blob: c546200b9488a895ac7f2c9f6e1697eb8fa5c2a8 [file] [log] [blame]
/* ====================================================================
* Copyright (c) 2011-2013 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*/
/* This implementation of poly1305 is by Andrew Moon
* (https://github.com/floodyberry/poly1305-donna) and released as public
* domain. It implements SIMD vectorization based on the algorithm described in
* http://cr.yp.to/papers.html#neoncrypto. Unrolled to 2 powers, i.e. 64 byte
* block size
*/
#include <emmintrin.h>
#include <stdint.h>
#include <openssl/opensslconf.h>
#if !defined(OPENSSL_NO_POLY1305)
#include <openssl/poly1305.h>
#define ALIGN(x) __attribute__((aligned(x)))
#define INLINE inline
#define U8TO64_LE(m) (*(uint64_t*)(m))
#define U8TO32_LE(m) (*(uint32_t*)(m))
#define U64TO8_LE(m,v) (*(uint64_t*)(m)) = v
typedef __m128i xmmi;
typedef unsigned __int128 uint128_t;
static const uint32_t ALIGN(16) poly1305_x64_sse2_message_mask[4] =
{(1 << 26) - 1, 0, (1 << 26) - 1, 0};
static const uint32_t ALIGN(16) poly1305_x64_sse2_5[4] = {5, 0, 5, 0};
static const uint32_t ALIGN(16) poly1305_x64_sse2_1shl128[4] =
{(1 << 24), 0, (1 << 24), 0};
static uint128_t INLINE
add128(uint128_t a, uint128_t b)
{
return a + b;
}
static uint128_t INLINE
add128_64(uint128_t a, uint64_t b)
{
return a + b;
}
static uint128_t INLINE
mul64x64_128(uint64_t a, uint64_t b)
{
return (uint128_t)a * b;
}
static uint64_t INLINE
lo128(uint128_t a)
{
return (uint64_t)a;
}
static uint64_t INLINE
shr128(uint128_t v, const int shift)
{
return (uint64_t)(v >> shift);
}
static uint64_t INLINE
shr128_pair(uint64_t hi, uint64_t lo, const int shift)
{
return (uint64_t)((((uint128_t)hi << 64) | lo) >> shift);
}
typedef struct poly1305_power_t
{
union
{
xmmi v;
uint64_t u[2];
uint32_t d[4];
} R20,R21,R22,R23,R24,S21,S22,S23,S24;
} poly1305_power;
typedef struct poly1305_state_internal_t
{
poly1305_power P[2]; /* 288 bytes, top 32 bit halves unused = 144
bytes of free storage */
union
{
xmmi H[5]; /* 80 bytes */
uint64_t HH[10];
};
/* uint64_t r0,r1,r2; [24 bytes] */
/* uint64_t pad0,pad1; [16 bytes] */
uint64_t started; /* 8 bytes */
uint64_t leftover; /* 8 bytes */
uint8_t buffer[64]; /* 64 bytes */
} poly1305_state_internal; /* 448 bytes total + 63 bytes for
alignment = 511 bytes raw */
static poly1305_state_internal INLINE
*poly1305_aligned_state(poly1305_state *state)
{
return (poly1305_state_internal *)(((uint64_t)state + 63) & ~63);
}
/* copy 0-63 bytes */
static void INLINE
poly1305_block_copy(uint8_t *dst, const uint8_t *src, size_t bytes)
{
size_t offset = src - dst;
if (bytes & 32)
{
_mm_storeu_si128((xmmi *)(dst + 0), _mm_loadu_si128((xmmi *)(dst + offset + 0)));
_mm_storeu_si128((xmmi *)(dst + 16), _mm_loadu_si128((xmmi *)(dst + offset + 16)));
dst += 32;
}
if (bytes & 16)
{
_mm_storeu_si128((xmmi *)dst,
_mm_loadu_si128((xmmi *)(dst + offset)));
dst += 16;
}
if (bytes & 8)
{
*(uint64_t *)dst = *(uint64_t *)(dst + offset);
dst += 8;
}
if (bytes & 4)
{
*(uint32_t *)dst = *(uint32_t *)(dst + offset);
dst += 4;
}
if (bytes & 2)
{
*(uint16_t *)dst = *(uint16_t *)(dst + offset);
dst += 2;
}
if (bytes & 1)
{
*( uint8_t *)dst = *( uint8_t *)(dst + offset);
}
}
/* zero 0-15 bytes */
static void INLINE
poly1305_block_zero(uint8_t *dst, size_t bytes)
{
if (bytes & 8) { *(uint64_t *)dst = 0; dst += 8; }
if (bytes & 4) { *(uint32_t *)dst = 0; dst += 4; }
if (bytes & 2) { *(uint16_t *)dst = 0; dst += 2; }
if (bytes & 1) { *( uint8_t *)dst = 0; }
}
static size_t INLINE
poly1305_min(size_t a, size_t b)
{
return (a < b) ? a : b;
}
void
CRYPTO_poly1305_init(poly1305_state *state, const unsigned char key[32])
{
poly1305_state_internal *st = poly1305_aligned_state(state);
poly1305_power *p;
uint64_t r0,r1,r2;
uint64_t t0,t1;
/* clamp key */
t0 = U8TO64_LE(key + 0);
t1 = U8TO64_LE(key + 8);
r0 = t0 & 0xffc0fffffff; t0 >>= 44; t0 |= t1 << 20;
r1 = t0 & 0xfffffc0ffff; t1 >>= 24;
r2 = t1 & 0x00ffffffc0f;
/* store r in un-used space of st->P[1] */
p = &st->P[1];
p->R20.d[1] = (uint32_t)(r0 );
p->R20.d[3] = (uint32_t)(r0 >> 32);
p->R21.d[1] = (uint32_t)(r1 );
p->R21.d[3] = (uint32_t)(r1 >> 32);
p->R22.d[1] = (uint32_t)(r2 );
p->R22.d[3] = (uint32_t)(r2 >> 32);
/* store pad */
p->R23.d[1] = U8TO32_LE(key + 16);
p->R23.d[3] = U8TO32_LE(key + 20);
p->R24.d[1] = U8TO32_LE(key + 24);
p->R24.d[3] = U8TO32_LE(key + 28);
/* H = 0 */
st->H[0] = _mm_setzero_si128();
st->H[1] = _mm_setzero_si128();
st->H[2] = _mm_setzero_si128();
st->H[3] = _mm_setzero_si128();
st->H[4] = _mm_setzero_si128();
st->started = 0;
st->leftover = 0;
}
static void
poly1305_first_block(poly1305_state_internal *st, const uint8_t *m)
{
const xmmi MMASK =
_mm_load_si128((xmmi *)poly1305_x64_sse2_message_mask);
const xmmi FIVE = _mm_load_si128((xmmi*)poly1305_x64_sse2_5);
const xmmi HIBIT = _mm_load_si128((xmmi*)poly1305_x64_sse2_1shl128);
xmmi T5,T6;
poly1305_power *p;
uint128_t d[3];
uint64_t r0,r1,r2;
uint64_t r20,r21,r22,s22;
uint64_t pad0,pad1;
uint64_t c;
uint64_t i;
/* pull out stored info */
p = &st->P[1];
r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1];
r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1];
r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1];
pad0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1];
pad1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1];
/* compute powers r^2,r^4 */
r20 = r0;
r21 = r1;
r22 = r2;
for (i = 0; i < 2; i++)
{
s22 = r22 * (5 << 2);
d[0] = add128(mul64x64_128(r20, r20), mul64x64_128(r21 * 2, s22));
d[1] = add128(mul64x64_128(r22, s22), mul64x64_128(r20 * 2, r21));
d[2] = add128(mul64x64_128(r21, r21), mul64x64_128(r22 * 2, r20));
r20 = lo128(d[0]) & 0xfffffffffff; c = shr128(d[0], 44);
d[1] = add128_64(d[1], c); r21 = lo128(d[1]) & 0xfffffffffff; c = shr128(d[1], 44);
d[2] = add128_64(d[2], c); r22 = lo128(d[2]) & 0x3ffffffffff; c = shr128(d[2], 42);
r20 += c * 5; c = (r20 >> 44); r20 = r20 & 0xfffffffffff;
r21 += c;
p->R20.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)( r20 ) & 0x3ffffff), _MM_SHUFFLE(1,0,1,0));
p->R21.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r20 >> 26) | (r21 << 18)) & 0x3ffffff), _MM_SHUFFLE(1,0,1,0));
p->R22.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r21 >> 8) ) & 0x3ffffff), _MM_SHUFFLE(1,0,1,0));
p->R23.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r21 >> 34) | (r22 << 10)) & 0x3ffffff), _MM_SHUFFLE(1,0,1,0));
p->R24.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r22 >> 16) ) ), _MM_SHUFFLE(1,0,1,0));
p->S21.v = _mm_mul_epu32(p->R21.v, FIVE);
p->S22.v = _mm_mul_epu32(p->R22.v, FIVE);
p->S23.v = _mm_mul_epu32(p->R23.v, FIVE);
p->S24.v = _mm_mul_epu32(p->R24.v, FIVE);
p--;
}
/* put saved info back */
p = &st->P[1];
p->R20.d[1] = (uint32_t)(r0 );
p->R20.d[3] = (uint32_t)(r0 >> 32);
p->R21.d[1] = (uint32_t)(r1 );
p->R21.d[3] = (uint32_t)(r1 >> 32);
p->R22.d[1] = (uint32_t)(r2 );
p->R22.d[3] = (uint32_t)(r2 >> 32);
p->R23.d[1] = (uint32_t)(pad0 );
p->R23.d[3] = (uint32_t)(pad0 >> 32);
p->R24.d[1] = (uint32_t)(pad1 );
p->R24.d[3] = (uint32_t)(pad1 >> 32);
/* H = [Mx,My] */
T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((xmmi *)(m + 0)), _mm_loadl_epi64((xmmi *)(m + 16)));
T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((xmmi *)(m + 8)), _mm_loadl_epi64((xmmi *)(m + 24)));
st->H[0] = _mm_and_si128(MMASK, T5);
st->H[1] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
st->H[2] = _mm_and_si128(MMASK, T5);
st->H[3] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
st->H[4] = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
}
static void
poly1305_blocks(poly1305_state_internal *st, const uint8_t *m, size_t bytes)
{
const xmmi MMASK = _mm_load_si128((xmmi *)poly1305_x64_sse2_message_mask);
const xmmi FIVE = _mm_load_si128((xmmi*)poly1305_x64_sse2_5);
const xmmi HIBIT = _mm_load_si128((xmmi*)poly1305_x64_sse2_1shl128);
poly1305_power *p;
xmmi H0,H1,H2,H3,H4;
xmmi T0,T1,T2,T3,T4,T5,T6;
xmmi M0,M1,M2,M3,M4;
xmmi C1,C2;
H0 = st->H[0];
H1 = st->H[1];
H2 = st->H[2];
H3 = st->H[3];
H4 = st->H[4];
while (bytes >= 64)
{
/* H *= [r^4,r^4] */
p = &st->P[0];
T0 = _mm_mul_epu32(H0, p->R20.v);
T1 = _mm_mul_epu32(H0, p->R21.v);
T2 = _mm_mul_epu32(H0, p->R22.v);
T3 = _mm_mul_epu32(H0, p->R23.v);
T4 = _mm_mul_epu32(H0, p->R24.v);
T5 = _mm_mul_epu32(H1, p->S24.v); T6 = _mm_mul_epu32(H1, p->R20.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H2, p->S23.v); T6 = _mm_mul_epu32(H2, p->S24.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H3, p->S22.v); T6 = _mm_mul_epu32(H3, p->S23.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H4, p->S21.v); T6 = _mm_mul_epu32(H4, p->S22.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H1, p->R21.v); T6 = _mm_mul_epu32(H1, p->R22.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H2, p->R20.v); T6 = _mm_mul_epu32(H2, p->R21.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H3, p->S24.v); T6 = _mm_mul_epu32(H3, p->R20.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H4, p->S23.v); T6 = _mm_mul_epu32(H4, p->S24.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H1, p->R23.v); T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(H2, p->R22.v); T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(H3, p->R21.v); T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(H4, p->R20.v); T4 = _mm_add_epi64(T4, T5);
/* H += [Mx,My]*[r^2,r^2] */
T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((xmmi *)(m + 0)), _mm_loadl_epi64((xmmi *)(m + 16)));
T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((xmmi *)(m + 8)), _mm_loadl_epi64((xmmi *)(m + 24)));
M0 = _mm_and_si128(MMASK, T5);
M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
M2 = _mm_and_si128(MMASK, T5);
M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
p = &st->P[1];
T5 = _mm_mul_epu32(M0, p->R20.v); T6 = _mm_mul_epu32(M0, p->R21.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(M1, p->S24.v); T6 = _mm_mul_epu32(M1, p->R20.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(M2, p->S23.v); T6 = _mm_mul_epu32(M2, p->S24.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(M3, p->S22.v); T6 = _mm_mul_epu32(M3, p->S23.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(M4, p->S21.v); T6 = _mm_mul_epu32(M4, p->S22.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(M0, p->R22.v); T6 = _mm_mul_epu32(M0, p->R23.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(M1, p->R21.v); T6 = _mm_mul_epu32(M1, p->R22.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(M2, p->R20.v); T6 = _mm_mul_epu32(M2, p->R21.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(M3, p->S24.v); T6 = _mm_mul_epu32(M3, p->R20.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(M4, p->S23.v); T6 = _mm_mul_epu32(M4, p->S24.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(M0, p->R24.v); T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(M1, p->R23.v); T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(M2, p->R22.v); T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(M3, p->R21.v); T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(M4, p->R20.v); T4 = _mm_add_epi64(T4, T5);
/* H += [Mx,My] */
T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((xmmi *)(m + 32)), _mm_loadl_epi64((xmmi *)(m + 48)));
T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((xmmi *)(m + 40)), _mm_loadl_epi64((xmmi *)(m + 56)));
M0 = _mm_and_si128(MMASK, T5);
M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
M2 = _mm_and_si128(MMASK, T5);
M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
T0 = _mm_add_epi64(T0, M0);
T1 = _mm_add_epi64(T1, M1);
T2 = _mm_add_epi64(T2, M2);
T3 = _mm_add_epi64(T3, M3);
T4 = _mm_add_epi64(T4, M4);
/* reduce */
C1 = _mm_srli_epi64(T0, 26); C2 = _mm_srli_epi64(T3, 26); T0 = _mm_and_si128(T0, MMASK); T3 = _mm_and_si128(T3, MMASK); T1 = _mm_add_epi64(T1, C1); T4 = _mm_add_epi64(T4, C2);
C1 = _mm_srli_epi64(T1, 26); C2 = _mm_srli_epi64(T4, 26); T1 = _mm_and_si128(T1, MMASK); T4 = _mm_and_si128(T4, MMASK); T2 = _mm_add_epi64(T2, C1); T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE));
C1 = _mm_srli_epi64(T2, 26); C2 = _mm_srli_epi64(T0, 26); T2 = _mm_and_si128(T2, MMASK); T0 = _mm_and_si128(T0, MMASK); T3 = _mm_add_epi64(T3, C1); T1 = _mm_add_epi64(T1, C2);
C1 = _mm_srli_epi64(T3, 26); T3 = _mm_and_si128(T3, MMASK); T4 = _mm_add_epi64(T4, C1);
/* H = (H*[r^4,r^4] + [Mx,My]*[r^2,r^2] + [Mx,My]) */
H0 = T0;
H1 = T1;
H2 = T2;
H3 = T3;
H4 = T4;
m += 64;
bytes -= 64;
}
st->H[0] = H0;
st->H[1] = H1;
st->H[2] = H2;
st->H[3] = H3;
st->H[4] = H4;
}
static size_t
poly1305_combine(poly1305_state_internal *st, const uint8_t *m, size_t bytes)
{
const xmmi MMASK =
_mm_load_si128((xmmi *)poly1305_x64_sse2_message_mask);
const xmmi HIBIT = _mm_load_si128((xmmi*)poly1305_x64_sse2_1shl128);
const xmmi FIVE = _mm_load_si128((xmmi*)poly1305_x64_sse2_5);
poly1305_power *p;
xmmi H0,H1,H2,H3,H4;
xmmi M0,M1,M2,M3,M4;
xmmi T0,T1,T2,T3,T4,T5,T6;
xmmi C1,C2;
uint64_t r0,r1,r2;
uint64_t t0,t1,t2,t3,t4;
uint64_t c;
size_t consumed = 0;
H0 = st->H[0];
H1 = st->H[1];
H2 = st->H[2];
H3 = st->H[3];
H4 = st->H[4];
/* p = [r^2,r^2] */
p = &st->P[1];
if (bytes >= 32)
{
/* H *= [r^2,r^2] */
T0 = _mm_mul_epu32(H0, p->R20.v);
T1 = _mm_mul_epu32(H0, p->R21.v);
T2 = _mm_mul_epu32(H0, p->R22.v);
T3 = _mm_mul_epu32(H0, p->R23.v);
T4 = _mm_mul_epu32(H0, p->R24.v);
T5 = _mm_mul_epu32(H1, p->S24.v); T6 = _mm_mul_epu32(H1, p->R20.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H2, p->S23.v); T6 = _mm_mul_epu32(H2, p->S24.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H3, p->S22.v); T6 = _mm_mul_epu32(H3, p->S23.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H4, p->S21.v); T6 = _mm_mul_epu32(H4, p->S22.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H1, p->R21.v); T6 = _mm_mul_epu32(H1, p->R22.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H2, p->R20.v); T6 = _mm_mul_epu32(H2, p->R21.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H3, p->S24.v); T6 = _mm_mul_epu32(H3, p->R20.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H4, p->S23.v); T6 = _mm_mul_epu32(H4, p->S24.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H1, p->R23.v); T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(H2, p->R22.v); T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(H3, p->R21.v); T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(H4, p->R20.v); T4 = _mm_add_epi64(T4, T5);
/* H += [Mx,My] */
T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((xmmi *)(m + 0)), _mm_loadl_epi64((xmmi *)(m + 16)));
T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((xmmi *)(m + 8)), _mm_loadl_epi64((xmmi *)(m + 24)));
M0 = _mm_and_si128(MMASK, T5);
M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
M2 = _mm_and_si128(MMASK, T5);
M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
T0 = _mm_add_epi64(T0, M0);
T1 = _mm_add_epi64(T1, M1);
T2 = _mm_add_epi64(T2, M2);
T3 = _mm_add_epi64(T3, M3);
T4 = _mm_add_epi64(T4, M4);
/* reduce */
C1 = _mm_srli_epi64(T0, 26); C2 = _mm_srli_epi64(T3, 26); T0 = _mm_and_si128(T0, MMASK); T3 = _mm_and_si128(T3, MMASK); T1 = _mm_add_epi64(T1, C1); T4 = _mm_add_epi64(T4, C2);
C1 = _mm_srli_epi64(T1, 26); C2 = _mm_srli_epi64(T4, 26); T1 = _mm_and_si128(T1, MMASK); T4 = _mm_and_si128(T4, MMASK); T2 = _mm_add_epi64(T2, C1); T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE));
C1 = _mm_srli_epi64(T2, 26); C2 = _mm_srli_epi64(T0, 26); T2 = _mm_and_si128(T2, MMASK); T0 = _mm_and_si128(T0, MMASK); T3 = _mm_add_epi64(T3, C1); T1 = _mm_add_epi64(T1, C2);
C1 = _mm_srli_epi64(T3, 26); T3 = _mm_and_si128(T3, MMASK); T4 = _mm_add_epi64(T4, C1);
/* H = (H*[r^2,r^2] + [Mx,My]) */
H0 = T0;
H1 = T1;
H2 = T2;
H3 = T3;
H4 = T4;
consumed = 32;
}
/* finalize, H *= [r^2,r] */
r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1];
r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1];
r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1];
p->R20.d[2] = (uint32_t)( r0 ) & 0x3ffffff;
p->R21.d[2] = (uint32_t)((r0 >> 26) | (r1 << 18)) & 0x3ffffff;
p->R22.d[2] = (uint32_t)((r1 >> 8) ) & 0x3ffffff;
p->R23.d[2] = (uint32_t)((r1 >> 34) | (r2 << 10)) & 0x3ffffff;
p->R24.d[2] = (uint32_t)((r2 >> 16) ) ;
p->S21.d[2] = p->R21.d[2] * 5;
p->S22.d[2] = p->R22.d[2] * 5;
p->S23.d[2] = p->R23.d[2] * 5;
p->S24.d[2] = p->R24.d[2] * 5;
/* H *= [r^2,r] */
T0 = _mm_mul_epu32(H0, p->R20.v);
T1 = _mm_mul_epu32(H0, p->R21.v);
T2 = _mm_mul_epu32(H0, p->R22.v);
T3 = _mm_mul_epu32(H0, p->R23.v);
T4 = _mm_mul_epu32(H0, p->R24.v);
T5 = _mm_mul_epu32(H1, p->S24.v); T6 = _mm_mul_epu32(H1, p->R20.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H2, p->S23.v); T6 = _mm_mul_epu32(H2, p->S24.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H3, p->S22.v); T6 = _mm_mul_epu32(H3, p->S23.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H4, p->S21.v); T6 = _mm_mul_epu32(H4, p->S22.v); T0 = _mm_add_epi64(T0, T5); T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H1, p->R21.v); T6 = _mm_mul_epu32(H1, p->R22.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H2, p->R20.v); T6 = _mm_mul_epu32(H2, p->R21.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H3, p->S24.v); T6 = _mm_mul_epu32(H3, p->R20.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H4, p->S23.v); T6 = _mm_mul_epu32(H4, p->S24.v); T2 = _mm_add_epi64(T2, T5); T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H1, p->R23.v); T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(H2, p->R22.v); T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(H3, p->R21.v); T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(H4, p->R20.v); T4 = _mm_add_epi64(T4, T5);
C1 = _mm_srli_epi64(T0, 26); C2 = _mm_srli_epi64(T3, 26); T0 = _mm_and_si128(T0, MMASK); T3 = _mm_and_si128(T3, MMASK); T1 = _mm_add_epi64(T1, C1); T4 = _mm_add_epi64(T4, C2);
C1 = _mm_srli_epi64(T1, 26); C2 = _mm_srli_epi64(T4, 26); T1 = _mm_and_si128(T1, MMASK); T4 = _mm_and_si128(T4, MMASK); T2 = _mm_add_epi64(T2, C1); T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE));
C1 = _mm_srli_epi64(T2, 26); C2 = _mm_srli_epi64(T0, 26); T2 = _mm_and_si128(T2, MMASK); T0 = _mm_and_si128(T0, MMASK); T3 = _mm_add_epi64(T3, C1); T1 = _mm_add_epi64(T1, C2);
C1 = _mm_srli_epi64(T3, 26); T3 = _mm_and_si128(T3, MMASK); T4 = _mm_add_epi64(T4, C1);
/* H = H[0]+H[1] */
H0 = _mm_add_epi64(T0, _mm_srli_si128(T0, 8));
H1 = _mm_add_epi64(T1, _mm_srli_si128(T1, 8));
H2 = _mm_add_epi64(T2, _mm_srli_si128(T2, 8));
H3 = _mm_add_epi64(T3, _mm_srli_si128(T3, 8));
H4 = _mm_add_epi64(T4, _mm_srli_si128(T4, 8));
t0 = _mm_cvtsi128_si32(H0) ; c = (t0 >> 26); t0 &= 0x3ffffff;
t1 = _mm_cvtsi128_si32(H1) + c; c = (t1 >> 26); t1 &= 0x3ffffff;
t2 = _mm_cvtsi128_si32(H2) + c; c = (t2 >> 26); t2 &= 0x3ffffff;
t3 = _mm_cvtsi128_si32(H3) + c; c = (t3 >> 26); t3 &= 0x3ffffff;
t4 = _mm_cvtsi128_si32(H4) + c; c = (t4 >> 26); t4 &= 0x3ffffff;
t0 = t0 + (c * 5); c = (t0 >> 26); t0 &= 0x3ffffff;
t1 = t1 + c;
st->HH[0] = ((t0 ) | (t1 << 26) ) & 0xfffffffffffull;
st->HH[1] = ((t1 >> 18) | (t2 << 8) | (t3 << 34)) & 0xfffffffffffull;
st->HH[2] = ((t3 >> 10) | (t4 << 16) ) & 0x3ffffffffffull;
return consumed;
}
void
CRYPTO_poly1305_update(poly1305_state *state, const unsigned char *m,
size_t bytes)
{
poly1305_state_internal *st = poly1305_aligned_state(state);
size_t want;
/* need at least 32 initial bytes to start the accelerated branch */
if (!st->started)
{
if ((st->leftover == 0) && (bytes > 32))
{
poly1305_first_block(st, m);
m += 32;
bytes -= 32;
}
else
{
want = poly1305_min(32 - st->leftover, bytes);
poly1305_block_copy(st->buffer + st->leftover, m, want);
bytes -= want;
m += want;
st->leftover += want;
if ((st->leftover < 32) || (bytes == 0))
return;
poly1305_first_block(st, st->buffer);
st->leftover = 0;
}
st->started = 1;
}
/* handle leftover */
if (st->leftover)
{
want = poly1305_min(64 - st->leftover, bytes);
poly1305_block_copy(st->buffer + st->leftover, m, want);
bytes -= want;
m += want;
st->leftover += want;
if (st->leftover < 64)
return;
poly1305_blocks(st, st->buffer, 64);
st->leftover = 0;
}
/* process 64 byte blocks */
if (bytes >= 64)
{
want = (bytes & ~63);
poly1305_blocks(st, m, want);
m += want;
bytes -= want;
}
if (bytes)
{
poly1305_block_copy(st->buffer + st->leftover, m, bytes);
st->leftover += bytes;
}
}
void
CRYPTO_poly1305_finish(poly1305_state *state, unsigned char mac[16])
{
poly1305_state_internal *st = poly1305_aligned_state(state);
size_t leftover = st->leftover;
uint8_t *m = st->buffer;
uint128_t d[3];
uint64_t h0,h1,h2;
uint64_t t0,t1;
uint64_t g0,g1,g2,c,nc;
uint64_t r0,r1,r2,s1,s2;
poly1305_power *p;
if (st->started)
{
size_t consumed = poly1305_combine(st, m, leftover);
leftover -= consumed;
m += consumed;
}
/* st->HH will either be 0 or have the combined result */
h0 = st->HH[0];
h1 = st->HH[1];
h2 = st->HH[2];
p = &st->P[1];
r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1];
r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1];
r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1];
s1 = r1 * (5 << 2);
s2 = r2 * (5 << 2);
if (leftover < 16)
goto poly1305_donna_atmost15bytes;
poly1305_donna_atleast16bytes:
t0 = U8TO64_LE(m + 0);
t1 = U8TO64_LE(m + 8);
h0 += t0 & 0xfffffffffff;
t0 = shr128_pair(t1, t0, 44);
h1 += t0 & 0xfffffffffff;
h2 += (t1 >> 24) | ((uint64_t)1 << 40);
poly1305_donna_mul:
d[0] = add128(add128(mul64x64_128(h0, r0), mul64x64_128(h1, s2)), mul64x64_128(h2, s1));
d[1] = add128(add128(mul64x64_128(h0, r1), mul64x64_128(h1, r0)), mul64x64_128(h2, s2));
d[2] = add128(add128(mul64x64_128(h0, r2), mul64x64_128(h1, r1)), mul64x64_128(h2, r0));
h0 = lo128(d[0]) & 0xfffffffffff; c = shr128(d[0], 44);
d[1] = add128_64(d[1], c); h1 = lo128(d[1]) & 0xfffffffffff; c = shr128(d[1], 44);
d[2] = add128_64(d[2], c); h2 = lo128(d[2]) & 0x3ffffffffff; c = shr128(d[2], 42);
h0 += c * 5;
m += 16;
leftover -= 16;
if (leftover >= 16) goto poly1305_donna_atleast16bytes;
/* final bytes */
poly1305_donna_atmost15bytes:
if (!leftover) goto poly1305_donna_finish;
m[leftover++] = 1;
poly1305_block_zero(m + leftover, 16 - leftover);
leftover = 16;
t0 = U8TO64_LE(m+0);
t1 = U8TO64_LE(m+8);
h0 += t0 & 0xfffffffffff; t0 = shr128_pair(t1, t0, 44);
h1 += t0 & 0xfffffffffff;
h2 += (t1 >> 24);
goto poly1305_donna_mul;
poly1305_donna_finish:
c = (h0 >> 44); h0 &= 0xfffffffffff;
h1 += c; c = (h1 >> 44); h1 &= 0xfffffffffff;
h2 += c; c = (h2 >> 42); h2 &= 0x3ffffffffff;
h0 += c * 5;
g0 = h0 + 5; c = (g0 >> 44); g0 &= 0xfffffffffff;
g1 = h1 + c; c = (g1 >> 44); g1 &= 0xfffffffffff;
g2 = h2 + c - ((uint64_t)1 << 42);
c = (g2 >> 63) - 1;
nc = ~c;
h0 = (h0 & nc) | (g0 & c);
h1 = (h1 & nc) | (g1 & c);
h2 = (h2 & nc) | (g2 & c);
/* pad */
t0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1];
t1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1];
h0 += (t0 & 0xfffffffffff) ; c = (h0 >> 44); h0 &= 0xfffffffffff; t0 = shr128_pair(t1, t0, 44);
h1 += (t0 & 0xfffffffffff) + c; c = (h1 >> 44); h1 &= 0xfffffffffff; t1 = (t1 >> 24);
h2 += (t1 ) + c;
U64TO8_LE(mac + 0, ((h0 ) | (h1 << 44)));
U64TO8_LE(mac + 8, ((h1 >> 20) | (h2 << 24)));
}
#endif /* !OPENSSL_NO_POLY1305 */