blob: 11a0ee448f9c7cd590ff81c3409afded24163d8d [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkScaledImageCache.h"
#include "SkMipMap.h"
#include "SkPixelRef.h"
#include "SkRect.h"
#ifndef SK_DEFAULT_IMAGE_CACHE_LIMIT
#define SK_DEFAULT_IMAGE_CACHE_LIMIT (2 * 1024 * 1024)
#endif
// Implemented from en.wikipedia.org/wiki/MurmurHash.
static uint32_t compute_hash(const uint32_t data[], int count) {
uint32_t hash = 0;
for (int i = 0; i < count; ++i) {
uint32_t k = data[i];
k *= 0xcc9e2d51;
k = (k << 15) | (k >> 17);
k *= 0x1b873593;
hash ^= k;
hash = (hash << 13) | (hash >> 19);
hash *= 5;
hash += 0xe6546b64;
}
// hash ^= size;
hash ^= hash >> 16;
hash *= 0x85ebca6b;
hash ^= hash >> 13;
hash *= 0xc2b2ae35;
hash ^= hash >> 16;
return hash;
}
struct Key {
bool init(const SkBitmap& bm, SkScalar scaleX, SkScalar scaleY) {
SkPixelRef* pr = bm.pixelRef();
if (!pr) {
return false;
}
size_t x, y;
SkTDivMod(bm.pixelRefOffset(), bm.rowBytes(), &y, &x);
x >>= 2;
fGenID = pr->getGenerationID();
fBounds.set(x, y, x + bm.width(), y + bm.height());
fScaleX = scaleX;
fScaleY = scaleY;
fHash = compute_hash(&fGenID, 7);
return true;
}
bool operator<(const Key& other) const {
const uint32_t* a = &fGenID;
const uint32_t* b = &other.fGenID;
for (int i = 0; i < 7; ++i) {
if (a[i] < b[i]) {
return true;
}
if (a[i] > b[i]) {
return false;
}
}
return false;
}
bool operator==(const Key& other) const {
const uint32_t* a = &fHash;
const uint32_t* b = &other.fHash;
for (int i = 0; i < 8; ++i) {
if (a[i] != b[i]) {
return false;
}
}
return true;
}
uint32_t fHash;
uint32_t fGenID;
float fScaleX;
float fScaleY;
SkIRect fBounds;
};
struct SkScaledImageCache::Rec {
Rec(const Key& key, const SkBitmap& bm) : fKey(key), fBitmap(bm) {
fLockCount = 1;
fMip = NULL;
}
Rec(const Key& key, const SkMipMap* mip) : fKey(key) {
fLockCount = 1;
fMip = mip;
mip->ref();
}
~Rec() {
SkSafeUnref(fMip);
}
size_t bytesUsed() const {
return fMip ? fMip->getSize() : fBitmap.getSize();
}
Rec* fNext;
Rec* fPrev;
// this guy wants to be 64bit aligned
Key fKey;
int32_t fLockCount;
// we use either fBitmap or fMip, but not both
SkBitmap fBitmap;
const SkMipMap* fMip;
};
#include "SkTDynamicHash.h"
namespace { // can't use static functions w/ template parameters
const Key& key_from_rec(const SkScaledImageCache::Rec& rec) {
return rec.fKey;
}
uint32_t hash_from_key(const Key& key) {
return key.fHash;
}
bool eq_rec_key(const SkScaledImageCache::Rec& rec, const Key& key) {
return rec.fKey == key;
}
}
class SkScaledImageCache::Hash : public SkTDynamicHash<SkScaledImageCache::Rec,
Key, key_from_rec, hash_from_key,
eq_rec_key> {};
///////////////////////////////////////////////////////////////////////////////
// experimental hash to speed things up
#define USE_HASH
SkScaledImageCache::SkScaledImageCache(size_t byteLimit) {
fHead = NULL;
fTail = NULL;
#ifdef USE_HASH
fHash = new Hash;
#else
fHash = NULL;
#endif
fBytesUsed = 0;
fByteLimit = byteLimit;
fCount = 0;
}
SkScaledImageCache::~SkScaledImageCache() {
Rec* rec = fHead;
while (rec) {
Rec* next = rec->fNext;
SkDELETE(rec);
rec = next;
}
delete fHash;
}
SkScaledImageCache::Rec* SkScaledImageCache::findAndLock(const SkBitmap& orig,
SkScalar scaleX,
SkScalar scaleY) {
Key key;
if (!key.init(orig, scaleX, scaleY)) {
return NULL;
}
#ifdef USE_HASH
Rec* rec = fHash->find(key);
#else
Rec* rec = fHead;
while (rec != NULL) {
if (rec->fKey == key) {
break;
}
rec = rec->fNext;
}
#endif
if (rec) {
this->moveToHead(rec); // for our LRU
rec->fLockCount += 1;
}
return rec;
}
SkScaledImageCache::ID* SkScaledImageCache::findAndLock(const SkBitmap& orig,
SkScalar scaleX,
SkScalar scaleY,
SkBitmap* scaled) {
if (0 == scaleX || 0 == scaleY) {
// degenerate, and the key we use for mipmaps
return NULL;
}
Rec* rec = this->findAndLock(orig, scaleX, scaleY);
if (rec) {
SkASSERT(NULL == rec->fMip);
SkASSERT(rec->fBitmap.pixelRef());
*scaled = rec->fBitmap;
}
return (ID*)rec;
}
SkScaledImageCache::ID* SkScaledImageCache::findAndLockMip(const SkBitmap& orig,
SkMipMap const ** mip) {
Rec* rec = this->findAndLock(orig, 0, 0);
if (rec) {
SkASSERT(rec->fMip);
SkASSERT(NULL == rec->fBitmap.pixelRef());
*mip = rec->fMip;
}
return (ID*)rec;
}
SkScaledImageCache::ID* SkScaledImageCache::addAndLock(const SkBitmap& orig,
SkScalar scaleX,
SkScalar scaleY,
const SkBitmap& scaled) {
if (0 == scaleX || 0 == scaleY) {
// degenerate, and the key we use for mipmaps
return NULL;
}
Key key;
if (!key.init(orig, scaleX, scaleY)) {
return NULL;
}
Rec* rec = SkNEW_ARGS(Rec, (key, scaled));
this->addToHead(rec);
SkASSERT(1 == rec->fLockCount);
#ifdef USE_HASH
fHash->add(rec);
#endif
// We may (now) be overbudget, so see if we need to purge something.
this->purgeAsNeeded();
return (ID*)rec;
}
SkScaledImageCache::ID* SkScaledImageCache::addAndLockMip(const SkBitmap& orig,
const SkMipMap* mip) {
Key key;
if (!key.init(orig, 0, 0)) {
return NULL;
}
Rec* rec = SkNEW_ARGS(Rec, (key, mip));
this->addToHead(rec);
SkASSERT(1 == rec->fLockCount);
#ifdef USE_HASH
fHash->add(rec);
#endif
// We may (now) be overbudget, so see if we need to purge something.
this->purgeAsNeeded();
return (ID*)rec;
}
void SkScaledImageCache::unlock(SkScaledImageCache::ID* id) {
SkASSERT(id);
#ifdef SK_DEBUG
{
bool found = false;
Rec* rec = fHead;
while (rec != NULL) {
if ((ID*)rec == id) {
found = true;
break;
}
rec = rec->fNext;
}
SkASSERT(found);
}
#endif
Rec* rec = (Rec*)id;
SkASSERT(rec->fLockCount > 0);
rec->fLockCount -= 1;
// we may have been over-budget, but now have released something, so check
// if we should purge.
if (0 == rec->fLockCount) {
this->purgeAsNeeded();
}
}
void SkScaledImageCache::purgeAsNeeded() {
size_t byteLimit = fByteLimit;
size_t bytesUsed = fBytesUsed;
Rec* rec = fTail;
while (rec) {
if (bytesUsed < byteLimit) {
break;
}
Rec* prev = rec->fPrev;
if (0 == rec->fLockCount) {
size_t used = rec->bytesUsed();
SkASSERT(used <= bytesUsed);
bytesUsed -= used;
this->detach(rec);
#ifdef USE_HASH
fHash->remove(rec->fKey);
#endif
SkDELETE(rec);
fCount -= 1;
}
rec = prev;
}
fBytesUsed = bytesUsed;
}
size_t SkScaledImageCache::setByteLimit(size_t newLimit) {
size_t prevLimit = fByteLimit;
fByteLimit = newLimit;
if (newLimit < prevLimit) {
this->purgeAsNeeded();
}
return prevLimit;
}
///////////////////////////////////////////////////////////////////////////////
void SkScaledImageCache::detach(Rec* rec) {
Rec* prev = rec->fPrev;
Rec* next = rec->fNext;
if (!prev) {
SkASSERT(fHead == rec);
fHead = next;
} else {
prev->fNext = next;
}
if (!next) {
fTail = prev;
} else {
next->fPrev = prev;
}
rec->fNext = rec->fPrev = NULL;
}
void SkScaledImageCache::moveToHead(Rec* rec) {
if (fHead == rec) {
return;
}
SkASSERT(fHead);
SkASSERT(fTail);
this->validate();
this->detach(rec);
fHead->fPrev = rec;
rec->fNext = fHead;
fHead = rec;
this->validate();
}
void SkScaledImageCache::addToHead(Rec* rec) {
this->validate();
rec->fPrev = NULL;
rec->fNext = fHead;
if (fHead) {
fHead->fPrev = rec;
}
fHead = rec;
if (!fTail) {
fTail = rec;
}
fBytesUsed += rec->bytesUsed();
fCount += 1;
this->validate();
}
#ifdef SK_DEBUG
void SkScaledImageCache::validate() const {
if (NULL == fHead) {
SkASSERT(NULL == fTail);
SkASSERT(0 == fBytesUsed);
return;
}
if (fHead == fTail) {
SkASSERT(NULL == fHead->fPrev);
SkASSERT(NULL == fHead->fNext);
SkASSERT(fHead->bytesUsed() == fBytesUsed);
return;
}
SkASSERT(NULL == fHead->fPrev);
SkASSERT(NULL != fHead->fNext);
SkASSERT(NULL == fTail->fNext);
SkASSERT(NULL != fTail->fPrev);
size_t used = 0;
int count = 0;
const Rec* rec = fHead;
while (rec) {
count += 1;
used += rec->bytesUsed();
SkASSERT(used <= fBytesUsed);
rec = rec->fNext;
}
SkASSERT(fCount == count);
rec = fTail;
while (rec) {
SkASSERT(count > 0);
count -= 1;
SkASSERT(used >= rec->bytesUsed());
used -= rec->bytesUsed();
rec = rec->fPrev;
}
SkASSERT(0 == count);
SkASSERT(0 == used);
}
#endif
///////////////////////////////////////////////////////////////////////////////
#include "SkThread.h"
SK_DECLARE_STATIC_MUTEX(gMutex);
static SkScaledImageCache* get_cache() {
static SkScaledImageCache* gCache;
if (!gCache) {
gCache = SkNEW_ARGS(SkScaledImageCache, (SK_DEFAULT_IMAGE_CACHE_LIMIT));
}
return gCache;
}
SkScaledImageCache::ID* SkScaledImageCache::FindAndLock(const SkBitmap& orig,
SkScalar scaleX,
SkScalar scaleY,
SkBitmap* scaled) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->findAndLock(orig, scaleX, scaleY, scaled);
}
SkScaledImageCache::ID* SkScaledImageCache::FindAndLockMip(const SkBitmap& orig,
SkMipMap const ** mip) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->findAndLockMip(orig, mip);
}
SkScaledImageCache::ID* SkScaledImageCache::AddAndLock(const SkBitmap& orig,
SkScalar scaleX,
SkScalar scaleY,
const SkBitmap& scaled) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->addAndLock(orig, scaleX, scaleY, scaled);
}
SkScaledImageCache::ID* SkScaledImageCache::AddAndLockMip(const SkBitmap& orig,
const SkMipMap* mip) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->addAndLockMip(orig, mip);
}
void SkScaledImageCache::Unlock(SkScaledImageCache::ID* id) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->unlock(id);
}
size_t SkScaledImageCache::GetBytesUsed() {
SkAutoMutexAcquire am(gMutex);
return get_cache()->getBytesUsed();
}
size_t SkScaledImageCache::GetByteLimit() {
SkAutoMutexAcquire am(gMutex);
return get_cache()->getByteLimit();
}
size_t SkScaledImageCache::SetByteLimit(size_t newLimit) {
SkAutoMutexAcquire am(gMutex);
return get_cache()->setByteLimit(newLimit);
}
///////////////////////////////////////////////////////////////////////////////
#include "SkGraphics.h"
size_t SkGraphics::GetImageCacheBytesUsed() {
return SkScaledImageCache::GetBytesUsed();
}
size_t SkGraphics::GetImageCacheByteLimit() {
return SkScaledImageCache::GetByteLimit();
}
size_t SkGraphics::SetImageCacheByteLimit(size_t newLimit) {
return SkScaledImageCache::SetByteLimit(newLimit);
}