blob: 82cf346c8e6cb9f1fed856b71fbd094a29e3cd08 [file] [log] [blame]
/*
* Copyright 2008 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkWriter32_DEFINED
#define SkWriter32_DEFINED
#include "SkTypes.h"
#include "SkScalar.h"
#include "SkPath.h"
#include "SkPoint.h"
#include "SkRect.h"
#include "SkRRect.h"
#include "SkMatrix.h"
#include "SkRegion.h"
class SkStream;
class SkWStream;
class SkWriter32 : SkNoncopyable {
struct BlockHeader;
public:
/**
* The caller can specify an initial block of storage, which the caller manages.
* SkWriter32 will not attempt to free this in its destructor. It is up to the
* implementation to decide if, and how much, of the storage to utilize, and it
* is possible that it may be ignored entirely.
*/
SkWriter32(size_t minSize, void* initialStorage, size_t storageSize);
SkWriter32(size_t minSize)
: fHead(NULL)
, fTail(NULL)
, fMinSize(minSize)
, fSize(0)
, fWrittenBeforeLastBlock(0)
{}
~SkWriter32();
// return the current offset (will always be a multiple of 4)
uint32_t bytesWritten() const { return fSize; }
// DEPRECATED: use bytesWritten instead TODO(mtklein): clean up
uint32_t size() const { return this->bytesWritten(); }
// Returns true if we've written only into the storage passed into constructor or reset.
// (You may be able to use this to avoid a call to flatten.)
bool wroteOnlyToStorage() const {
return fHead == &fExternalBlock && this->bytesWritten() <= fExternalBlock.fSizeOfBlock;
}
void reset();
void reset(void* storage, size_t size);
// size MUST be multiple of 4
uint32_t* reserve(size_t size) {
SkASSERT(SkAlign4(size) == size);
Block* block = fTail;
if (NULL == block || block->available() < size) {
block = this->doReserve(size);
}
fSize += size;
return block->alloc(size);
}
bool writeBool(bool value) {
this->writeInt(value);
return value;
}
void writeInt(int32_t value) {
*(int32_t*)this->reserve(sizeof(value)) = value;
}
void write8(int32_t value) {
*(int32_t*)this->reserve(sizeof(value)) = value & 0xFF;
}
void write16(int32_t value) {
*(int32_t*)this->reserve(sizeof(value)) = value & 0xFFFF;
}
void write32(int32_t value) {
*(int32_t*)this->reserve(sizeof(value)) = value;
}
void writePtr(void* ptr) {
// Since we "know" that we're always 4-byte aligned, we can tell the
// compiler that here, by assigning to an int32 ptr.
int32_t* addr = (int32_t*)this->reserve(sizeof(void*));
if (4 == sizeof(void*)) {
*(void**)addr = ptr;
} else {
memcpy(addr, &ptr, sizeof(void*));
}
}
void writeScalar(SkScalar value) {
*(SkScalar*)this->reserve(sizeof(value)) = value;
}
void writePoint(const SkPoint& pt) {
*(SkPoint*)this->reserve(sizeof(pt)) = pt;
}
void writeRect(const SkRect& rect) {
*(SkRect*)this->reserve(sizeof(rect)) = rect;
}
void writeRRect(const SkRRect& rrect) {
rrect.writeToMemory(this->reserve(SkRRect::kSizeInMemory));
}
void writePath(const SkPath& path) {
size_t size = path.writeToMemory(NULL);
SkASSERT(SkAlign4(size) == size);
path.writeToMemory(this->reserve(size));
}
void writeMatrix(const SkMatrix& matrix) {
size_t size = matrix.writeToMemory(NULL);
SkASSERT(SkAlign4(size) == size);
matrix.writeToMemory(this->reserve(size));
}
void writeRegion(const SkRegion& rgn) {
size_t size = rgn.writeToMemory(NULL);
SkASSERT(SkAlign4(size) == size);
rgn.writeToMemory(this->reserve(size));
}
// write count bytes (must be a multiple of 4)
void writeMul4(const void* values, size_t size) {
this->write(values, size);
}
/**
* Write size bytes from values. size must be a multiple of 4, though
* values need not be 4-byte aligned.
*/
void write(const void* values, size_t size) {
SkASSERT(SkAlign4(size) == size);
// if we could query how much is avail in the current block, we might
// copy that much, and then alloc the rest. That would reduce the waste
// in the current block
memcpy(this->reserve(size), values, size);
}
/**
* Reserve size bytes. Does not need to be 4 byte aligned. The remaining space (if any) will be
* filled in with zeroes.
*/
uint32_t* reservePad(size_t size);
/**
* Write size bytes from src, and pad to 4 byte alignment with zeroes.
*/
void writePad(const void* src, size_t size);
/**
* Writes a string to the writer, which can be retrieved with
* SkReader32::readString().
* The length can be specified, or if -1 is passed, it will be computed by
* calling strlen(). The length must be < 0xFFFF
*/
void writeString(const char* str, size_t len = (size_t)-1);
/**
* Computes the size (aligned to multiple of 4) need to write the string
* in a call to writeString(). If the length is not specified, it will be
* computed by calling strlen().
*/
static size_t WriteStringSize(const char* str, size_t len = (size_t)-1);
// return the address of the 4byte int at the specified offset (which must
// be a multiple of 4. This does not allocate any new space, so the returned
// address is only valid for 1 int.
uint32_t* peek32(size_t offset);
/**
* Move the cursor back to offset bytes from the beginning.
* This has the same restrictions as peek32: offset must be <= size() and
* offset must be a multiple of 4.
*/
void rewindToOffset(size_t offset);
// copy into a single buffer (allocated by caller). Must be at least size()
void flatten(void* dst) const;
// read from the stream, and write up to length bytes. Return the actual
// number of bytes written.
size_t readFromStream(SkStream*, size_t length);
bool writeToStream(SkWStream*);
private:
struct Block {
Block* fNext;
char* fBasePtr;
size_t fSizeOfBlock; // total space allocated (after this)
size_t fAllocatedSoFar; // space used so far
size_t available() const { return fSizeOfBlock - fAllocatedSoFar; }
char* base() { return fBasePtr; }
const char* base() const { return fBasePtr; }
uint32_t* alloc(size_t size) {
SkASSERT(SkAlign4(size) == size);
SkASSERT(this->available() >= size);
void* ptr = this->base() + fAllocatedSoFar;
fAllocatedSoFar += size;
SkASSERT(fAllocatedSoFar <= fSizeOfBlock);
return (uint32_t*)ptr;
}
uint32_t* peek32(size_t offset) {
SkASSERT(offset <= fAllocatedSoFar + 4);
void* ptr = this->base() + offset;
return (uint32_t*)ptr;
}
void rewind() {
fNext = NULL;
fAllocatedSoFar = 0;
// keep fSizeOfBlock as is
}
static Block* Create(size_t size) {
SkASSERT(SkIsAlign4(size));
Block* block = (Block*)sk_malloc_throw(sizeof(Block) + size);
block->fNext = NULL;
block->fBasePtr = (char*)(block + 1);
block->fSizeOfBlock = size;
block->fAllocatedSoFar = 0;
return block;
}
Block* initFromStorage(void* storage, size_t size) {
SkASSERT(SkIsAlign4((intptr_t)storage));
SkASSERT(SkIsAlign4(size));
Block* block = this;
block->fNext = NULL;
block->fBasePtr = (char*)storage;
block->fSizeOfBlock = size;
block->fAllocatedSoFar = 0;
return block;
}
};
enum {
MIN_BLOCKSIZE = sizeof(SkWriter32::Block) + sizeof(intptr_t)
};
Block fExternalBlock;
Block* fHead;
Block* fTail;
size_t fMinSize;
uint32_t fSize;
// sum of bytes written in all blocks *before* fTail
uint32_t fWrittenBeforeLastBlock;
bool isHeadExternallyAllocated() const {
return fHead == &fExternalBlock;
}
Block* newBlock(size_t bytes);
// only call from reserve()
Block* doReserve(size_t bytes);
SkDEBUGCODE(void validate() const;)
};
/**
* Helper class to allocated SIZE bytes as part of the writer, and to provide
* that storage to the constructor as its initial storage buffer.
*
* This wrapper ensures proper alignment rules are met for the storage.
*/
template <size_t SIZE> class SkSWriter32 : public SkWriter32 {
public:
SkSWriter32(size_t minSize) : SkWriter32(minSize, fData.fStorage, SIZE) {}
private:
union {
void* fPtrAlignment;
double fDoubleAlignment;
char fStorage[SIZE];
} fData;
};
#endif