blob: d5dd9d925ba0f413b3922a7ba99a44720d0f7341 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkOnce_DEFINED
#define SkOnce_DEFINED
// SkOnce.h defines two macros, DEF_SK_ONCE and SK_ONCE.
// You can use these macros together to create a threadsafe block of code that
// runs at most once, no matter how many times you call it. This is
// particularly useful for lazy singleton initialization. E.g.
//
// DEF_SK_ONCE(set_up_my_singleton, SingletonType* singleton) {
// // Code in this block will run at most once.
// *singleton = new Singleton(...);
// }
// ...
// const Singleton& getSingleton() {
// static Singleton* singleton = NULL;
// // Always call SK_ONCE. It's very cheap to call after the first time.
// SK_ONCE(set_up_my_singleton, singleton);
// SkASSERT(NULL != singleton);
// return *singleton;
// }
//
// OnceTest.cpp also should serve as another simple example.
#include "SkThread.h"
#include "SkTypes.h"
// Pass a unique name (at least in this scope) for name, and a type and name
// for arg (as if writing a function declaration).
// E.g.
// DEF_SK_ONCE(my_onetime_setup, int* foo) {
// *foo += 5;
// }
#define DEF_SK_ONCE(name, arg) \
static bool sk_once_##name##_done = false; \
SK_DECLARE_STATIC_MUTEX(sk_once_##name##_mutex); \
static void sk_once_##name##_function(arg)
// Call this anywhere you need to guarantee that the corresponding DEF_SK_ONCE
// block of code has run. name should match the DEF_SK_ONCE, and here you pass
// the actual value of the argument.
// E.g
// int foo = 0;
// SK_ONCE(my_onetime_setup, &foo);
// SkASSERT(5 == foo);
#define SK_ONCE(name, arg) \
sk_once(&sk_once_##name##_done, &sk_once_##name##_mutex, sk_once_##name##_function, arg)
// ---------------------- Implementation details below here. -----------------------------
// TODO(bungeman, mtklein): move all these *barrier* functions to SkThread when refactoring lands.
#ifdef SK_BUILD_FOR_WIN
#include <intrin.h>
inline static void compiler_barrier() {
_ReadWriteBarrier();
}
#else
inline static void compiler_barrier() {
asm volatile("" : : : "memory");
}
#endif
inline static void full_barrier_on_arm() {
#ifdef SK_CPU_ARM
asm volatile("dmb" : : : "memory");
#endif
}
// On every platform, we issue a compiler barrier to prevent it from reordering
// code. That's enough for platforms like x86 where release and acquire
// barriers are no-ops. On other platforms we may need to be more careful;
// ARM, in particular, needs real code for both acquire and release. We use a
// full barrier, which acts as both, because that the finest precision ARM
// provides.
inline static void release_barrier() {
compiler_barrier();
full_barrier_on_arm();
}
inline static void acquire_barrier() {
compiler_barrier();
full_barrier_on_arm();
}
// We've pulled a pretty standard double-checked locking implementation apart
// into its main fast path and a slow path that's called when we suspect the
// one-time code hasn't run yet.
// This is the guts of the code, called when we suspect the one-time code hasn't been run yet.
// This should be rarely called, so we separate it from sk_once and don't mark it as inline.
// (We don't mind if this is an actual function call, but odds are it'll be inlined anyway.)
template <typename Arg>
static void sk_once_slow(bool* done, SkBaseMutex* mutex, void (*once)(Arg), Arg arg) {
const SkAutoMutexAcquire lock(*mutex);
if (!*done) {
once(arg);
// Also known as a store-store/load-store barrier, this makes sure that the writes
// done before here---in particular, those done by calling once(arg)---are observable
// before the writes after the line, *done = true.
//
// In version control terms this is like saying, "check in the work up
// to and including once(arg), then check in *done=true as a subsequent change".
//
// We'll use this in the fast path to make sure once(arg)'s effects are
// observable whenever we observe *done == true.
release_barrier();
*done = true;
}
}
// We nabbed this code from the dynamic_annotations library, and in their honor
// we check the same define. If you find yourself wanting more than just
// ANNOTATE_BENIGN_RACE, it might make sense to pull that in as a dependency
// rather than continue to reproduce it here.
#if DYNAMIC_ANNOTATIONS_ENABLED
// TSAN provides this hook to supress a known-safe apparent race.
extern "C" {
void AnnotateBenignRace(const char* file, int line, const volatile void* mem, const char* desc);
}
#define ANNOTATE_BENIGN_RACE(mem, desc) AnnotateBenignRace(__FILE__, __LINE__, mem, desc)
#else
#define ANNOTATE_BENIGN_RACE(mem, desc)
#endif
// This is our fast path, called all the time. We do really want it to be inlined.
template <typename Arg>
inline static void sk_once(bool* done, SkBaseMutex* mutex, void (*once)(Arg), Arg arg) {
ANNOTATE_BENIGN_RACE(done, "Don't worry TSAN, we're sure this is safe.");
if (!*done) {
sk_once_slow(done, mutex, once, arg);
}
// Also known as a load-load/load-store barrier, this acquire barrier makes
// sure that anything we read from memory---in particular, memory written by
// calling once(arg)---is at least as current as the value we read from done.
//
// In version control terms, this is a lot like saying "sync up to the
// commit where we wrote *done = true".
//
// The release barrier in sk_once_slow guaranteed that *done = true
// happens after once(arg), so by syncing to *done = true here we're
// forcing ourselves to also wait until the effects of once(arg) are readble.
acquire_barrier();
}
#undef ANNOTATE_BENIGN_RACE
#endif // SkOnce_DEFINED