blob: 519f384cdebc17c6402590f686d3206881528085 [file] [log] [blame]
//===-- R600Instructions.td - R600 Instruction defs -------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// R600 Tablegen instruction definitions
//
//===----------------------------------------------------------------------===//
include "R600Intrinsics.td"
class InstR600 <bits<32> inst, dag outs, dag ins, string asm, list<dag> pattern,
InstrItinClass itin>
: AMDGPUInst <outs, ins, asm, pattern> {
field bits<32> Inst;
bit Trig = 0;
bit Op3 = 0;
bit isVector = 0;
bits<2> FlagOperandIdx = 0;
let Inst = inst;
let Namespace = "AMDGPU";
let OutOperandList = outs;
let InOperandList = ins;
let AsmString = asm;
let Pattern = pattern;
let Itinerary = itin;
let TSFlags{4} = Trig;
let TSFlags{5} = Op3;
// Vector instructions are instructions that must fill all slots in an
// instruction group
let TSFlags{6} = isVector;
let TSFlags{8-7} = FlagOperandIdx;
}
class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern> :
AMDGPUInst <outs, ins, asm, pattern>
{
field bits<64> Inst;
let Namespace = "AMDGPU";
}
def MEMxi : Operand<iPTR> {
let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index);
}
def MEMrr : Operand<iPTR> {
let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index);
}
def ADDRParam : ComplexPattern<i32, 2, "SelectADDRParam", [], []>;
def ADDRDWord : ComplexPattern<i32, 1, "SelectADDRDWord", [], []>;
def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>;
class R600_ALU {
bits<7> DST_GPR = 0;
bits<9> SRC0_SEL = 0;
bits<1> SRC0_NEG = 0;
bits<9> SRC1_SEL = 0;
bits<1> SRC1_NEG = 0;
bits<1> CLAMP = 0;
}
def R600_Pred : PredicateOperand<i32, (ops R600_Predicate),
(ops PRED_SEL_OFF)>;
class R600_1OP <bits<32> inst, string opName, list<dag> pattern,
InstrItinClass itin = AnyALU> :
InstR600 <inst,
(outs R600_Reg32:$dst),
(ins R600_Reg32:$src, R600_Pred:$p, variable_ops),
!strconcat(opName, " $dst, $src ($p)"),
pattern,
itin
>;
class R600_2OP <bits<32> inst, string opName, list<dag> pattern,
InstrItinClass itin = AnyALU> :
InstR600 <inst,
(outs R600_Reg32:$dst),
(ins R600_Reg32:$src0, R600_Reg32:$src1,R600_Pred:$p, variable_ops),
!strconcat(opName, " $dst, $src0, $src1"),
pattern,
itin
>;
class R600_3OP <bits<32> inst, string opName, list<dag> pattern,
InstrItinClass itin = AnyALU> :
InstR600 <inst,
(outs R600_Reg32:$dst),
(ins R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2,R600_Pred:$p, variable_ops),
!strconcat(opName, " $dst, $src0, $src1, $src2"),
pattern,
itin>{
let Op3 = 1;
}
def PRED_X : InstR600 <0, (outs R600_Predicate_Bit:$dst),
(ins R600_Reg32:$src0, i32imm:$src1, i32imm:$flags),
"PRED $dst, $src0, $src1",
[], NullALU>
{
let DisableEncoding = "$src0";
field bits<32> Inst;
bits<32> src1;
let Inst = src1;
let FlagOperandIdx = 3;
}
let isTerminator = 1, isBranch = 1, isPseudo = 1 in {
def JUMP : InstR600 <0x10,
(outs),
(ins brtarget:$target, R600_Pred:$p),
"JUMP $target ($p)",
[], AnyALU
>;
}
class R600_REDUCTION <bits<32> inst, dag ins, string asm, list<dag> pattern,
InstrItinClass itin = VecALU> :
InstR600 <inst,
(outs R600_Reg32:$dst),
ins,
asm,
pattern,
itin
>;
class R600_TEX <bits<32> inst, string opName, list<dag> pattern,
InstrItinClass itin = AnyALU> :
InstR600 <inst,
(outs R600_Reg128:$dst),
(ins R600_Reg128:$src0, i32imm:$src1, i32imm:$src2),
!strconcat(opName, "$dst, $src0, $src1, $src2"),
pattern,
itin
>;
def TEX_SHADOW : PatLeaf<
(imm),
[{uint32_t TType = (uint32_t)N->getZExtValue();
return (TType >= 6 && TType <= 8) || TType == 11 || TType == 12;
}]
>;
class EG_CF_RAT <bits <8> cf_inst, bits <6> rat_inst, bits<4> rat_id, dag outs,
dag ins, string asm, list<dag> pattern> :
InstR600ISA <outs, ins, asm, pattern>
{
bits<7> RW_GPR;
bits<7> INDEX_GPR;
bits<2> RIM;
bits<2> TYPE;
bits<1> RW_REL;
bits<2> ELEM_SIZE;
bits<12> ARRAY_SIZE;
bits<4> COMP_MASK;
bits<4> BURST_COUNT;
bits<1> VPM;
bits<1> eop;
bits<1> MARK;
bits<1> BARRIER;
// CF_ALLOC_EXPORT_WORD0_RAT
let Inst{3-0} = rat_id;
let Inst{9-4} = rat_inst;
let Inst{10} = 0; // Reserved
let Inst{12-11} = RIM;
let Inst{14-13} = TYPE;
let Inst{21-15} = RW_GPR;
let Inst{22} = RW_REL;
let Inst{29-23} = INDEX_GPR;
let Inst{31-30} = ELEM_SIZE;
// CF_ALLOC_EXPORT_WORD1_BUF
let Inst{43-32} = ARRAY_SIZE;
let Inst{47-44} = COMP_MASK;
let Inst{51-48} = BURST_COUNT;
let Inst{52} = VPM;
let Inst{53} = eop;
let Inst{61-54} = cf_inst;
let Inst{62} = MARK;
let Inst{63} = BARRIER;
}
def load_param : PatFrag<(ops node:$ptr),
(load node:$ptr),
[{
const Value *Src = cast<LoadSDNode>(N)->getSrcValue();
if (Src) {
PointerType * PT = dyn_cast<PointerType>(Src->getType());
return PT && PT->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS;
}
return false;
}]>;
def isR600 : Predicate<"Subtarget.device()"
"->getGeneration() == AMDGPUDeviceInfo::HD4XXX">;
def isR700 : Predicate<"Subtarget.device()"
"->getGeneration() == AMDGPUDeviceInfo::HD4XXX &&"
"Subtarget.device()->getDeviceFlag()"
">= OCL_DEVICE_RV710">;
def isEG : Predicate<"Subtarget.device()"
"->getGeneration() >= AMDGPUDeviceInfo::HD5XXX && "
"Subtarget.device()->getDeviceFlag() != OCL_DEVICE_CAYMAN">;
def isCayman : Predicate<"Subtarget.device()"
"->getDeviceFlag() == OCL_DEVICE_CAYMAN">;
def isEGorCayman : Predicate<"Subtarget.device()"
"->getGeneration() == AMDGPUDeviceInfo::HD5XXX"
"|| Subtarget.device()->getGeneration() =="
"AMDGPUDeviceInfo::HD6XXX">;
def isR600toCayman : Predicate<
"Subtarget.device()->getGeneration() <= AMDGPUDeviceInfo::HD6XXX">;
let Predicates = [isR600toCayman] in {
//===----------------------------------------------------------------------===//
// Common Instructions R600, R700, Evergreen, Cayman
//===----------------------------------------------------------------------===//
def ADD : R600_2OP <
0x0, "ADD",
[(set R600_Reg32:$dst, (fadd R600_Reg32:$src0, R600_Reg32:$src1))]
>;
// Non-IEEE MUL: 0 * anything = 0
def MUL : R600_2OP <
0x1, "MUL NON-IEEE",
[(set R600_Reg32:$dst, (int_AMDGPU_mul R600_Reg32:$src0, R600_Reg32:$src1))]
>;
def MUL_IEEE : R600_2OP <
0x2, "MUL_IEEE",
[(set R600_Reg32:$dst, (fmul R600_Reg32:$src0, R600_Reg32:$src1))]
>;
def MAX : R600_2OP <
0x3, "MAX",
[(set R600_Reg32:$dst, (AMDGPUfmax R600_Reg32:$src0, R600_Reg32:$src1))]
>;
def MIN : R600_2OP <
0x4, "MIN",
[(set R600_Reg32:$dst, (AMDGPUfmin R600_Reg32:$src0, R600_Reg32:$src1))]
>;
// For the SET* instructions there is a naming conflict in TargetSelectionDAG.td,
// so some of the instruction names don't match the asm string.
// XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics.
def SETE : R600_2OP <
0x08, "SETE",
[(set R600_Reg32:$dst,
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
COND_EQ))]
>;
def SGT : R600_2OP <
0x09, "SETGT",
[(set R600_Reg32:$dst,
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
COND_GT))]
>;
def SGE : R600_2OP <
0xA, "SETGE",
[(set R600_Reg32:$dst,
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
COND_GE))]
>;
def SNE : R600_2OP <
0xB, "SETNE",
[(set R600_Reg32:$dst,
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
COND_NE))]
>;
def FRACT : R600_1OP <
0x10, "FRACT",
[(set R600_Reg32:$dst, (AMDGPUfract R600_Reg32:$src))]
>;
def TRUNC : R600_1OP <
0x11, "TRUNC",
[(set R600_Reg32:$dst, (int_AMDGPU_trunc R600_Reg32:$src))]
>;
def CEIL : R600_1OP <
0x12, "CEIL",
[(set R600_Reg32:$dst, (fceil R600_Reg32:$src))]
>;
def RNDNE : R600_1OP <
0x13, "RNDNE",
[(set R600_Reg32:$dst, (frint R600_Reg32:$src))]
>;
def FLOOR : R600_1OP <
0x14, "FLOOR",
[(set R600_Reg32:$dst, (int_AMDGPU_floor R600_Reg32:$src))]
>;
def MOV : InstR600 <0x19, (outs R600_Reg32:$dst),
(ins R600_Reg32:$src0, i32imm:$flags,
R600_Pred:$p),
"MOV $dst, $src0", [], AnyALU> {
let FlagOperandIdx = 2;
}
class MOV_IMM <ValueType vt, Operand immType> : InstR600 <0x19,
(outs R600_Reg32:$dst),
(ins R600_Reg32:$alu_literal, R600_Pred:$p, immType:$imm),
"MOV_IMM $dst, $imm",
[], AnyALU
>;
def MOV_IMM_I32 : MOV_IMM<i32, i32imm>;
def : Pat <
(imm:$val),
(MOV_IMM_I32 (i32 ALU_LITERAL_X), imm:$val)
>;
def MOV_IMM_F32 : MOV_IMM<f32, f32imm>;
def : Pat <
(fpimm:$val),
(MOV_IMM_F32 (i32 ALU_LITERAL_X), fpimm:$val)
>;
def KILLGT : InstR600 <0x2D,
(outs R600_Reg32:$dst),
(ins R600_Reg32:$src0, R600_Reg32:$src1, i32imm:$flags, R600_Pred:$p,
variable_ops),
"KILLGT $dst, $src0, $src1, $flags ($p)",
[],
NullALU>{
let FlagOperandIdx = 3;
}
def AND_INT : R600_2OP <
0x30, "AND_INT",
[(set R600_Reg32:$dst, (and R600_Reg32:$src0, R600_Reg32:$src1))]
>;
def OR_INT : R600_2OP <
0x31, "OR_INT",
[(set R600_Reg32:$dst, (or R600_Reg32:$src0, R600_Reg32:$src1))]
>;
def XOR_INT : R600_2OP <
0x32, "XOR_INT",
[(set R600_Reg32:$dst, (xor R600_Reg32:$src0, R600_Reg32:$src1))]
>;
def NOT_INT : R600_1OP <
0x33, "NOT_INT",
[(set R600_Reg32:$dst, (not R600_Reg32:$src))]
>;
def ADD_INT : R600_2OP <
0x34, "ADD_INT",
[(set R600_Reg32:$dst, (add R600_Reg32:$src0, R600_Reg32:$src1))]
>;
def SUB_INT : R600_2OP <
0x35, "SUB_INT",
[(set R600_Reg32:$dst, (sub R600_Reg32:$src0, R600_Reg32:$src1))]
>;
def MAX_INT : R600_2OP <
0x36, "MAX_INT",
[(set R600_Reg32:$dst, (AMDGPUsmax R600_Reg32:$src0, R600_Reg32:$src1))]>;
def MIN_INT : R600_2OP <
0x37, "MIN_INT",
[(set R600_Reg32:$dst, (AMDGPUsmin R600_Reg32:$src0, R600_Reg32:$src1))]>;
def MAX_UINT : R600_2OP <
0x38, "MAX_UINT",
[(set R600_Reg32:$dst, (AMDGPUsmax R600_Reg32:$src0, R600_Reg32:$src1))]
>;
def MIN_UINT : R600_2OP <
0x39, "MIN_UINT",
[(set R600_Reg32:$dst, (AMDGPUumin R600_Reg32:$src0, R600_Reg32:$src1))]
>;
def SETE_INT : R600_2OP <
0x3A, "SETE_INT",
[(set (i32 R600_Reg32:$dst),
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETEQ))]
>;
def SETGT_INT : R600_2OP <
0x3B, "SGT_INT",
[(set (i32 R600_Reg32:$dst),
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGT))]
>;
def SETGE_INT : R600_2OP <
0x3C, "SETGE_INT",
[(set (i32 R600_Reg32:$dst),
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGE))]
>;
def SETNE_INT : R600_2OP <
0x3D, "SETNE_INT",
[(set (i32 R600_Reg32:$dst),
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETNE))]
>;
def SETGT_UINT : R600_2OP <
0x3E, "SETGT_UINT",
[(set (i32 R600_Reg32:$dst),
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGT))]
>;
def SETGE_UINT : R600_2OP <
0x3F, "SETGE_UINT",
[(set (i32 R600_Reg32:$dst),
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGE))]
>;
def CNDE_INT : R600_3OP <
0x1C, "CNDE_INT",
[(set (i32 R600_Reg32:$dst),
(select R600_Reg32:$src0, R600_Reg32:$src2, R600_Reg32:$src1))]
>;
//===----------------------------------------------------------------------===//
// Texture instructions
//===----------------------------------------------------------------------===//
def TEX_LD : R600_TEX <
0x03, "TEX_LD",
[(set R600_Reg128:$dst, (int_AMDGPU_txf R600_Reg128:$src0, imm:$src1, imm:$src2, imm:$src3, imm:$src4, imm:$src5))]
> {
let AsmString = "TEX_LD $dst, $src0, $src1, $src2, $src3, $src4, $src5";
let InOperandList = (ins R600_Reg128:$src0, i32imm:$src1, i32imm:$src2, i32imm:$src3, i32imm:$src4, i32imm:$src5);
}
def TEX_GET_TEXTURE_RESINFO : R600_TEX <
0x04, "TEX_GET_TEXTURE_RESINFO",
[(set R600_Reg128:$dst, (int_AMDGPU_txq R600_Reg128:$src0, imm:$src1, imm:$src2))]
>;
def TEX_GET_GRADIENTS_H : R600_TEX <
0x07, "TEX_GET_GRADIENTS_H",
[(set R600_Reg128:$dst, (int_AMDGPU_ddx R600_Reg128:$src0, imm:$src1, imm:$src2))]
>;
def TEX_GET_GRADIENTS_V : R600_TEX <
0x08, "TEX_GET_GRADIENTS_V",
[(set R600_Reg128:$dst, (int_AMDGPU_ddy R600_Reg128:$src0, imm:$src1, imm:$src2))]
>;
def TEX_SET_GRADIENTS_H : R600_TEX <
0x0B, "TEX_SET_GRADIENTS_H",
[]
>;
def TEX_SET_GRADIENTS_V : R600_TEX <
0x0C, "TEX_SET_GRADIENTS_V",
[]
>;
def TEX_SAMPLE : R600_TEX <
0x10, "TEX_SAMPLE",
[(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$src1, imm:$src2))]
>;
def TEX_SAMPLE_C : R600_TEX <
0x18, "TEX_SAMPLE_C",
[(set R600_Reg128:$dst, (int_AMDGPU_tex R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
>;
def TEX_SAMPLE_L : R600_TEX <
0x11, "TEX_SAMPLE_L",
[(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$src1, imm:$src2))]
>;
def TEX_SAMPLE_C_L : R600_TEX <
0x19, "TEX_SAMPLE_C_L",
[(set R600_Reg128:$dst, (int_AMDGPU_txl R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
>;
def TEX_SAMPLE_LB : R600_TEX <
0x12, "TEX_SAMPLE_LB",
[(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0, imm:$src1, imm:$src2))]
>;
def TEX_SAMPLE_C_LB : R600_TEX <
0x1A, "TEX_SAMPLE_C_LB",
[(set R600_Reg128:$dst, (int_AMDGPU_txb R600_Reg128:$src0, imm:$src1, TEX_SHADOW:$src2))]
>;
def TEX_SAMPLE_G : R600_TEX <
0x14, "TEX_SAMPLE_G",
[]
>;
def TEX_SAMPLE_C_G : R600_TEX <
0x1C, "TEX_SAMPLE_C_G",
[]
>;
//===----------------------------------------------------------------------===//
// Helper classes for common instructions
//===----------------------------------------------------------------------===//
class MUL_LIT_Common <bits<32> inst> : R600_3OP <
inst, "MUL_LIT",
[]
>;
class MULADD_Common <bits<32> inst> : R600_3OP <
inst, "MULADD",
[(set (f32 R600_Reg32:$dst),
(IL_mad R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2))]
>;
class CNDE_Common <bits<32> inst> : R600_3OP <
inst, "CNDE",
[(set (f32 R600_Reg32:$dst),
(select (i32 (fp_to_sint (fneg R600_Reg32:$src0))), (f32 R600_Reg32:$src2), (f32 R600_Reg32:$src1)))]
>;
class CNDGT_Common <bits<32> inst> : R600_3OP <
inst, "CNDGT",
[]
>;
class CNDGE_Common <bits<32> inst> : R600_3OP <
inst, "CNDGE",
[(set R600_Reg32:$dst, (int_AMDGPU_cndlt R600_Reg32:$src0, R600_Reg32:$src2, R600_Reg32:$src1))]
>;
class DOT4_Common <bits<32> inst> : R600_REDUCTION <
inst,
(ins R600_Reg128:$src0, R600_Reg128:$src1, i32imm:$flags),
"DOT4 $dst $src0, $src1",
[]
> {
let FlagOperandIdx = 3;
}
class DOT4_Pat <Instruction dot4> : Pat <
(int_AMDGPU_dp4 R600_Reg128:$src0, R600_Reg128:$src1),
(dot4 R600_Reg128:$src0, R600_Reg128:$src1, 0)
>;
multiclass CUBE_Common <bits<32> inst> {
def _pseudo : InstR600 <
inst,
(outs R600_Reg128:$dst),
(ins R600_Reg128:$src),
"CUBE $dst $src",
[(set R600_Reg128:$dst, (int_AMDGPU_cube R600_Reg128:$src))],
VecALU
>;
def _real : InstR600 <
inst,
(outs R600_Reg32:$dst),
(ins R600_Reg32:$src0, R600_Reg32:$src1, i32imm:$flags),
"CUBE $dst, $src0, $src1",
[], VecALU
>{
let FlagOperandIdx = 3;
}
}
class EXP_IEEE_Common <bits<32> inst> : R600_1OP <
inst, "EXP_IEEE",
[(set R600_Reg32:$dst, (fexp2 R600_Reg32:$src))]
>;
class FLT_TO_INT_Common <bits<32> inst> : R600_1OP <
inst, "FLT_TO_INT",
[(set R600_Reg32:$dst, (fp_to_sint R600_Reg32:$src))]
>;
class INT_TO_FLT_Common <bits<32> inst> : R600_1OP <
inst, "INT_TO_FLT",
[(set R600_Reg32:$dst, (sint_to_fp R600_Reg32:$src))]
>;
class FLT_TO_UINT_Common <bits<32> inst> : R600_1OP <
inst, "FLT_TO_UINT",
[(set R600_Reg32:$dst, (fp_to_uint R600_Reg32:$src))]
>;
class UINT_TO_FLT_Common <bits<32> inst> : R600_1OP <
inst, "UINT_TO_FLT",
[(set R600_Reg32:$dst, (uint_to_fp R600_Reg32:$src))]
>;
class LOG_CLAMPED_Common <bits<32> inst> : R600_1OP <
inst, "LOG_CLAMPED",
[]
>;
class LOG_IEEE_Common <bits<32> inst> : R600_1OP <
inst, "LOG_IEEE",
[(set R600_Reg32:$dst, (int_AMDIL_log R600_Reg32:$src))]
>;
class LSHL_Common <bits<32> inst> : R600_2OP <
inst, "LSHL $dst, $src0, $src1",
[(set R600_Reg32:$dst, (shl R600_Reg32:$src0, R600_Reg32:$src1))]
>;
class LSHR_Common <bits<32> inst> : R600_2OP <
inst, "LSHR $dst, $src0, $src1",
[(set R600_Reg32:$dst, (srl R600_Reg32:$src0, R600_Reg32:$src1))]
>;
class ASHR_Common <bits<32> inst> : R600_2OP <
inst, "ASHR $dst, $src0, $src1",
[(set R600_Reg32:$dst, (sra R600_Reg32:$src0, R600_Reg32:$src1))]
>;
class MULHI_INT_Common <bits<32> inst> : R600_2OP <
inst, "MULHI_INT $dst, $src0, $src1",
[(set R600_Reg32:$dst, (mulhs R600_Reg32:$src0, R600_Reg32:$src1))]
>;
class MULHI_UINT_Common <bits<32> inst> : R600_2OP <
inst, "MULHI $dst, $src0, $src1",
[(set R600_Reg32:$dst, (mulhu R600_Reg32:$src0, R600_Reg32:$src1))]
>;
class MULLO_INT_Common <bits<32> inst> : R600_2OP <
inst, "MULLO_INT $dst, $src0, $src1",
[(set R600_Reg32:$dst, (mul R600_Reg32:$src0, R600_Reg32:$src1))]
>;
class MULLO_UINT_Common <bits<32> inst> : R600_2OP <
inst, "MULLO_UINT $dst, $src0, $src1",
[]
>;
class RECIP_CLAMPED_Common <bits<32> inst> : R600_1OP <
inst, "RECIP_CLAMPED",
[]
>;
class RECIP_IEEE_Common <bits<32> inst> : R600_1OP <
inst, "RECIP_IEEE",
[(set R600_Reg32:$dst, (int_AMDGPU_rcp R600_Reg32:$src))]
>;
class RECIP_UINT_Common <bits<32> inst> : R600_1OP <
inst, "RECIP_INT $dst, $src",
[(set R600_Reg32:$dst, (AMDGPUurecip R600_Reg32:$src))]
>;
class RECIPSQRT_CLAMPED_Common <bits<32> inst> : R600_1OP <
inst, "RECIPSQRT_CLAMPED",
[(set R600_Reg32:$dst, (int_AMDGPU_rsq R600_Reg32:$src))]
>;
class RECIPSQRT_IEEE_Common <bits<32> inst> : R600_1OP <
inst, "RECIPSQRT_IEEE",
[]
>;
class SIN_Common <bits<32> inst> : R600_1OP <
inst, "SIN", []>{
let Trig = 1;
}
class COS_Common <bits<32> inst> : R600_1OP <
inst, "COS", []> {
let Trig = 1;
}
//===----------------------------------------------------------------------===//
// Helper patterns for complex intrinsics
//===----------------------------------------------------------------------===//
class DIV_Common <InstR600 recip_ieee> : Pat<
(int_AMDGPU_div R600_Reg32:$src0, R600_Reg32:$src1),
(MUL R600_Reg32:$src0, (recip_ieee R600_Reg32:$src1))
>;
class SSG_Common <InstR600 cndgt, InstR600 cndge> : Pat <
(int_AMDGPU_ssg R600_Reg32:$src),
(cndgt R600_Reg32:$src, (f32 ONE), (cndge R600_Reg32:$src, (f32 ZERO), (f32 NEG_ONE)))
>;
class TGSI_LIT_Z_Common <InstR600 mul_lit, InstR600 log_clamped, InstR600 exp_ieee> : Pat <
(int_TGSI_lit_z R600_Reg32:$src_x, R600_Reg32:$src_y, R600_Reg32:$src_w),
(exp_ieee (mul_lit (log_clamped (MAX R600_Reg32:$src_y, (f32 ZERO))), R600_Reg32:$src_w, R600_Reg32:$src_x))
>;
//===----------------------------------------------------------------------===//
// R600 / R700 Instructions
//===----------------------------------------------------------------------===//
let Predicates = [isR600] in {
def MUL_LIT_r600 : MUL_LIT_Common<0x0C>;
def MULADD_r600 : MULADD_Common<0x10>;
def CNDE_r600 : CNDE_Common<0x18>;
def CNDGT_r600 : CNDGT_Common<0x19>;
def CNDGE_r600 : CNDGE_Common<0x1A>;
def DOT4_r600 : DOT4_Common<0x50>;
def : DOT4_Pat <DOT4_r600>;
defm CUBE_r600 : CUBE_Common<0x52>;
def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>;
def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>;
def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>;
def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>;
def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>;
def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>;
def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>;
def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>;
def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>;
def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>;
def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>;
def SIN_r600 : SIN_Common<0x6E>;
def COS_r600 : COS_Common<0x6F>;
def ASHR_r600 : ASHR_Common<0x70>;
def LSHR_r600 : LSHR_Common<0x71>;
def LSHL_r600 : LSHL_Common<0x72>;
def MULLO_INT_r600 : MULLO_INT_Common<0x73>;
def MULHI_INT_r600 : MULHI_INT_Common<0x74>;
def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>;
def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>;
def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>;
def DIV_r600 : DIV_Common<RECIP_IEEE_r600>;
def POW_r600 : POW_Common<LOG_IEEE_r600, EXP_IEEE_r600, MUL, GPRF32>;
def SSG_r600 : SSG_Common<CNDGT_r600, CNDGE_r600>;
def TGSI_LIT_Z_r600 : TGSI_LIT_Z_Common<MUL_LIT_r600, LOG_CLAMPED_r600, EXP_IEEE_r600>;
}
// Helper pattern for normalizing inputs to triginomic instructions for R700+
// cards.
class TRIG_eg <InstR600 trig, Intrinsic intr> : Pat<
(intr R600_Reg32:$src),
(trig (MUL (MOV_IMM_I32 (i32 ALU_LITERAL_X), CONST.TWO_PI_INV), R600_Reg32:$src))
>;
//===----------------------------------------------------------------------===//
// R700 Only instructions
//===----------------------------------------------------------------------===//
let Predicates = [isR700] in {
def SIN_r700 : SIN_Common<0x6E>;
def COS_r700 : COS_Common<0x6F>;
// R700 normalizes inputs to SIN/COS the same as EG
def : TRIG_eg <SIN_r700, int_AMDGPU_sin>;
def : TRIG_eg <COS_r700, int_AMDGPU_cos>;
}
//===----------------------------------------------------------------------===//
// Evergreen Only instructions
//===----------------------------------------------------------------------===//
let Predicates = [isEG] in {
def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
def MULHI_INT_eg : MULHI_INT_Common<0x90>;
def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
} // End Predicates = [isEG]
//===----------------------------------------------------------------------===//
// Evergreen / Cayman Instructions
//===----------------------------------------------------------------------===//
let Predicates = [isEGorCayman] in {
// BFE_UINT - bit_extract, an optimization for mask and shift
// Src0 = Input
// Src1 = Offset
// Src2 = Width
//
// bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
//
// Example Usage:
// (Offset, Width)
//
// (0, 8) = (Input << 24) >> 24 = (Input & 0xff) >> 0
// (8, 8) = (Input << 16) >> 24 = (Input & 0xffff) >> 8
// (16,8) = (Input << 8) >> 24 = (Input & 0xffffff) >> 16
// (24,8) = (Input << 0) >> 24 = (Input & 0xffffffff) >> 24
def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
[(set R600_Reg32:$dst, (int_AMDIL_bit_extract_u32 R600_Reg32:$src0,
R600_Reg32:$src1,
R600_Reg32:$src2))],
VecALU
>;
def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT",
[(set R600_Reg32:$dst, (AMDGPUbitalign R600_Reg32:$src0, R600_Reg32:$src1,
R600_Reg32:$src2))],
VecALU
>;
def MULADD_eg : MULADD_Common<0x14>;
def ASHR_eg : ASHR_Common<0x15>;
def LSHR_eg : LSHR_Common<0x16>;
def LSHL_eg : LSHL_Common<0x17>;
def CNDE_eg : CNDE_Common<0x19>;
def CNDGT_eg : CNDGT_Common<0x1A>;
def CNDGE_eg : CNDGE_Common<0x1B>;
def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
def SIN_eg : SIN_Common<0x8D>;
def COS_eg : COS_Common<0x8E>;
def DOT4_eg : DOT4_Common<0xBE>;
def : DOT4_Pat <DOT4_eg>;
defm CUBE_eg : CUBE_Common<0xC0>;
def DIV_eg : DIV_Common<RECIP_IEEE_eg>;
def POW_eg : POW_Common<LOG_IEEE_eg, EXP_IEEE_eg, MUL, GPRF32>;
def SSG_eg : SSG_Common<CNDGT_eg, CNDGE_eg>;
def TGSI_LIT_Z_eg : TGSI_LIT_Z_Common<MUL_LIT_eg, LOG_CLAMPED_eg, EXP_IEEE_eg>;
def : TRIG_eg <SIN_eg, int_AMDGPU_sin>;
def : TRIG_eg <COS_eg, int_AMDGPU_cos>;
def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
let Pattern = [];
}
def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;
def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
let Pattern = [];
}
def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;
def : Pat<(fp_to_sint R600_Reg32:$src),
(FLT_TO_INT_eg (TRUNC R600_Reg32:$src))>;
def : Pat<(fp_to_uint R600_Reg32:$src),
(FLT_TO_UINT_eg (TRUNC R600_Reg32:$src))>;
//===----------------------------------------------------------------------===//
// Memory read/write instructions
//===----------------------------------------------------------------------===//
let usesCustomInserter = 1 in {
def RAT_WRITE_CACHELESS_eg : EG_CF_RAT <0x57, 0x2, 0, (outs),
(ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr, i32imm:$eop),
"RAT_WRITE_CACHELESS_eg $rw_gpr, $index_gpr, $eop",
[]>
{
let RIM = 0;
// XXX: Have a separate instruction for non-indexed writes.
let TYPE = 1;
let RW_REL = 0;
let ELEM_SIZE = 0;
let ARRAY_SIZE = 0;
let COMP_MASK = 1;
let BURST_COUNT = 0;
let VPM = 0;
let MARK = 0;
let BARRIER = 1;
}
} // End usesCustomInserter = 1
// i32 global_store
def : Pat <
(global_store (i32 R600_TReg32_X:$val), R600_TReg32_X:$ptr),
(RAT_WRITE_CACHELESS_eg R600_TReg32_X:$val, R600_TReg32_X:$ptr, 0)
>;
// Floating point global_store
def : Pat <
(global_store (f32 R600_TReg32_X:$val), R600_TReg32_X:$ptr),
(RAT_WRITE_CACHELESS_eg R600_TReg32_X:$val, R600_TReg32_X:$ptr, 0)
>;
class VTX_READ_eg <bits<8> buffer_id, dag outs, list<dag> pattern>
: InstR600ISA <outs, (ins MEMxi:$ptr), "VTX_READ_eg $dst, $ptr", pattern> {
// Operands
bits<7> DST_GPR;
bits<7> SRC_GPR;
// Static fields
bits<5> VC_INST = 0;
bits<2> FETCH_TYPE = 2;
bits<1> FETCH_WHOLE_QUAD = 0;
bits<8> BUFFER_ID = buffer_id;
bits<1> SRC_REL = 0;
// XXX: We can infer this field based on the SRC_GPR. This would allow us
// to store vertex addresses in any channel, not just X.
bits<2> SRC_SEL_X = 0;
bits<6> MEGA_FETCH_COUNT;
bits<1> DST_REL = 0;
bits<3> DST_SEL_X;
bits<3> DST_SEL_Y;
bits<3> DST_SEL_Z;
bits<3> DST_SEL_W;
// The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL,
// FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored,
// however, based on my testing if USE_CONST_FIELDS is set, then all
// these fields need to be set to 0.
bits<1> USE_CONST_FIELDS = 0;
bits<6> DATA_FORMAT;
bits<2> NUM_FORMAT_ALL = 1;
bits<1> FORMAT_COMP_ALL = 0;
bits<1> SRF_MODE_ALL = 0;
// LLVM can only encode 64-bit instructions, so these fields are manually
// encoded in R600CodeEmitter
//
// bits<16> OFFSET;
// bits<2> ENDIAN_SWAP = 0;
// bits<1> CONST_BUF_NO_STRIDE = 0;
// bits<1> MEGA_FETCH = 0;
// bits<1> ALT_CONST = 0;
// bits<2> BUFFER_INDEX_MODE = 0;
// VTX_WORD0
let Inst{4-0} = VC_INST;
let Inst{6-5} = FETCH_TYPE;
let Inst{7} = FETCH_WHOLE_QUAD;
let Inst{15-8} = BUFFER_ID;
let Inst{22-16} = SRC_GPR;
let Inst{23} = SRC_REL;
let Inst{25-24} = SRC_SEL_X;
let Inst{31-26} = MEGA_FETCH_COUNT;
// VTX_WORD1_GPR
let Inst{38-32} = DST_GPR;
let Inst{39} = DST_REL;
let Inst{40} = 0; // Reserved
let Inst{43-41} = DST_SEL_X;
let Inst{46-44} = DST_SEL_Y;
let Inst{49-47} = DST_SEL_Z;
let Inst{52-50} = DST_SEL_W;
let Inst{53} = USE_CONST_FIELDS;
let Inst{59-54} = DATA_FORMAT;
let Inst{61-60} = NUM_FORMAT_ALL;
let Inst{62} = FORMAT_COMP_ALL;
let Inst{63} = SRF_MODE_ALL;
// VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
// is done in R600CodeEmitter
//
// Inst{79-64} = OFFSET;
// Inst{81-80} = ENDIAN_SWAP;
// Inst{82} = CONST_BUF_NO_STRIDE;
// Inst{83} = MEGA_FETCH;
// Inst{84} = ALT_CONST;
// Inst{86-85} = BUFFER_INDEX_MODE;
// Inst{95-86} = 0; Reserved
// VTX_WORD3 (Padding)
//
// Inst{127-96} = 0;
}
class VTX_READ_32_eg <bits<8> buffer_id, list<dag> pattern>
: VTX_READ_eg <buffer_id, (outs R600_TReg32_X:$dst), pattern> {
let MEGA_FETCH_COUNT = 4;
let DST_SEL_X = 0;
let DST_SEL_Y = 7; // Masked
let DST_SEL_Z = 7; // Masked
let DST_SEL_W = 7; // Masked
let DATA_FORMAT = 0xD; // COLOR_32
// This is not really necessary, but there were some GPU hangs that appeared
// to be caused by ALU instructions in the next instruction group that wrote
// to the $ptr registers of the VTX_READ.
// e.g.
// %T3_X<def> = VTX_READ_PARAM_i32_eg %T2_X<kill>, 24
// %T2_X<def> = MOV %ZERO
//Adding this constraint prevents this from happening.
let Constraints = "$ptr.ptr = $dst";
}
class VTX_READ_128_eg <bits<8> buffer_id, list<dag> pattern>
: VTX_READ_eg <buffer_id, (outs R600_Reg128:$dst), pattern> {
let MEGA_FETCH_COUNT = 16;
let DST_SEL_X = 0;
let DST_SEL_Y = 1;
let DST_SEL_Z = 2;
let DST_SEL_W = 3;
let DATA_FORMAT = 0x22; // COLOR_32_32_32_32
// XXX: Need to force VTX_READ_128 instructions to write to the same register
// that holds its buffer address to avoid potential hangs. We can't use
// the same constraint as VTX_READ_32_eg, because the $ptr.ptr and $dst
// registers are different sizes.
}
//===----------------------------------------------------------------------===//
// VTX Read from parameter memory space
//===----------------------------------------------------------------------===//
class VTX_READ_PARAM_32_eg <ValueType vt> : VTX_READ_32_eg <0,
[(set (vt R600_TReg32_X:$dst), (load_param ADDRVTX_READ:$ptr))]
>;
def VTX_READ_PARAM_i32_eg : VTX_READ_PARAM_32_eg<i32>;
def VTX_READ_PARAM_f32_eg : VTX_READ_PARAM_32_eg<f32>;
//===----------------------------------------------------------------------===//
// VTX Read from global memory space
//===----------------------------------------------------------------------===//
// 32-bit reads
class VTX_READ_GLOBAL_eg <ValueType vt> : VTX_READ_32_eg <1,
[(set (vt R600_TReg32_X:$dst), (global_load ADDRVTX_READ:$ptr))]
>;
def VTX_READ_GLOBAL_i32_eg : VTX_READ_GLOBAL_eg<i32>;
def VTX_READ_GLOBAL_f32_eg : VTX_READ_GLOBAL_eg<f32>;
// 128-bit reads
class VTX_READ_GLOBAL_128_eg <ValueType vt> : VTX_READ_128_eg <1,
[(set (vt R600_Reg128:$dst), (global_load ADDRVTX_READ:$ptr))]
>;
def VTX_READ_GLOBAL_v4i32_eg : VTX_READ_GLOBAL_128_eg<v4i32>;
def VTX_READ_GLOBAL_v4f32_eg : VTX_READ_GLOBAL_128_eg<v4f32>;
}
let Predicates = [isCayman] in {
let isVector = 1 in {
def RECIP_IEEE_cm : RECIP_IEEE_Common<0x86>;
def MULLO_INT_cm : MULLO_INT_Common<0x8F>;
def MULHI_INT_cm : MULHI_INT_Common<0x90>;
def MULLO_UINT_cm : MULLO_UINT_Common<0x91>;
def MULHI_UINT_cm : MULHI_UINT_Common<0x92>;
} // End isVector = 1
// RECIP_UINT emulation for Cayman
def : Pat <
(AMDGPUurecip R600_Reg32:$src0),
(FLT_TO_UINT_eg (MUL_IEEE (RECIP_IEEE_cm (UINT_TO_FLT_eg R600_Reg32:$src0)),
(MOV_IMM_I32 (i32 ALU_LITERAL_X), 0x4f800000)))
>;
} // End isCayman
let isCodeGenOnly = 1 in {
def MULLIT : AMDGPUShaderInst <
(outs R600_Reg128:$dst),
(ins R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2),
"MULLIT $dst, $src0, $src1",
[(set R600_Reg128:$dst, (int_AMDGPU_mullit R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2))]
>;
let usesCustomInserter = 1, isPseudo = 1 in {
class R600PreloadInst <string asm, Intrinsic intr> : AMDGPUInst <
(outs R600_TReg32:$dst),
(ins),
asm,
[(set R600_TReg32:$dst, (intr))]
>;
def R600_LOAD_CONST : AMDGPUShaderInst <
(outs R600_Reg32:$dst),
(ins i32imm:$src0),
"R600_LOAD_CONST $dst, $src0",
[(set R600_Reg32:$dst, (int_AMDGPU_load_const imm:$src0))]
>;
def RESERVE_REG : AMDGPUShaderInst <
(outs),
(ins i32imm:$src),
"RESERVE_REG $src",
[(int_AMDGPU_reserve_reg imm:$src)]
>;
def TXD: AMDGPUShaderInst <
(outs R600_Reg128:$dst),
(ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$src3, i32imm:$src4),
"TXD $dst, $src0, $src1, $src2, $src3, $src4",
[(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$src3, imm:$src4))]
>;
def TXD_SHADOW: AMDGPUShaderInst <
(outs R600_Reg128:$dst),
(ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$src3, i32imm:$src4),
"TXD_SHADOW $dst, $src0, $src1, $src2, $src3, $src4",
[(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$src3, TEX_SHADOW:$src4))]
>;
} // End usesCustomInserter = 1, isPseudo = 1
} // End isCodeGenOnly = 1
def CLAMP_R600 : CLAMP <R600_Reg32>;
def FABS_R600 : FABS<R600_Reg32>;
def FNEG_R600 : FNEG<R600_Reg32>;
let usesCustomInserter = 1 in {
def MASK_WRITE : AMDGPUShaderInst <
(outs),
(ins R600_Reg32:$src),
"MASK_WRITE $src",
[]
>;
} // End usesCustomInserter = 1
//===---------------------------------------------------------------------===//
// Return instruction
//===---------------------------------------------------------------------===//
let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in {
def RETURN : ILFormat<(outs), (ins variable_ops),
"RETURN", [(IL_retflag)]>;
}
//===----------------------------------------------------------------------===//
// ISel Patterns
//===----------------------------------------------------------------------===//
// KIL Patterns
def KILP : Pat <
(int_AMDGPU_kilp),
(MASK_WRITE (KILLGT (f32 ONE), (f32 ZERO), 0))
>;
def KIL : Pat <
(int_AMDGPU_kill R600_Reg32:$src0),
(MASK_WRITE (KILLGT (f32 ZERO), (f32 R600_Reg32:$src0), 0))
>;
// SGT Reverse args
def : Pat <
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LT),
(SGT R600_Reg32:$src1, R600_Reg32:$src0)
>;
// SGE Reverse args
def : Pat <
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LE),
(SGE R600_Reg32:$src1, R600_Reg32:$src0)
>;
// SETGT_INT reverse args
def : Pat <
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLT),
(SETGT_INT R600_Reg32:$src1, R600_Reg32:$src0)
>;
// SETGE_INT reverse args
def : Pat <
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLE),
(SETGE_INT R600_Reg32:$src1, R600_Reg32:$src0)
>;
// SETGT_UINT reverse args
def : Pat <
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULT),
(SETGT_UINT R600_Reg32:$src1, R600_Reg32:$src0)
>;
// SETGE_UINT reverse args
def : Pat <
(selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULE),
(SETGE_UINT R600_Reg32:$src0, R600_Reg32:$src1)
>;
// The next two patterns are special cases for handling 'true if ordered' and
// 'true if unordered' conditionals. The assumption here is that the behavior of
// SETE and SNE conforms to the Direct3D 10 rules for floating point values
// described here:
// http://msdn.microsoft.com/en-us/library/windows/desktop/cc308050.aspx#alpha_32_bit
// We assume that SETE returns false when one of the operands is NAN and
// SNE returns true when on of the operands is NAN
//SETE - 'true if ordered'
def : Pat <
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETO),
(SETE R600_Reg32:$src0, R600_Reg32:$src1)
>;
//SNE - 'true if unordered'
def : Pat <
(selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETUO),
(SNE R600_Reg32:$src0, R600_Reg32:$src1)
>;
def : Extract_Element <f32, v4f32, R600_Reg128, 0, sel_x>;
def : Extract_Element <f32, v4f32, R600_Reg128, 1, sel_y>;
def : Extract_Element <f32, v4f32, R600_Reg128, 2, sel_z>;
def : Extract_Element <f32, v4f32, R600_Reg128, 3, sel_w>;
def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 4, sel_x>;
def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 5, sel_y>;
def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 6, sel_z>;
def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 7, sel_w>;
def : Extract_Element <i32, v4i32, R600_Reg128, 0, sel_x>;
def : Extract_Element <i32, v4i32, R600_Reg128, 1, sel_y>;
def : Extract_Element <i32, v4i32, R600_Reg128, 2, sel_z>;
def : Extract_Element <i32, v4i32, R600_Reg128, 3, sel_w>;
def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 4, sel_x>;
def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 5, sel_y>;
def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 6, sel_z>;
def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 7, sel_w>;
def : Vector_Build <v4f32, R600_Reg32>;
def : Vector_Build <v4i32, R600_Reg32>;
// bitconvert patterns
def : BitConvert <i32, f32, R600_Reg32>;
def : BitConvert <f32, i32, R600_Reg32>;
def : BitConvert <v4f32, v4i32, R600_Reg128>;
} // End isR600toCayman Predicate