);
blend_term_string(&constStr, uniformCoeff, filterColor, inColor, filterColor);
GrGLSLExpr<4> sum;
if (colorStr.isEmpty() && constStr.isEmpty()) {
sum = GrGLSLExpr<4>(0);
} else if (colorStr.isEmpty()) {
sum = constStr;
} else if (constStr.isEmpty()) {
sum = colorStr;
} else {
sum = GrGLSLExpr<4>(colorStr) + GrGLSLExpr<4>(constStr);
}
builder->fsCodeAppendf("\t%s = %s;\n", outputVar, sum.c_str());
}
}
bool GrGLProgram::genProgram(GrGLShaderBuilder* builder,
const GrEffectStage* colorStages[],
const GrEffectStage* coverageStages[]) {
SkASSERT(0 == fProgramID);
const GrGLProgramDesc::KeyHeader& header = fDesc.getHeader();
// incoming color to current stage being processed.
GrGLSLExpr<4> inColor = builder->getInputColor();
// Get the coeffs for the Mode-based color filter, determine if color is needed.
SkXfermode::Coeff colorCoeff;
SkXfermode::Coeff filterColorCoeff;
SkAssertResult(
SkXfermode::ModeAsCoeff(header.fColorFilterXfermode,
&filterColorCoeff,
&colorCoeff));
bool needColor, needFilterColor;
need_blend_inputs(filterColorCoeff, colorCoeff, &needFilterColor, &needColor);
fColorEffects.reset(
builder->createAndEmitEffects(colorStages,
fDesc.effectKeys(),
needColor ? fDesc.numColorEffects() : 0,
&inColor));
// Insert the color filter. This will soon be replaced by a color effect.
if (SkXfermode::kDst_Mode != header.fColorFilterXfermode) {
const char* colorFilterColorUniName = NULL;
fUniformHandles.fColorFilterUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kVec4f_GrSLType, "FilterColor",
&colorFilterColorUniName);
builder->fsCodeAppend("\tvec4 filteredColor;\n");
add_color_filter(builder, "filteredColor", filterColorCoeff,
colorCoeff, colorFilterColorUniName, inColor.c_str());
inColor = "filteredColor";
}
///////////////////////////////////////////////////////////////////////////
// compute the partial coverage
GrGLSLExpr<4> inCoverage = builder->getInputCoverage();
fCoverageEffects.reset(
builder->createAndEmitEffects(coverageStages,
fDesc.getEffectKeys() + fDesc.numColorEffects(),
fDesc.numCoverageEffects(),
&inCoverage));
// discard if coverage is zero
if (header.fDiscardIfZeroCoverage && !inCoverage.isOnes()) {
if (inCoverage.isZeros()) {
// This is unfortunate.
builder->fsCodeAppend("\tdiscard;\n");
} else {
builder->fsCodeAppendf("\tif (all(lessThanEqual(%s, vec4(0.0)))) {\n\t\tdiscard;\n\t}\n",
inCoverage.c_str());
}
}
if (GrGLProgramDesc::CoverageOutputUsesSecondaryOutput(header.fCoverageOutput)) {
const char* secondaryOutputName = builder->enableSecondaryOutput();
// default coeff to ones for kCoverage_DualSrcOutput
GrGLSLExpr<4> coeff(1);
if (GrGLProgramDesc::kSecondaryCoverageISA_CoverageOutput == header.fCoverageOutput) {
// Get (1-A) into coeff
coeff = GrGLSLExprCast4(GrGLSLExpr<1>(1) - GrGLSLExprExtractAlpha(inColor));
} else if (GrGLProgramDesc::kSecondaryCoverageISC_CoverageOutput == header.fCoverageOutput) {
// Get (1-RGBA) into coeff
coeff = GrGLSLExpr<4>(1) - inColor;
}
// Get coeff * coverage into modulate and then write that to the dual source output.
builder->fsCodeAppendf("\t%s = %s;\n", secondaryOutputName, (coeff * inCoverage).c_str());
}
///////////////////////////////////////////////////////////////////////////
// combine color and coverage as frag color
// Get "color * coverage" into fragColor
GrGLSLExpr<4> fragColor = inColor * inCoverage;
// Now tack on "+(1-coverage)dst onto the frag color if we were asked to do so.
if (GrGLProgramDesc::kCombineWithDst_CoverageOutput == header.fCoverageOutput) {
GrGLSLExpr<4> dstCoeff = GrGLSLExpr<4>(1) - inCoverage;
GrGLSLExpr<4> dstContribution = dstCoeff * GrGLSLExpr<4>(builder->dstColor());
fragColor = fragColor + dstContribution;
}
builder->fsCodeAppendf("\t%s = %s;\n", builder->getColorOutputName(), fragColor.c_str());
if (!builder->finish(&fProgramID)) {
return false;
}
fUniformHandles.fRTHeightUni = builder->getRTHeightUniform();
fUniformHandles.fDstCopyTopLeftUni = builder->getDstCopyTopLeftUniform();
fUniformHandles.fDstCopyScaleUni = builder->getDstCopyScaleUniform();
fUniformHandles.fColorUni = builder->getColorUniform();
fUniformHandles.fCoverageUni = builder->getCoverageUniform();
fUniformHandles.fDstCopySamplerUni = builder->getDstCopySamplerUniform();
// This must be called after we set fDstCopySamplerUni above.
this->initSamplerUniforms();
return true;
}
void GrGLProgram::initSamplerUniforms() {
GL_CALL(UseProgram(fProgramID));
GrGLint texUnitIdx = 0;
if (fUniformHandles.fDstCopySamplerUni.isValid()) {
fUniformManager.setSampler(fUniformHandles.fDstCopySamplerUni, texUnitIdx);
fDstCopyTexUnit = texUnitIdx++;
}
fColorEffects->initSamplers(fUniformManager, &texUnitIdx);
fCoverageEffects->initSamplers(fUniformManager, &texUnitIdx);
}
///////////////////////////////////////////////////////////////////////////////
void GrGLProgram::setData(GrDrawState::BlendOptFlags blendOpts,
const GrEffectStage* colorStages[],
const GrEffectStage* coverageStages[],
const GrDeviceCoordTexture* dstCopy,
SharedGLState* sharedState) {
const GrDrawState& drawState = fGpu->getDrawState();
GrColor color;
GrColor coverage;
if (blendOpts & GrDrawState::kEmitTransBlack_BlendOptFlag) {
color = 0;
coverage = 0;
} else if (blendOpts & GrDrawState::kEmitCoverage_BlendOptFlag) {
color = 0xffffffff;
coverage = drawState.getCoverage();
} else {
color = drawState.getColor();
coverage = drawState.getCoverage();
}
this->setColor(drawState, color, sharedState);
this->setCoverage(drawState, coverage, sharedState);
this->setMatrixAndRenderTargetHeight(drawState);
// Setup the SkXfermode::Mode-based colorfilter uniform if necessary
if (fUniformHandles.fColorFilterUni.isValid() &&
fColorFilterColor != drawState.getColorFilterColor()) {
GrGLfloat c[4];
GrColorToRGBAFloat(drawState.getColorFilterColor(), c);
fUniformManager.set4fv(fUniformHandles.fColorFilterUni, 0, 1, c);
fColorFilterColor = drawState.getColorFilterColor();
}
if (NULL != dstCopy) {
if (fUniformHandles.fDstCopyTopLeftUni.isValid()) {
fUniformManager.set2f(fUniformHandles.fDstCopyTopLeftUni,
static_cast<GrGLfloat>(dstCopy->offset().fX),
static_cast<GrGLfloat>(dstCopy->offset().fY));
fUniformManager.set2f(fUniformHandles.fDstCopyScaleUni,
1.f / dstCopy->texture()->width(),
1.f / dstCopy->texture()->height());
GrGLTexture* texture = static_cast<GrGLTexture*>(dstCopy->texture());
static GrTextureParams kParams; // the default is clamp, nearest filtering.
fGpu->bindTexture(fDstCopyTexUnit, kParams, texture);
} else {
SkASSERT(!fUniformHandles.fDstCopyScaleUni.isValid());
SkASSERT(!fUniformHandles.fDstCopySamplerUni.isValid());
}
} else {
SkASSERT(!fUniformHandles.fDstCopyTopLeftUni.isValid());
SkASSERT(!fUniformHandles.fDstCopyScaleUni.isValid());
SkASSERT(!fUniformHandles.fDstCopySamplerUni.isValid());
}
fColorEffects->setData(fGpu, fUniformManager, colorStages);
fCoverageEffects->setData(fGpu, fUniformManager, coverageStages);
if (!fHasVertexShader) {
fGpu->disableUnusedTexGen(fNumTexCoordSets);
}
}
void GrGLProgram::setColor(const GrDrawState& drawState,
GrColor color,
SharedGLState* sharedState) {
const GrGLProgramDesc::KeyHeader& header = fDesc.getHeader();
if (!drawState.hasColorVertexAttribute()) {
switch (header.fColorInput) {
case GrGLProgramDesc::kAttribute_ColorInput:
SkASSERT(-1 != header.fColorAttributeIndex);
if (sharedState->fConstAttribColor != color ||
sharedState->fConstAttribColorIndex != header.fColorAttributeIndex) {
// OpenGL ES only supports the float varieties of glVertexAttrib
GrGLfloat c[4];
GrColorToRGBAFloat(color, c);
GL_CALL(VertexAttrib4fv(header.fColorAttributeIndex, c));
sharedState->fConstAttribColor = color;
sharedState->fConstAttribColorIndex = header.fColorAttributeIndex;
}
break;
case GrGLProgramDesc::kUniform_ColorInput:
if (fColor != color) {
// OpenGL ES doesn't support unsigned byte varieties of glUniform
GrGLfloat c[4];
GrColorToRGBAFloat(color, c);
fUniformManager.set4fv(fUniformHandles.fColorUni, 0, 1, c);
fColor = color;
}
sharedState->fConstAttribColorIndex = -1;
break;
case GrGLProgramDesc::kSolidWhite_ColorInput:
case GrGLProgramDesc::kTransBlack_ColorInput:
sharedState->fConstAttribColorIndex = -1;
break;
default:
GrCrash("Unknown color type.");
}
} else {
sharedState->fConstAttribColorIndex = -1;
}
}
void GrGLProgram::setCoverage(const GrDrawState& drawState,
GrColor coverage,
SharedGLState* sharedState) {
const GrGLProgramDesc::KeyHeader& header = fDesc.getHeader();
if (!drawState.hasCoverageVertexAttribute()) {
switch (header.fCoverageInput) {
case GrGLProgramDesc::kAttribute_ColorInput:
if (sharedState->fConstAttribCoverage != coverage ||
sharedState->fConstAttribCoverageIndex != header.fCoverageAttributeIndex) {
// OpenGL ES only supports the float varieties of glVertexAttrib
GrGLfloat c[4];
GrColorToRGBAFloat(coverage, c);
GL_CALL(VertexAttrib4fv(header.fCoverageAttributeIndex, c));
sharedState->fConstAttribCoverage = coverage;
sharedState->fConstAttribCoverageIndex = header.fCoverageAttributeIndex;
}
break;
case GrGLProgramDesc::kUniform_ColorInput:
if (fCoverage != coverage) {
// OpenGL ES doesn't support unsigned byte varieties of glUniform
GrGLfloat c[4];
GrColorToRGBAFloat(coverage, c);
fUniformManager.set4fv(fUniformHandles.fCoverageUni, 0, 1, c);
fCoverage = coverage;
}
sharedState->fConstAttribCoverageIndex = -1;
break;
case GrGLProgramDesc::kSolidWhite_ColorInput:
case GrGLProgramDesc::kTransBlack_ColorInput:
sharedState->fConstAttribCoverageIndex = -1;
break;
default:
GrCrash("Unknown coverage type.");
}
} else {
sharedState->fConstAttribCoverageIndex = -1;
}
}
void GrGLProgram::setMatrixAndRenderTargetHeight(const GrDrawState& drawState) {
const GrRenderTarget* rt = drawState.getRenderTarget();
SkISize size;
size.set(rt->width(), rt->height());
// Load the RT height uniform if it is needed to y-flip gl_FragCoord.
if (fUniformHandles.fRTHeightUni.isValid() &&
fMatrixState.fRenderTargetSize.fHeight != size.fHeight) {
fUniformManager.set1f(fUniformHandles.fRTHeightUni, SkIntToScalar(size.fHeight));
}
if (!fHasVertexShader) {
SkASSERT(!fUniformHandles.fViewMatrixUni.isValid());
fGpu->setProjectionMatrix(drawState.getViewMatrix(), size, rt->origin());
} else if (fMatrixState.fRenderTargetOrigin != rt->origin() ||
fMatrixState.fRenderTargetSize != size ||
!fMatrixState.fViewMatrix.cheapEqualTo(drawState.getViewMatrix())) {
SkASSERT(fUniformHandles.fViewMatrixUni.isValid());
fMatrixState.fViewMatrix = drawState.getViewMatrix();
fMatrixState.fRenderTargetSize = size;
fMatrixState.fRenderTargetOrigin = rt->origin();
GrGLfloat viewMatrix[3 * 3];
fMatrixState.getGLMatrix<3>(viewMatrix);
fUniformManager.setMatrix3f(fUniformHandles.fViewMatrixUni, viewMatrix);
}
}