blob: e73c80478777f843aa1c8cd2703bae10195cfbfe [file] [log] [blame]
/*
* Copyright 2011 Christoph Bumiller
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
extern "C" {
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_scan.h"
}
#include "nv50_ir.h"
#include "nv50_ir_util.h"
#include "nv50_ir_build_util.h"
namespace tgsi {
class Source;
static nv50_ir::operation translateOpcode(uint opcode);
static nv50_ir::DataFile translateFile(uint file);
static nv50_ir::TexTarget translateTexture(uint texTarg);
static nv50_ir::SVSemantic translateSysVal(uint sysval);
class Instruction
{
public:
Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { }
class SrcRegister
{
public:
SrcRegister(const struct tgsi_full_src_register *src)
: reg(src->Register),
fsr(src)
{ }
SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { }
struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off)
{
struct tgsi_src_register reg;
memset(&reg, 0, sizeof(reg));
reg.Index = off.Index;
reg.File = off.File;
reg.SwizzleX = off.SwizzleX;
reg.SwizzleY = off.SwizzleY;
reg.SwizzleZ = off.SwizzleZ;
return reg;
}
SrcRegister(const struct tgsi_texture_offset& off) :
reg(offsetToSrc(off)),
fsr(NULL)
{ }
uint getFile() const { return reg.File; }
bool is2D() const { return reg.Dimension; }
bool isIndirect(int dim) const
{
return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect;
}
int getIndex(int dim) const
{
return (dim && fsr) ? fsr->Dimension.Index : reg.Index;
}
int getSwizzle(int chan) const
{
return tgsi_util_get_src_register_swizzle(&reg, chan);
}
nv50_ir::Modifier getMod(int chan) const;
SrcRegister getIndirect(int dim) const
{
assert(fsr && isIndirect(dim));
if (dim)
return SrcRegister(fsr->DimIndirect);
return SrcRegister(fsr->Indirect);
}
uint32_t getValueU32(int c, const struct nv50_ir_prog_info *info) const
{
assert(reg.File == TGSI_FILE_IMMEDIATE);
assert(!reg.Absolute);
assert(!reg.Negate);
return info->immd.data[reg.Index * 4 + getSwizzle(c)];
}
private:
const struct tgsi_src_register reg;
const struct tgsi_full_src_register *fsr;
};
class DstRegister
{
public:
DstRegister(const struct tgsi_full_dst_register *dst)
: reg(dst->Register),
fdr(dst)
{ }
DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { }
uint getFile() const { return reg.File; }
bool is2D() const { return reg.Dimension; }
bool isIndirect(int dim) const
{
return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect;
}
int getIndex(int dim) const
{
return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index;
}
unsigned int getMask() const { return reg.WriteMask; }
bool isMasked(int chan) const { return !(getMask() & (1 << chan)); }
SrcRegister getIndirect(int dim) const
{
assert(fdr && isIndirect(dim));
if (dim)
return SrcRegister(fdr->DimIndirect);
return SrcRegister(fdr->Indirect);
}
private:
const struct tgsi_dst_register reg;
const struct tgsi_full_dst_register *fdr;
};
inline uint getOpcode() const { return insn->Instruction.Opcode; }
unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; }
unsigned int dstCount() const { return insn->Instruction.NumDstRegs; }
// mask of used components of source s
unsigned int srcMask(unsigned int s) const;
SrcRegister getSrc(unsigned int s) const
{
assert(s < srcCount());
return SrcRegister(&insn->Src[s]);
}
DstRegister getDst(unsigned int d) const
{
assert(d < dstCount());
return DstRegister(&insn->Dst[d]);
}
SrcRegister getTexOffset(unsigned int i) const
{
assert(i < TGSI_FULL_MAX_TEX_OFFSETS);
return SrcRegister(insn->TexOffsets[i]);
}
unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; }
bool checkDstSrcAliasing() const;
inline nv50_ir::operation getOP() const {
return translateOpcode(getOpcode()); }
nv50_ir::DataType inferSrcType() const;
nv50_ir::DataType inferDstType() const;
nv50_ir::CondCode getSetCond() const;
nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const;
inline uint getLabel() { return insn->Label.Label; }
unsigned getSaturate() const { return insn->Instruction.Saturate; }
void print() const
{
tgsi_dump_instruction(insn, 1);
}
private:
const struct tgsi_full_instruction *insn;
};
unsigned int Instruction::srcMask(unsigned int s) const
{
unsigned int mask = insn->Dst[0].Register.WriteMask;
switch (insn->Instruction.Opcode) {
case TGSI_OPCODE_COS:
case TGSI_OPCODE_SIN:
return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
case TGSI_OPCODE_DP2:
return 0x3;
case TGSI_OPCODE_DP3:
return 0x7;
case TGSI_OPCODE_DP4:
case TGSI_OPCODE_DPH:
case TGSI_OPCODE_KIL: /* WriteMask ignored */
return 0xf;
case TGSI_OPCODE_DST:
return mask & (s ? 0xa : 0x6);
case TGSI_OPCODE_EX2:
case TGSI_OPCODE_EXP:
case TGSI_OPCODE_LG2:
case TGSI_OPCODE_LOG:
case TGSI_OPCODE_POW:
case TGSI_OPCODE_RCP:
case TGSI_OPCODE_RSQ:
case TGSI_OPCODE_SCS:
return 0x1;
case TGSI_OPCODE_IF:
return 0x1;
case TGSI_OPCODE_LIT:
return 0xb;
case TGSI_OPCODE_TEX:
case TGSI_OPCODE_TXB:
case TGSI_OPCODE_TXD:
case TGSI_OPCODE_TXL:
case TGSI_OPCODE_TXP:
{
const struct tgsi_instruction_texture *tex = &insn->Texture;
assert(insn->Instruction.Texture);
mask = 0x7;
if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
insn->Instruction.Opcode != TGSI_OPCODE_TXD)
mask |= 0x8; /* bias, lod or proj */
switch (tex->Texture) {
case TGSI_TEXTURE_1D:
mask &= 0x9;
break;
case TGSI_TEXTURE_SHADOW1D:
mask &= 0xd;
break;
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_RECT:
mask &= 0xb;
break;
default:
break;
}
}
return mask;
case TGSI_OPCODE_XPD:
{
unsigned int x = 0;
if (mask & 1) x |= 0x6;
if (mask & 2) x |= 0x5;
if (mask & 4) x |= 0x3;
return x;
}
default:
break;
}
return mask;
}
nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const
{
nv50_ir::Modifier m(0);
if (reg.Absolute)
m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS);
if (reg.Negate)
m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG);
return m;
}
static nv50_ir::DataFile translateFile(uint file)
{
switch (file) {
case TGSI_FILE_CONSTANT: return nv50_ir::FILE_MEMORY_CONST;
case TGSI_FILE_INPUT: return nv50_ir::FILE_SHADER_INPUT;
case TGSI_FILE_OUTPUT: return nv50_ir::FILE_SHADER_OUTPUT;
case TGSI_FILE_TEMPORARY: return nv50_ir::FILE_GPR;
case TGSI_FILE_ADDRESS: return nv50_ir::FILE_ADDRESS;
case TGSI_FILE_PREDICATE: return nv50_ir::FILE_PREDICATE;
case TGSI_FILE_IMMEDIATE: return nv50_ir::FILE_IMMEDIATE;
case TGSI_FILE_SYSTEM_VALUE: return nv50_ir::FILE_SYSTEM_VALUE;
case TGSI_FILE_IMMEDIATE_ARRAY: return nv50_ir::FILE_IMMEDIATE;
case TGSI_FILE_TEMPORARY_ARRAY: return nv50_ir::FILE_MEMORY_LOCAL;
case TGSI_FILE_RESOURCE: return nv50_ir::FILE_MEMORY_GLOBAL;
case TGSI_FILE_SAMPLER:
case TGSI_FILE_NULL:
default:
return nv50_ir::FILE_NULL;
}
}
static nv50_ir::SVSemantic translateSysVal(uint sysval)
{
switch (sysval) {
case TGSI_SEMANTIC_FACE: return nv50_ir::SV_FACE;
case TGSI_SEMANTIC_PSIZE: return nv50_ir::SV_POINT_SIZE;
case TGSI_SEMANTIC_PRIMID: return nv50_ir::SV_PRIMITIVE_ID;
case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID;
case TGSI_SEMANTIC_VERTEXID: return nv50_ir::SV_VERTEX_ID;
default:
assert(0);
return nv50_ir::SV_CLOCK;
}
}
#define NV50_IR_TEX_TARG_CASE(a, b) \
case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b;
static nv50_ir::TexTarget translateTexture(uint tex)
{
switch (tex) {
NV50_IR_TEX_TARG_CASE(1D, 1D);
NV50_IR_TEX_TARG_CASE(2D, 2D);
NV50_IR_TEX_TARG_CASE(3D, 3D);
NV50_IR_TEX_TARG_CASE(CUBE, CUBE);
NV50_IR_TEX_TARG_CASE(RECT, RECT);
NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY);
NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY);
NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW);
NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW);
NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW);
NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW);
NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW);
NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW);
NV50_IR_TEX_TARG_CASE(BUFFER, BUFFER);
case TGSI_TEXTURE_UNKNOWN:
default:
assert(!"invalid texture target");
return nv50_ir::TEX_TARGET_2D;
}
}
nv50_ir::DataType Instruction::inferSrcType() const
{
switch (getOpcode()) {
case TGSI_OPCODE_AND:
case TGSI_OPCODE_OR:
case TGSI_OPCODE_XOR:
case TGSI_OPCODE_NOT:
case TGSI_OPCODE_U2F:
case TGSI_OPCODE_UADD:
case TGSI_OPCODE_UDIV:
case TGSI_OPCODE_UMOD:
case TGSI_OPCODE_UMAD:
case TGSI_OPCODE_UMUL:
case TGSI_OPCODE_UMAX:
case TGSI_OPCODE_UMIN:
case TGSI_OPCODE_USEQ:
case TGSI_OPCODE_USGE:
case TGSI_OPCODE_USLT:
case TGSI_OPCODE_USNE:
case TGSI_OPCODE_USHR:
case TGSI_OPCODE_UCMP:
return nv50_ir::TYPE_U32;
case TGSI_OPCODE_I2F:
case TGSI_OPCODE_IDIV:
case TGSI_OPCODE_IMAX:
case TGSI_OPCODE_IMIN:
case TGSI_OPCODE_IABS:
case TGSI_OPCODE_INEG:
case TGSI_OPCODE_ISGE:
case TGSI_OPCODE_ISHR:
case TGSI_OPCODE_ISLT:
case TGSI_OPCODE_ISSG:
case TGSI_OPCODE_SAD: // not sure about SAD, but no one has a float version
case TGSI_OPCODE_MOD:
case TGSI_OPCODE_UARL:
return nv50_ir::TYPE_S32;
default:
return nv50_ir::TYPE_F32;
}
}
nv50_ir::DataType Instruction::inferDstType() const
{
switch (getOpcode()) {
case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32;
case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32;
case TGSI_OPCODE_I2F:
case TGSI_OPCODE_U2F:
return nv50_ir::TYPE_F32;
default:
return inferSrcType();
}
}
nv50_ir::CondCode Instruction::getSetCond() const
{
using namespace nv50_ir;
switch (getOpcode()) {
case TGSI_OPCODE_SLT:
case TGSI_OPCODE_ISLT:
case TGSI_OPCODE_USLT:
return CC_LT;
case TGSI_OPCODE_SLE:
return CC_LE;
case TGSI_OPCODE_SGE:
case TGSI_OPCODE_ISGE:
case TGSI_OPCODE_USGE:
return CC_GE;
case TGSI_OPCODE_SGT:
return CC_GT;
case TGSI_OPCODE_SEQ:
case TGSI_OPCODE_USEQ:
return CC_EQ;
case TGSI_OPCODE_SNE:
return CC_NEU;
case TGSI_OPCODE_USNE:
return CC_NE;
case TGSI_OPCODE_SFL:
return CC_NEVER;
case TGSI_OPCODE_STR:
default:
return CC_ALWAYS;
}
}
#define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b
static nv50_ir::operation translateOpcode(uint opcode)
{
switch (opcode) {
NV50_IR_OPCODE_CASE(ARL, SHL);
NV50_IR_OPCODE_CASE(MOV, MOV);
NV50_IR_OPCODE_CASE(RCP, RCP);
NV50_IR_OPCODE_CASE(RSQ, RSQ);
NV50_IR_OPCODE_CASE(MUL, MUL);
NV50_IR_OPCODE_CASE(ADD, ADD);
NV50_IR_OPCODE_CASE(MIN, MIN);
NV50_IR_OPCODE_CASE(MAX, MAX);
NV50_IR_OPCODE_CASE(SLT, SET);
NV50_IR_OPCODE_CASE(SGE, SET);
NV50_IR_OPCODE_CASE(MAD, MAD);
NV50_IR_OPCODE_CASE(SUB, SUB);
NV50_IR_OPCODE_CASE(FLR, FLOOR);
NV50_IR_OPCODE_CASE(ROUND, CVT);
NV50_IR_OPCODE_CASE(EX2, EX2);
NV50_IR_OPCODE_CASE(LG2, LG2);
NV50_IR_OPCODE_CASE(POW, POW);
NV50_IR_OPCODE_CASE(ABS, ABS);
NV50_IR_OPCODE_CASE(COS, COS);
NV50_IR_OPCODE_CASE(DDX, DFDX);
NV50_IR_OPCODE_CASE(DDY, DFDY);
NV50_IR_OPCODE_CASE(KILP, DISCARD);
NV50_IR_OPCODE_CASE(SEQ, SET);
NV50_IR_OPCODE_CASE(SFL, SET);
NV50_IR_OPCODE_CASE(SGT, SET);
NV50_IR_OPCODE_CASE(SIN, SIN);
NV50_IR_OPCODE_CASE(SLE, SET);
NV50_IR_OPCODE_CASE(SNE, SET);
NV50_IR_OPCODE_CASE(STR, SET);
NV50_IR_OPCODE_CASE(TEX, TEX);
NV50_IR_OPCODE_CASE(TXD, TXD);
NV50_IR_OPCODE_CASE(TXP, TEX);
NV50_IR_OPCODE_CASE(BRA, BRA);
NV50_IR_OPCODE_CASE(CAL, CALL);
NV50_IR_OPCODE_CASE(RET, RET);
NV50_IR_OPCODE_CASE(CMP, SLCT);
NV50_IR_OPCODE_CASE(TXB, TXB);
NV50_IR_OPCODE_CASE(DIV, DIV);
NV50_IR_OPCODE_CASE(TXL, TXL);
NV50_IR_OPCODE_CASE(CEIL, CEIL);
NV50_IR_OPCODE_CASE(I2F, CVT);
NV50_IR_OPCODE_CASE(NOT, NOT);
NV50_IR_OPCODE_CASE(TRUNC, TRUNC);
NV50_IR_OPCODE_CASE(SHL, SHL);
NV50_IR_OPCODE_CASE(AND, AND);
NV50_IR_OPCODE_CASE(OR, OR);
NV50_IR_OPCODE_CASE(MOD, MOD);
NV50_IR_OPCODE_CASE(XOR, XOR);
NV50_IR_OPCODE_CASE(SAD, SAD);
NV50_IR_OPCODE_CASE(TXF, TXF);
NV50_IR_OPCODE_CASE(TXQ, TXQ);
NV50_IR_OPCODE_CASE(EMIT, EMIT);
NV50_IR_OPCODE_CASE(ENDPRIM, RESTART);
NV50_IR_OPCODE_CASE(KIL, DISCARD);
NV50_IR_OPCODE_CASE(F2I, CVT);
NV50_IR_OPCODE_CASE(IDIV, DIV);
NV50_IR_OPCODE_CASE(IMAX, MAX);
NV50_IR_OPCODE_CASE(IMIN, MIN);
NV50_IR_OPCODE_CASE(IABS, ABS);
NV50_IR_OPCODE_CASE(INEG, NEG);
NV50_IR_OPCODE_CASE(ISGE, SET);
NV50_IR_OPCODE_CASE(ISHR, SHR);
NV50_IR_OPCODE_CASE(ISLT, SET);
NV50_IR_OPCODE_CASE(F2U, CVT);
NV50_IR_OPCODE_CASE(U2F, CVT);
NV50_IR_OPCODE_CASE(UADD, ADD);
NV50_IR_OPCODE_CASE(UDIV, DIV);
NV50_IR_OPCODE_CASE(UMAD, MAD);
NV50_IR_OPCODE_CASE(UMAX, MAX);
NV50_IR_OPCODE_CASE(UMIN, MIN);
NV50_IR_OPCODE_CASE(UMOD, MOD);
NV50_IR_OPCODE_CASE(UMUL, MUL);
NV50_IR_OPCODE_CASE(USEQ, SET);
NV50_IR_OPCODE_CASE(USGE, SET);
NV50_IR_OPCODE_CASE(USHR, SHR);
NV50_IR_OPCODE_CASE(USLT, SET);
NV50_IR_OPCODE_CASE(USNE, SET);
NV50_IR_OPCODE_CASE(LOAD, TXF);
NV50_IR_OPCODE_CASE(SAMPLE, TEX);
NV50_IR_OPCODE_CASE(SAMPLE_B, TXB);
NV50_IR_OPCODE_CASE(SAMPLE_C, TEX);
NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX);
NV50_IR_OPCODE_CASE(SAMPLE_D, TXD);
NV50_IR_OPCODE_CASE(SAMPLE_L, TXL);
NV50_IR_OPCODE_CASE(GATHER4, TXG);
NV50_IR_OPCODE_CASE(SVIEWINFO, TXQ);
NV50_IR_OPCODE_CASE(END, EXIT);
default:
return nv50_ir::OP_NOP;
}
}
bool Instruction::checkDstSrcAliasing() const
{
if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory
return false;
for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) {
if (insn->Src[s].Register.File == TGSI_FILE_NULL)
break;
if (insn->Src[s].Register.File == insn->Dst[0].Register.File &&
insn->Src[s].Register.Index == insn->Dst[0].Register.Index)
return true;
}
return false;
}
class Source
{
public:
Source(struct nv50_ir_prog_info *);
~Source();
public:
bool scanSource();
unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; }
public:
struct tgsi_shader_info scan;
struct tgsi_full_instruction *insns;
const struct tgsi_token *tokens;
struct nv50_ir_prog_info *info;
nv50_ir::DynArray tempArrays;
nv50_ir::DynArray immdArrays;
int tempArrayCount;
int immdArrayCount;
bool mainTempsInLMem;
int clipVertexOutput;
uint8_t *samplerViewTargets; // TGSI_TEXTURE_*
unsigned samplerViewCount;
private:
int inferSysValDirection(unsigned sn) const;
bool scanDeclaration(const struct tgsi_full_declaration *);
bool scanInstruction(const struct tgsi_full_instruction *);
void scanProperty(const struct tgsi_full_property *);
void scanImmediate(const struct tgsi_full_immediate *);
inline bool isEdgeFlagPassthrough(const Instruction&) const;
};
Source::Source(struct nv50_ir_prog_info *prog) : info(prog)
{
tokens = (const struct tgsi_token *)info->bin.source;
if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
tgsi_dump(tokens, 0);
samplerViewTargets = NULL;
mainTempsInLMem = FALSE;
}
Source::~Source()
{
if (insns)
FREE(insns);
if (info->immd.data)
FREE(info->immd.data);
if (info->immd.type)
FREE(info->immd.type);
if (samplerViewTargets)
delete[] samplerViewTargets;
}
bool Source::scanSource()
{
unsigned insnCount = 0;
struct tgsi_parse_context parse;
tgsi_scan_shader(tokens, &scan);
insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions *
sizeof(insns[0]));
if (!insns)
return false;
clipVertexOutput = -1;
samplerViewCount = scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
samplerViewTargets = new uint8_t[samplerViewCount];
info->immd.bufSize = 0;
tempArrayCount = 0;
immdArrayCount = 0;
info->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1;
info->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
info->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1;
if (info->type == PIPE_SHADER_FRAGMENT) {
info->prop.fp.writesDepth = scan.writes_z;
info->prop.fp.usesDiscard = scan.uses_kill;
} else
if (info->type == PIPE_SHADER_GEOMETRY) {
info->prop.gp.instanceCount = 1; // default value
}
info->immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16);
info->immd.type = (ubyte *)MALLOC(scan.immediate_count * sizeof(ubyte));
tgsi_parse_init(&parse, tokens);
while (!tgsi_parse_end_of_tokens(&parse)) {
tgsi_parse_token(&parse);
switch (parse.FullToken.Token.Type) {
case TGSI_TOKEN_TYPE_IMMEDIATE:
scanImmediate(&parse.FullToken.FullImmediate);
break;
case TGSI_TOKEN_TYPE_DECLARATION:
scanDeclaration(&parse.FullToken.FullDeclaration);
break;
case TGSI_TOKEN_TYPE_INSTRUCTION:
insns[insnCount++] = parse.FullToken.FullInstruction;
scanInstruction(&parse.FullToken.FullInstruction);
break;
case TGSI_TOKEN_TYPE_PROPERTY:
scanProperty(&parse.FullToken.FullProperty);
break;
default:
INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type);
break;
}
}
tgsi_parse_free(&parse);
if (mainTempsInLMem)
info->bin.tlsSpace += (scan.file_max[TGSI_FILE_TEMPORARY] + 1) * 16;
if (info->io.genUserClip > 0) {
info->io.clipDistanceMask = (1 << info->io.genUserClip) - 1;
for (unsigned int n = 0; n < ((info->io.genUserClip + 3) / 4); ++n) {
unsigned int i = info->numOutputs++;
info->out[i].id = i;
info->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
info->out[i].si = n;
info->out[i].mask = info->io.clipDistanceMask >> (n * 4);
}
}
return info->assignSlots(info) == 0;
}
void Source::scanProperty(const struct tgsi_full_property *prop)
{
switch (prop->Property.PropertyName) {
case TGSI_PROPERTY_GS_OUTPUT_PRIM:
info->prop.gp.outputPrim = prop->u[0].Data;
break;
case TGSI_PROPERTY_GS_INPUT_PRIM:
info->prop.gp.inputPrim = prop->u[0].Data;
break;
case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
info->prop.gp.maxVertices = prop->u[0].Data;
break;
#if 0
case TGSI_PROPERTY_GS_INSTANCE_COUNT:
info->prop.gp.instanceCount = prop->u[0].Data;
break;
#endif
case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
info->prop.fp.separateFragData = TRUE;
break;
case TGSI_PROPERTY_FS_COORD_ORIGIN:
case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
// we don't care
break;
case TGSI_PROPERTY_VS_PROHIBIT_UCPS:
info->io.genUserClip = -1;
break;
default:
INFO("unhandled TGSI property %d\n", prop->Property.PropertyName);
break;
}
}
void Source::scanImmediate(const struct tgsi_full_immediate *imm)
{
const unsigned n = info->immd.count++;
assert(n < scan.immediate_count);
for (int c = 0; c < 4; ++c)
info->immd.data[n * 4 + c] = imm->u[c].Uint;
info->immd.type[n] = imm->Immediate.DataType;
}
int Source::inferSysValDirection(unsigned sn) const
{
switch (sn) {
case TGSI_SEMANTIC_INSTANCEID:
case TGSI_SEMANTIC_VERTEXID:
return 1;
#if 0
case TGSI_SEMANTIC_LAYER:
case TGSI_SEMANTIC_VIEWPORTINDEX:
return 0;
#endif
case TGSI_SEMANTIC_PRIMID:
return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0;
default:
return 0;
}
}
bool Source::scanDeclaration(const struct tgsi_full_declaration *decl)
{
unsigned i;
unsigned sn = TGSI_SEMANTIC_GENERIC;
unsigned si = 0;
const unsigned first = decl->Range.First, last = decl->Range.Last;
if (decl->Declaration.Semantic) {
sn = decl->Semantic.Name;
si = decl->Semantic.Index;
}
switch (decl->Declaration.File) {
case TGSI_FILE_INPUT:
if (info->type == PIPE_SHADER_VERTEX) {
// all vertex attributes are equal
for (i = first; i <= last; ++i) {
info->in[i].sn = TGSI_SEMANTIC_GENERIC;
info->in[i].si = i;
}
} else {
for (i = first; i <= last; ++i, ++si) {
info->in[i].id = i;
info->in[i].sn = sn;
info->in[i].si = si;
if (info->type == PIPE_SHADER_FRAGMENT) {
// translate interpolation mode
switch (decl->Interp.Interpolate) {
case TGSI_INTERPOLATE_CONSTANT:
info->in[i].flat = 1;
break;
case TGSI_INTERPOLATE_COLOR:
info->in[i].sc = 1;
break;
case TGSI_INTERPOLATE_LINEAR:
info->in[i].linear = 1;
break;
default:
break;
}
if (decl->Interp.Centroid)
info->in[i].centroid = 1;
}
}
}
break;
case TGSI_FILE_OUTPUT:
for (i = first; i <= last; ++i, ++si) {
switch (sn) {
case TGSI_SEMANTIC_POSITION:
if (info->type == PIPE_SHADER_FRAGMENT)
info->io.fragDepth = i;
else
if (clipVertexOutput < 0)
clipVertexOutput = i;
break;
case TGSI_SEMANTIC_COLOR:
if (info->type == PIPE_SHADER_FRAGMENT)
info->prop.fp.numColourResults++;
break;
case TGSI_SEMANTIC_EDGEFLAG:
info->io.edgeFlagOut = i;
break;
case TGSI_SEMANTIC_CLIPVERTEX:
clipVertexOutput = i;
break;
case TGSI_SEMANTIC_CLIPDIST:
info->io.clipDistanceMask |=
decl->Declaration.UsageMask << (si * 4);
info->io.genUserClip = -1;
break;
default:
break;
}
info->out[i].id = i;
info->out[i].sn = sn;
info->out[i].si = si;
}
break;
case TGSI_FILE_SYSTEM_VALUE:
switch (sn) {
case TGSI_SEMANTIC_INSTANCEID:
info->io.instanceId = first;
break;
case TGSI_SEMANTIC_VERTEXID:
info->io.vertexId = first;
break;
default:
break;
}
for (i = first; i <= last; ++i, ++si) {
info->sv[i].sn = sn;
info->sv[i].si = si;
info->sv[i].input = inferSysValDirection(sn);
}
break;
case TGSI_FILE_SAMPLER_VIEW:
for (i = first; i <= last; ++i)
samplerViewTargets[i] = decl->SamplerView.Resource;
break;
case TGSI_FILE_IMMEDIATE_ARRAY:
{
if (decl->Dim.Index2D >= immdArrayCount)
immdArrayCount = decl->Dim.Index2D + 1;
immdArrays[decl->Dim.Index2D].u32 = (last + 1) << 2;
int c;
uint32_t base, count;
switch (decl->Declaration.UsageMask) {
case 0x1: c = 1; break;
case 0x3: c = 2; break;
default:
c = 4;
break;
}
immdArrays[decl->Dim.Index2D].u32 |= c;
count = (last + 1) * c;
base = info->immd.bufSize / 4;
info->immd.bufSize = (info->immd.bufSize + count * 4 + 0xf) & ~0xf;
info->immd.buf = (uint32_t *)REALLOC(info->immd.buf, base * 4,
info->immd.bufSize);
// NOTE: this assumes array declarations are ordered by Dim.Index2D
for (i = 0; i < count; ++i)
info->immd.buf[base + i] = decl->ImmediateData.u[i].Uint;
}
break;
case TGSI_FILE_TEMPORARY_ARRAY:
{
if (decl->Dim.Index2D >= tempArrayCount)
tempArrayCount = decl->Dim.Index2D + 1;
tempArrays[decl->Dim.Index2D].u32 = (last + 1) << 2;
int c;
uint32_t count;
switch (decl->Declaration.UsageMask) {
case 0x1: c = 1; break;
case 0x3: c = 2; break;
default:
c = 4;
break;
}
tempArrays[decl->Dim.Index2D].u32 |= c;
count = (last + 1) * c;
info->bin.tlsSpace += (info->bin.tlsSpace + count * 4 + 0xf) & ~0xf;
}
break;
case TGSI_FILE_NULL:
case TGSI_FILE_TEMPORARY:
case TGSI_FILE_ADDRESS:
case TGSI_FILE_CONSTANT:
case TGSI_FILE_IMMEDIATE:
case TGSI_FILE_PREDICATE:
case TGSI_FILE_SAMPLER:
break;
default:
ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File);
return false;
}
return true;
}
inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const
{
return insn.getOpcode() == TGSI_OPCODE_MOV &&
insn.getDst(0).getIndex(0) == info->io.edgeFlagOut &&
insn.getSrc(0).getFile() == TGSI_FILE_INPUT;
}
bool Source::scanInstruction(const struct tgsi_full_instruction *inst)
{
Instruction insn(inst);
if (insn.dstCount()) {
if (insn.getDst(0).getFile() == TGSI_FILE_OUTPUT) {
Instruction::DstRegister dst = insn.getDst(0);
if (dst.isIndirect(0))
for (unsigned i = 0; i < info->numOutputs; ++i)
info->out[i].mask = 0xf;
else
info->out[dst.getIndex(0)].mask |= dst.getMask();
if (info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE)
info->out[dst.getIndex(0)].mask &= 1;
if (isEdgeFlagPassthrough(insn))
info->io.edgeFlagIn = insn.getSrc(0).getIndex(0);
} else
if (insn.getDst(0).getFile() == TGSI_FILE_TEMPORARY) {
if (insn.getDst(0).isIndirect(0))
mainTempsInLMem = TRUE;
}
}
for (unsigned s = 0; s < insn.srcCount(); ++s) {
Instruction::SrcRegister src = insn.getSrc(s);
if (src.getFile() == TGSI_FILE_TEMPORARY)
if (src.isIndirect(0))
mainTempsInLMem = TRUE;
if (src.getFile() != TGSI_FILE_INPUT)
continue;
unsigned mask = insn.srcMask(s);
if (src.isIndirect(0)) {
for (unsigned i = 0; i < info->numInputs; ++i)
info->in[i].mask = 0xf;
} else {
for (unsigned c = 0; c < 4; ++c) {
if (!(mask & (1 << c)))
continue;
int k = src.getSwizzle(c);
int i = src.getIndex(0);
if (info->in[i].sn != TGSI_SEMANTIC_FOG || k == TGSI_SWIZZLE_X)
if (k <= TGSI_SWIZZLE_W)
info->in[i].mask |= 1 << k;
}
}
}
return true;
}
nv50_ir::TexInstruction::Target
Instruction::getTexture(const tgsi::Source *code, int s) const
{
switch (getSrc(s).getFile()) {
case TGSI_FILE_SAMPLER_VIEW: {
// XXX: indirect access
unsigned int r = getSrc(s).getIndex(0);
assert(r < code->samplerViewCount);
return translateTexture(code->samplerViewTargets[r]);
}
default:
return translateTexture(insn->Texture.Texture);
}
}
} // namespace tgsi
namespace {
using namespace nv50_ir;
class Converter : public BuildUtil
{
public:
Converter(Program *, const tgsi::Source *);
~Converter();
bool run();
private:
struct Subroutine
{
Subroutine(Function *f) : f(f) { }
Function *f;
ValueMap values;
};
Value *getVertexBase(int s);
DataArray *getArrayForFile(unsigned file, int idx);
Value *fetchSrc(int s, int c);
Value *acquireDst(int d, int c);
void storeDst(int d, int c, Value *);
Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr);
void storeDst(const tgsi::Instruction::DstRegister dst, int c,
Value *val, Value *ptr);
Value *applySrcMod(Value *, int s, int c);
Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr);
Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c);
Symbol *dstToSym(tgsi::Instruction::DstRegister, int c);
bool handleInstruction(const struct tgsi_full_instruction *);
void exportOutputs();
inline Subroutine *getSubroutine(unsigned ip);
inline Subroutine *getSubroutine(Function *);
inline bool isEndOfSubroutine(uint ip);
void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask);
// R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto)
void setTexRS(TexInstruction *, unsigned int& s, int R, int S);
void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy);
void handleTXF(Value *dst0[4], int R);
void handleTXQ(Value *dst0[4], enum TexQuery);
void handleLIT(Value *dst0[4]);
void handleUserClipPlanes();
Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr);
void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork);
Value *buildDot(int dim);
class BindArgumentsPass : public Pass {
public:
BindArgumentsPass(Converter &conv) : conv(conv) { }
private:
Converter &conv;
Subroutine *sub;
template<typename T> inline void
updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *),
T (Function::*proto));
template<typename T> inline void
updatePrototype(BitSet *set, void (Function::*updateSet)(),
T (Function::*proto));
protected:
bool visit(Function *);
bool visit(BasicBlock *bb) { return false; }
};
private:
const struct tgsi::Source *code;
const struct nv50_ir_prog_info *info;
struct {
std::map<unsigned, Subroutine> map;
Subroutine *cur;
} sub;
uint ip; // instruction pointer
tgsi::Instruction tgsi;
DataType dstTy;
DataType srcTy;
DataArray tData; // TGSI_FILE_TEMPORARY
DataArray aData; // TGSI_FILE_ADDRESS
DataArray pData; // TGSI_FILE_PREDICATE
DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers)
std::vector<DataArray> lData; // TGSI_FILE_TEMPORARY_ARRAY
std::vector<DataArray> iData; // TGSI_FILE_IMMEDIATE_ARRAY
Value *zero;
Value *fragCoord[4];
Value *clipVtx[4];
Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP)
uint8_t vtxBaseValid;
Stack condBBs; // fork BB, then else clause BB
Stack joinBBs; // fork BB, for inserting join ops on ENDIF
Stack loopBBs; // loop headers
Stack breakBBs; // end of / after loop
};
Symbol *
Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c)
{
const int swz = src.getSwizzle(c);
return makeSym(src.getFile(),
src.is2D() ? src.getIndex(1) : 0,
src.isIndirect(0) ? -1 : src.getIndex(0), swz,
src.getIndex(0) * 16 + swz * 4);
}
Symbol *
Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c)
{
return makeSym(dst.getFile(),
dst.is2D() ? dst.getIndex(1) : 0,
dst.isIndirect(0) ? -1 : dst.getIndex(0), c,
dst.getIndex(0) * 16 + c * 4);
}
Symbol *
Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address)
{
Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile));
sym->reg.fileIndex = fileIdx;
if (idx >= 0) {
if (sym->reg.file == FILE_SHADER_INPUT)
sym->setOffset(info->in[idx].slot[c] * 4);
else
if (sym->reg.file == FILE_SHADER_OUTPUT)
sym->setOffset(info->out[idx].slot[c] * 4);
else
if (sym->reg.file == FILE_SYSTEM_VALUE)
sym->setSV(tgsi::translateSysVal(info->sv[idx].sn), c);
else
sym->setOffset(address);
} else {
sym->setOffset(address);
}
return sym;
}
static inline uint8_t
translateInterpMode(const struct nv50_ir_varying *var, operation& op)
{
uint8_t mode = NV50_IR_INTERP_PERSPECTIVE;
if (var->flat)
mode = NV50_IR_INTERP_FLAT;
else
if (var->linear)
mode = NV50_IR_INTERP_LINEAR;
else
if (var->sc)
mode = NV50_IR_INTERP_SC;
op = (mode == NV50_IR_INTERP_PERSPECTIVE || mode == NV50_IR_INTERP_SC)
? OP_PINTERP : OP_LINTERP;
if (var->centroid)
mode |= NV50_IR_INTERP_CENTROID;
return mode;
}
Value *
Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
{
operation op;
// XXX: no way to know interpolation mode if we don't know what's accessed
const uint8_t mode = translateInterpMode(&info->in[ptr ? 0 :
src.getIndex(0)], op);
Instruction *insn = new_Instruction(func, op, TYPE_F32);
insn->setDef(0, getScratch());
insn->setSrc(0, srcToSym(src, c));
if (op == OP_PINTERP)
insn->setSrc(1, fragCoord[3]);
if (ptr)
insn->setIndirect(0, 0, ptr);
insn->setInterpolate(mode);
bb->insertTail(insn);
return insn->getDef(0);
}
Value *
Converter::applySrcMod(Value *val, int s, int c)
{
Modifier m = tgsi.getSrc(s).getMod(c);
DataType ty = tgsi.inferSrcType();
if (m & Modifier(NV50_IR_MOD_ABS))
val = mkOp1v(OP_ABS, ty, getScratch(), val);
if (m & Modifier(NV50_IR_MOD_NEG))
val = mkOp1v(OP_NEG, ty, getScratch(), val);
return val;
}
Value *
Converter::getVertexBase(int s)
{
assert(s < 5);
if (!(vtxBaseValid & (1 << s))) {
const int index = tgsi.getSrc(s).getIndex(1);
Value *rel = NULL;
if (tgsi.getSrc(s).isIndirect(1))
rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL);
vtxBaseValid |= 1 << s;
vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(), mkImm(index), rel);
}
return vtxBase[s];
}
Value *
Converter::fetchSrc(int s, int c)
{
Value *res;
Value *ptr = NULL, *dimRel = NULL;
tgsi::Instruction::SrcRegister src = tgsi.getSrc(s);
if (src.isIndirect(0))
ptr = fetchSrc(src.getIndirect(0), 0, NULL);
if (src.is2D()) {
switch (src.getFile()) {
case TGSI_FILE_INPUT:
dimRel = getVertexBase(s);
break;
case TGSI_FILE_CONSTANT:
// on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
if (src.isIndirect(1))
dimRel = fetchSrc(src.getIndirect(1), 0, 0);
break;
default:
break;
}
}
res = fetchSrc(src, c, ptr);
if (dimRel)
res->getInsn()->setIndirect(0, 1, dimRel);
return applySrcMod(res, s, c);
}
Converter::DataArray *
Converter::getArrayForFile(unsigned file, int idx)
{
switch (file) {
case TGSI_FILE_TEMPORARY:
return &tData;
case TGSI_FILE_PREDICATE:
return &pData;
case TGSI_FILE_ADDRESS:
return &aData;
case TGSI_FILE_TEMPORARY_ARRAY:
assert(idx < code->tempArrayCount);
return &lData[idx];
case TGSI_FILE_IMMEDIATE_ARRAY:
assert(idx < code->immdArrayCount);
return &iData[idx];
case TGSI_FILE_OUTPUT:
assert(prog->getType() == Program::TYPE_FRAGMENT);
return &oData;
default:
assert(!"invalid/unhandled TGSI source file");
return NULL;
}
}
Value *
Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
{
const int idx2d = src.is2D() ? src.getIndex(1) : 0;
const int idx = src.getIndex(0);
const int swz = src.getSwizzle(c);
switch (src.getFile()) {
case TGSI_FILE_IMMEDIATE:
assert(!ptr);
return loadImm(NULL, info->immd.data[idx * 4 + swz]);
case TGSI_FILE_CONSTANT:
return mkLoad(TYPE_U32, srcToSym(src, c), ptr);
case TGSI_FILE_INPUT:
if (prog->getType() == Program::TYPE_FRAGMENT) {
// don't load masked inputs, won't be assigned a slot
if (!ptr && !(info->in[idx].mask & (1 << swz)))
return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f);
if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_FACE)
return mkOp1v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_FACE, 0));
return interpolate(src, c, ptr);
}
return mkLoad(TYPE_U32, srcToSym(src, c), ptr);
case TGSI_FILE_OUTPUT:
assert(!"load from output file");
return NULL;
case TGSI_FILE_SYSTEM_VALUE:
assert(!ptr);
return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c));
default:
return getArrayForFile(src.getFile(), idx2d)->load(
sub.cur->values, idx, swz, ptr);
}
}
Value *
Converter::acquireDst(int d, int c)
{
const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
const unsigned f = dst.getFile();
const int idx = dst.getIndex(0);
const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
if (dst.isMasked(c) || f == TGSI_FILE_RESOURCE)
return NULL;
if (dst.isIndirect(0) ||
f == TGSI_FILE_TEMPORARY_ARRAY ||
f == TGSI_FILE_SYSTEM_VALUE ||
(f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT))
return getScratch();
return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c);
}
void
Converter::storeDst(int d, int c, Value *val)
{
const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
switch (tgsi.getSaturate()) {
case TGSI_SAT_NONE:
break;
case TGSI_SAT_ZERO_ONE:
mkOp1(OP_SAT, dstTy, val, val);
break;
case TGSI_SAT_MINUS_PLUS_ONE:
mkOp2(OP_MAX, dstTy, val, val, mkImm(-1.0f));
mkOp2(OP_MIN, dstTy, val, val, mkImm(+1.0f));
break;
default:
assert(!"invalid saturation mode");
break;
}
Value *ptr = dst.isIndirect(0) ?
fetchSrc(dst.getIndirect(0), 0, NULL) : NULL;
if (info->io.genUserClip > 0 &&
dst.getFile() == TGSI_FILE_OUTPUT &&
!dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) {
mkMov(clipVtx[c], val);
val = clipVtx[c];
}
storeDst(dst, c, val, ptr);
}
void
Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c,
Value *val, Value *ptr)
{
const unsigned f = dst.getFile();
const int idx = dst.getIndex(0);
const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
if (f == TGSI_FILE_SYSTEM_VALUE) {
assert(!ptr);
mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val);
} else
if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) {
if (ptr || (info->out[idx].mask & (1 << c)))
mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val);
} else
if (f == TGSI_FILE_TEMPORARY ||
f == TGSI_FILE_TEMPORARY_ARRAY ||
f == TGSI_FILE_PREDICATE ||
f == TGSI_FILE_ADDRESS ||
f == TGSI_FILE_OUTPUT) {
getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val);
} else {
assert(!"invalid dst file");
}
}
#define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \
for (chan = 0; chan < 4; ++chan) \
if (!inst.getDst(d).isMasked(chan))
Value *
Converter::buildDot(int dim)
{
assert(dim > 0);
Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0);
Value *dotp = getScratch();
mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1);
for (int c = 1; c < dim; ++c) {
src0 = fetchSrc(0, c);
src1 = fetchSrc(1, c);
mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp);
}
return dotp;
}
void
Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork)
{
FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL);
join->fixed = 1;
conv->insertHead(join);
fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv);
fork->insertBefore(fork->getExit(), fork->joinAt);
}
void
Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S)
{
unsigned rIdx = 0, sIdx = 0;
if (R >= 0)
rIdx = tgsi.getSrc(R).getIndex(0);
if (S >= 0)
sIdx = tgsi.getSrc(S).getIndex(0);
tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx);
if (tgsi.getSrc(R).isIndirect(0)) {
tex->tex.rIndirectSrc = s;
tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL));
}
if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) {
tex->tex.sIndirectSrc = s;
tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL));
}
}
void
Converter::handleTXQ(Value *dst0[4], enum TexQuery query)
{
TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
tex->tex.query = query;
unsigned int c, d;
for (d = 0, c = 0; c < 4; ++c) {
if (!dst0[c])
continue;
tex->tex.mask |= 1 << c;
tex->setDef(d++, dst0[c]);
}
tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level
setTexRS(tex, c, 1, -1);
bb->insertTail(tex);
}
void
Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask)
{
Value *proj = fetchSrc(0, 3);
Instruction *insn = proj->getUniqueInsn();
int c;
if (insn->op == OP_PINTERP) {
bb->insertTail(insn = cloneForward(func, insn));
insn->op = OP_LINTERP;
insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode());
insn->setSrc(1, NULL);
proj = insn->getDef(0);
}
proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj);
for (c = 0; c < 4; ++c) {
if (!(mask & (1 << c)))
continue;
if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP)
continue;
mask &= ~(1 << c);
bb->insertTail(insn = cloneForward(func, insn));
insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode());
insn->setSrc(1, proj);
dst[c] = insn->getDef(0);
}
if (!mask)
return;
proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3));
for (c = 0; c < 4; ++c)
if (mask & (1 << c))
dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj);
}
// order of nv50 ir sources: x y z layer lod/bias shadow
// order of TGSI TEX sources: x y z layer shadow lod/bias
// lowering will finally set the hw specific order (like array first on nvc0)
void
Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy)
{
Value *val;
Value *arg[4], *src[8];
Value *lod = NULL, *shd = NULL;
unsigned int s, c, d;
TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
TexInstruction::Target tgt = tgsi.getTexture(code, R);
for (s = 0; s < tgt.getArgCount(); ++s)
arg[s] = src[s] = fetchSrc(0, s);
if (texi->op == OP_TXL || texi->op == OP_TXB)
lod = fetchSrc(L >> 4, L & 3);
if (C == 0x0f)
C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src
if (tgt.isShadow())
shd = fetchSrc(C >> 4, C & 3);
if (texi->op == OP_TXD) {
for (c = 0; c < tgt.getDim(); ++c) {
texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c));
texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c));
}
}
// cube textures don't care about projection value, it's divided out
if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) {
unsigned int n = tgt.getDim();
if (shd) {
arg[n] = shd;
++n;
assert(tgt.getDim() == tgt.getArgCount());
}
loadProjTexCoords(src, arg, (1 << n) - 1);
if (shd)
shd = src[n - 1];
}
if (tgt.isCube()) {
for (c = 0; c < 3; ++c)
src[c] = mkOp1v(OP_ABS, TYPE_F32, getSSA(), arg[c]);
val = getScratch();
mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
mkOp1(OP_RCP, TYPE_F32, val, val);
for (c = 0; c < 3; ++c)
src[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), arg[c], val);
}
for (c = 0, d = 0; c < 4; ++c) {
if (dst[c]) {
texi->setDef(d++, dst[c]);
texi->tex.mask |= 1 << c;
} else {
// NOTE: maybe hook up def too, for CSE
}
}
for (s = 0; s < tgt.getArgCount(); ++s)
texi->setSrc(s, src[s]);
if (lod)
texi->setSrc(s++, lod);
if (shd)
texi->setSrc(s++, shd);
setTexRS(texi, s, R, S);
if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ)
texi->tex.levelZero = true;
bb->insertTail(texi);
}
// 1st source: xyz = coordinates, w = lod
// 2nd source: offset
void
Converter::handleTXF(Value *dst[4], int R)
{
TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
unsigned int c, d, s;
texi->tex.target = tgsi.getTexture(code, R);
for (c = 0, d = 0; c < 4; ++c) {
if (dst[c]) {
texi->setDef(d++, dst[c]);
texi->tex.mask |= 1 << c;
}
}
for (c = 0; c < texi->tex.target.getArgCount(); ++c)
texi->setSrc(c, fetchSrc(0, c));
texi->setSrc(c++, fetchSrc(0, 3)); // lod
setTexRS(texi, c, R, -1);
for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
for (c = 0; c < 3; ++c) {
texi->tex.offset[s][c] = tgsi.getTexOffset(s).getValueU32(c, info);
if (texi->tex.offset[s][c])
texi->tex.useOffsets = s + 1;
}
}
bb->insertTail(texi);
}
void
Converter::handleLIT(Value *dst0[4])
{
Value *val0 = NULL;
unsigned int mask = tgsi.getDst(0).getMask();
if (mask & (1 << 0))
loadImm(dst0[0], 1.0f);
if (mask & (1 << 3))
loadImm(dst0[3], 1.0f);
if (mask & (3 << 1)) {
val0 = getScratch();
mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero);
if (mask & (1 << 1))
mkMov(dst0[1], val0);
}
if (mask & (1 << 2)) {
Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3);
Value *val1 = getScratch(), *val3 = getScratch();
Value *pos128 = loadImm(NULL, +127.999999f);
Value *neg128 = loadImm(NULL, -127.999999f);
mkOp2(OP_MAX, TYPE_F32, val1, src1, zero);
mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128);
mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128);
mkOp2(OP_POW, TYPE_F32, val3, val1, val3);
mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], val3, zero, val0);
}
}
Converter::Subroutine *
Converter::getSubroutine(unsigned ip)
{
std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
if (it == sub.map.end())
it = sub.map.insert(std::make_pair(
ip, Subroutine(new Function(prog, "SUB", ip)))).first;
return &it->second;
}
Converter::Subroutine *
Converter::getSubroutine(Function *f)
{
unsigned ip = f->getLabel();
std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
if (it == sub.map.end())
it = sub.map.insert(std::make_pair(ip, Subroutine(f))).first;
return &it->second;
}
bool
Converter::isEndOfSubroutine(uint ip)
{
assert(ip < code->scan.num_instructions);
tgsi::Instruction insn(&code->insns[ip]);
return (insn.getOpcode() == TGSI_OPCODE_END ||
insn.getOpcode() == TGSI_OPCODE_ENDSUB ||
// does END occur at end of main or the very end ?
insn.getOpcode() == TGSI_OPCODE_BGNSUB);
}
bool
Converter::handleInstruction(const struct tgsi_full_instruction *insn)
{
Value *dst0[4], *rDst0[4];
Value *src0, *src1, *src2;
Value *val0, *val1;
int c;
tgsi = tgsi::Instruction(insn);
bool useScratchDst = tgsi.checkDstSrcAliasing();
operation op = tgsi.getOP();
dstTy = tgsi.inferDstType();
srcTy = tgsi.inferSrcType();
unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0;
if (tgsi.dstCount()) {
for (c = 0; c < 4; ++c) {
rDst0[c] = acquireDst(0, c);
dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c];
}
}
switch (tgsi.getOpcode()) {
case TGSI_OPCODE_ADD:
case TGSI_OPCODE_UADD:
case TGSI_OPCODE_AND:
case TGSI_OPCODE_DIV:
case TGSI_OPCODE_IDIV:
case TGSI_OPCODE_UDIV:
case TGSI_OPCODE_MAX:
case TGSI_OPCODE_MIN:
case TGSI_OPCODE_IMAX:
case TGSI_OPCODE_IMIN:
case TGSI_OPCODE_UMAX:
case TGSI_OPCODE_UMIN:
case TGSI_OPCODE_MOD:
case TGSI_OPCODE_UMOD:
case TGSI_OPCODE_MUL:
case TGSI_OPCODE_UMUL:
case TGSI_OPCODE_OR:
case TGSI_OPCODE_POW:
case TGSI_OPCODE_SHL:
case TGSI_OPCODE_ISHR:
case TGSI_OPCODE_USHR:
case TGSI_OPCODE_SUB:
case TGSI_OPCODE_XOR:
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
src0 = fetchSrc(0, c);
src1 = fetchSrc(1, c);
mkOp2(op, dstTy, dst0[c], src0, src1);
}
break;
case TGSI_OPCODE_MAD:
case TGSI_OPCODE_UMAD:
case TGSI_OPCODE_SAD:
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
src0 = fetchSrc(0, c);
src1 = fetchSrc(1, c);
src2 = fetchSrc(2, c);
mkOp3(op, dstTy, dst0[c], src0, src1, src2);
}
break;
case TGSI_OPCODE_MOV:
case TGSI_OPCODE_ABS:
case TGSI_OPCODE_CEIL:
case TGSI_OPCODE_FLR:
case TGSI_OPCODE_TRUNC:
case TGSI_OPCODE_RCP:
case TGSI_OPCODE_IABS:
case TGSI_OPCODE_INEG:
case TGSI_OPCODE_NOT:
case TGSI_OPCODE_DDX:
case TGSI_OPCODE_DDY:
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
mkOp1(op, dstTy, dst0[c], fetchSrc(0, c));
break;
case TGSI_OPCODE_RSQ:
src0 = fetchSrc(0, 0);
val0 = getScratch();
mkOp1(OP_ABS, TYPE_F32, val0, src0);
mkOp1(OP_RSQ, TYPE_F32, val0, val0);
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
mkMov(dst0[c], val0);
break;
case TGSI_OPCODE_ARL:
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
src0 = fetchSrc(0, c);
mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = ROUND_M;
mkOp2(OP_SHL, TYPE_U32, dst0[c], dst0[c], mkImm(4));
}
break;
case TGSI_OPCODE_UARL:
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
mkOp2(OP_SHL, TYPE_U32, dst0[c], fetchSrc(0, c), mkImm(4));
break;
case TGSI_OPCODE_EX2:
case TGSI_OPCODE_LG2:
val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0);
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
break;
case TGSI_OPCODE_COS:
case TGSI_OPCODE_SIN:
val0 = getScratch();
if (mask & 7) {
mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0));
mkOp1(op, TYPE_F32, val0, val0);
for (c = 0; c < 3; ++c)
if (dst0[c])
mkMov(dst0[c], val0);
}
if (dst0[3]) {
mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3));
mkOp1(op, TYPE_F32, dst0[3], val0);
}
break;
case TGSI_OPCODE_SCS:
if (mask & 3) {
val0 = mkOp1v(OP_PRESIN, TYPE_F32, getSSA(), fetchSrc(0, 0));
if (dst0[0])
mkOp1(OP_COS, TYPE_F32, dst0[0], val0);
if (dst0[1])
mkOp1(OP_SIN, TYPE_F32, dst0[1], val0);
}
if (dst0[2])
loadImm(dst0[2], 0.0f);
if (dst0[3])
loadImm(dst0[3], 1.0f);
break;
case TGSI_OPCODE_EXP:
src0 = fetchSrc(0, 0);
val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0);
if (dst0[1])
mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0);
if (dst0[0])
mkOp1(OP_EX2, TYPE_F32, dst0[0], val0);
if (dst0[2])
mkOp1(OP_EX2, TYPE_F32, dst0[2], src0);
if (dst0[3])
loadImm(dst0[3], 1.0f);
break;
case TGSI_OPCODE_LOG:
src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0));
val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0);
if (dst0[0] || dst0[1])
val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0);
if (dst0[1]) {
mkOp1(OP_EX2, TYPE_F32, dst0[1], val1);
mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]);
mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0);
}
if (dst0[3])
loadImm(dst0[3], 1.0f);
break;
case TGSI_OPCODE_DP2:
val0 = buildDot(2);
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
mkMov(dst0[c], val0);
break;
case TGSI_OPCODE_DP3:
val0 = buildDot(3);
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
mkMov(dst0[c], val0);
break;
case TGSI_OPCODE_DP4:
val0 = buildDot(4);
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
mkMov(dst0[c], val0);
break;
case TGSI_OPCODE_DPH:
val0 = buildDot(3);
src1 = fetchSrc(1, 3);
mkOp2(OP_ADD, TYPE_F32, val0, val0, src1);
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
mkMov(dst0[c], val0);
break;
case TGSI_OPCODE_DST:
if (dst0[0])
loadImm(dst0[0], 1.0f);
if (dst0[1]) {
src0 = fetchSrc(0, 1);
src1 = fetchSrc(1, 1);
mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1);
}
if (dst0[2])
mkMov(dst0[2], fetchSrc(0, 2));
if (dst0[3])
mkMov(dst0[3], fetchSrc(1, 3));
break;
case TGSI_OPCODE_LRP:
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
src0 = fetchSrc(0, c);
src1 = fetchSrc(1, c);
src2 = fetchSrc(2, c);
mkOp3(OP_MAD, TYPE_F32, dst0[c],
mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2);
}
break;
case TGSI_OPCODE_LIT:
handleLIT(dst0);
break;
case TGSI_OPCODE_XPD:
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
if (c < 3) {
val0 = getSSA();
src0 = fetchSrc(1, (c + 1) % 3);
src1 = fetchSrc(0, (c + 2) % 3);
mkOp2(OP_MUL, TYPE_F32, val0, src0, src1);
mkOp1(OP_NEG, TYPE_F32, val0, val0);
src0 = fetchSrc(0, (c + 1) % 3);
src1 = fetchSrc(1, (c + 2) % 3);
mkOp3(OP_MAD, TYPE_F32, dst0[c], src0, src1, val0);
} else {
loadImm(dst0[c], 1.0f);
}
}
break;
case TGSI_OPCODE_ISSG:
case TGSI_OPCODE_SSG:
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
src0 = fetchSrc(0, c);
val0 = getScratch();
val1 = getScratch();
mkCmp(OP_SET, CC_GT, srcTy, val0, src0, zero);
mkCmp(OP_SET, CC_LT, srcTy, val1, src0, zero);
if (srcTy == TYPE_F32)
mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1);
else
mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
}
break;
case TGSI_OPCODE_UCMP:
case TGSI_OPCODE_CMP:
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
src0 = fetchSrc(0, c);
src1 = fetchSrc(1, c);
src2 = fetchSrc(2, c);
if (src1 == src2)
mkMov(dst0[c], src1);
else
mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE,
srcTy, dst0[c], src1, src2, src0);
}
break;
case TGSI_OPCODE_FRC:
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
src0 = fetchSrc(0, c);
val0 = getScratch();
mkOp1(OP_FLOOR, TYPE_F32, val0, src0);
mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0);
}
break;
case TGSI_OPCODE_ROUND:
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c))
->rnd = ROUND_NI;
break;
case TGSI_OPCODE_CLAMP:
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
src0 = fetchSrc(0, c);
src1 = fetchSrc(1, c);
src2 = fetchSrc(2, c);
val0 = getScratch();
mkOp2(OP_MIN, TYPE_F32, val0, src0, src1);
mkOp2(OP_MAX, TYPE_F32, dst0[c], val0, src2);
}
break;
case TGSI_OPCODE_SLT:
case TGSI_OPCODE_SGE:
case TGSI_OPCODE_SEQ:
case TGSI_OPCODE_SFL:
case TGSI_OPCODE_SGT:
case TGSI_OPCODE_SLE:
case TGSI_OPCODE_SNE:
case TGSI_OPCODE_STR:
case TGSI_OPCODE_ISGE:
case TGSI_OPCODE_ISLT:
case TGSI_OPCODE_USEQ:
case TGSI_OPCODE_USGE:
case TGSI_OPCODE_USLT:
case TGSI_OPCODE_USNE:
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
src0 = fetchSrc(0, c);
src1 = fetchSrc(1, c);
mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], src0, src1);
}
break;
case TGSI_OPCODE_KIL:
val0 = new_LValue(func, FILE_PREDICATE);
for (c = 0; c < 4; ++c) {
mkCmp(OP_SET, CC_LT, TYPE_F32, val0, fetchSrc(0, c), zero);
mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0);
}
break;
case TGSI_OPCODE_KILP:
mkOp(OP_DISCARD, TYPE_NONE, NULL);
break;
case TGSI_OPCODE_TEX:
case TGSI_OPCODE_TXB:
case TGSI_OPCODE_TXL:
case TGSI_OPCODE_TXP:
// R S L C Dx Dy
handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00);
break;
case TGSI_OPCODE_TXD:
handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20);
break;
case TGSI_OPCODE_SAMPLE:
case TGSI_OPCODE_SAMPLE_B:
case TGSI_OPCODE_SAMPLE_D:
case TGSI_OPCODE_SAMPLE_L:
case TGSI_OPCODE_SAMPLE_C:
case TGSI_OPCODE_SAMPLE_C_LZ:
handleTEX(dst0, 1, 2, 0x30, 0x31, 0x40, 0x50);
break;
case TGSI_OPCODE_TXF:
case TGSI_OPCODE_LOAD:
handleTXF(dst0, 1);
break;
case TGSI_OPCODE_TXQ:
case TGSI_OPCODE_SVIEWINFO:
handleTXQ(dst0, TXQ_DIMS);
break;
case TGSI_OPCODE_F2I:
case TGSI_OPCODE_F2U:
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z;
break;
case TGSI_OPCODE_I2F:
case TGSI_OPCODE_U2F:
FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c));
break;
case TGSI_OPCODE_EMIT:
case TGSI_OPCODE_ENDPRIM:
// get vertex stream if specified (must be immediate)
src0 = tgsi.srcCount() ?
mkImm(tgsi.getSrc(0).getValueU32(0, info)) : zero;
mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1;
break;
case TGSI_OPCODE_IF:
{
BasicBlock *ifBB = new BasicBlock(func);
bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
condBBs.push(bb);
joinBBs.push(bb);
mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0));
setPosition(ifBB, true);
}
break;
case TGSI_OPCODE_ELSE:
{
BasicBlock *elseBB = new BasicBlock(func);
BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
condBBs.push(bb);
forkBB->getExit()->asFlow()->target.bb = elseBB;
if (!bb->isTerminated())
mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL);
setPosition(elseBB, true);
}
break;
case TGSI_OPCODE_ENDIF:
{
BasicBlock *convBB = new BasicBlock(func);
BasicBlock *prevBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(joinBBs.pop().u.p);
if (!bb->isTerminated()) {
// we only want join if none of the clauses ended with CONT/BREAK/RET
if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6)
insertConvergenceOps(convBB, forkBB);
mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL);
bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
}
if (prevBB->getExit()->op == OP_BRA) {
prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
prevBB->getExit()->asFlow()->target.bb = convBB;
}
setPosition(convBB, true);
}
break;
case TGSI_OPCODE_BGNLOOP:
{
BasicBlock *lbgnBB = new BasicBlock(func);
BasicBlock *lbrkBB = new BasicBlock(func);
loopBBs.push(lbgnBB);
breakBBs.push(lbrkBB);
if (loopBBs.getSize() > func->loopNestingBound)
func->loopNestingBound++;
mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL);
bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE);
setPosition(lbgnBB, true);
mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL);
}
break;
case TGSI_OPCODE_ENDLOOP:
{
BasicBlock *loopBB = reinterpret_cast<BasicBlock *>(loopBBs.pop().u.p);
if (!bb->isTerminated()) {
mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
}
setPosition(reinterpret_cast<BasicBlock *>(breakBBs.pop().u.p), true);
}
break;
case TGSI_OPCODE_BRK:
{
if (bb->isTerminated())
break;
BasicBlock *brkBB = reinterpret_cast<BasicBlock *>(breakBBs.peek().u.p);
mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL);
bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS);
}
break;
case TGSI_OPCODE_CONT:
{
if (bb->isTerminated())
break;
BasicBlock *contBB = reinterpret_cast<BasicBlock *>(loopBBs.peek().u.p);
mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL);
contBB->explicitCont = true;
bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK);
}
break;
case TGSI_OPCODE_BGNSUB:
{
Subroutine *s = getSubroutine(ip);
BasicBlock *entry = new BasicBlock(s->f);
BasicBlock *leave = new BasicBlock(s->f);
// multiple entrypoints possible, keep the graph connected
if (prog->getType() == Program::TYPE_COMPUTE)
prog->main->call.attach(&s->f->call, Graph::Edge::TREE);
sub.cur = s;
s->f->setEntry(entry);
s->f->setExit(leave);
setPosition(entry, true);
return true;
}
case TGSI_OPCODE_ENDSUB:
{
sub.cur = getSubroutine(prog->main);
setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true);
return true;
}
case TGSI_OPCODE_CAL:
{
Subroutine *s = getSubroutine(tgsi.getLabel());
mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL);
func->call.attach(&s->f->call, Graph::Edge::TREE);
return true;
}
case TGSI_OPCODE_RET:
{
if (bb->isTerminated())
return true;
BasicBlock *leave = BasicBlock::get(func->cfgExit);
if (!isEndOfSubroutine(ip + 1)) {
// insert a PRERET at the entry if this is an early return
// (only needed for sharing code in the epilogue)
BasicBlock *pos = getBB();
setPosition(BasicBlock::get(func->cfg.getRoot()), false);
mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1;
setPosition(pos, true);
}
mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1;
bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS);
}
break;
case TGSI_OPCODE_END:
{
// attach and generate epilogue code
BasicBlock *epilogue = BasicBlock::get(func->cfgExit);
bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE);
setPosition(epilogue, true);
if (prog->getType() == Program::TYPE_FRAGMENT)
exportOutputs();
if (info->io.genUserClip > 0)
handleUserClipPlanes();
mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
}
break;
case TGSI_OPCODE_SWITCH:
case TGSI_OPCODE_CASE:
ERROR("switch/case opcode encountered, should have been lowered\n");
abort();
break;
default:
ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode());
assert(0);
break;
}
if (tgsi.dstCount()) {
for (c = 0; c < 4; ++c) {
if (!dst0[c])
continue;
if (dst0[c] != rDst0[c])
mkMov(rDst0[c], dst0[c]);
storeDst(0, c, rDst0[c]);
}
}
vtxBaseValid = 0;
return true;
}
void
Converter::handleUserClipPlanes()
{
Value *res[8];
int n, i, c;
for (c = 0; c < 4; ++c) {
for (i = 0; i < info->io.genUserClip; ++i) {
Symbol *sym = mkSymbol(FILE_MEMORY_CONST, info->io.ucpBinding,
TYPE_F32, info->io.ucpBase + i * 16 + c * 4);
Value *ucp = mkLoad(TYPE_F32, sym, NULL);
if (c == 0)
res[i] = mkOp2v(OP_MUL, TYPE_F32, getScratch(), clipVtx[c], ucp);
else
mkOp3(OP_MAD, TYPE_F32, res[i], clipVtx[c], ucp, res[i]);
}
}
const int first = info->numOutputs - (info->io.genUserClip + 3) / 4;
for (i = 0; i < info->io.genUserClip; ++i) {
n = i / 4 + first;
c = i % 4;
Symbol *sym =
mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32, info->out[n].slot[c] * 4);
mkStore(OP_EXPORT, TYPE_F32, sym, NULL, res[i]);
}
}
void
Converter::exportOutputs()
{
for (unsigned int i = 0; i < info->numOutputs; ++i) {
for (unsigned int c = 0; c < 4; ++c) {
if (!oData.exists(sub.cur->values, i, c))
continue;
Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32,
info->out[i].slot[c] * 4);
Value *val = oData.load(sub.cur->values, i, c, NULL);
if (val)
mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val);
}
}
}
Converter::Converter(Program *ir, const tgsi::Source *code) : BuildUtil(ir),
code(code),
tgsi(NULL),
tData(this), aData(this), pData(this), oData(this)
{
info = code->info;
const DataFile tFile = code->mainTempsInLMem ? FILE_MEMORY_LOCAL : FILE_GPR;
const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY);
const unsigned pSize = code->fileSize(TGSI_FILE_PREDICATE);
const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS);
const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT);
tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, tFile, 0);
pData.setup(TGSI_FILE_PREDICATE, 0, 0, pSize, 4, 4, FILE_PREDICATE, 0);
aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_ADDRESS, 0);
oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0);
for (int vol = 0, i = 0; i < code->tempArrayCount; ++i) {
int len = code->tempArrays[i].u32 >> 2;
int dim = code->tempArrays[i].u32 & 3;
lData.push_back(DataArray(this));
lData.back().setup(TGSI_FILE_TEMPORARY_ARRAY, i, vol, len, dim, 4,
FILE_MEMORY_LOCAL, 0);
vol += (len * dim * 4 + 0xf) & ~0xf;
}
for (int vol = 0, i = 0; i < code->immdArrayCount; ++i) {
int len = code->immdArrays[i].u32 >> 2;
int dim = code->immdArrays[i].u32 & 3;
lData.push_back(DataArray(this));
lData.back().setup(TGSI_FILE_IMMEDIATE_ARRAY, i, vol, len, dim, 4,
FILE_MEMORY_CONST, 14);
vol += (len * dim * 4 + 0xf) & ~0xf;
}
zero = mkImm((uint32_t)0);
vtxBaseValid = 0;
}
Converter::~Converter()
{
}
template<typename T> inline void
Converter::BindArgumentsPass::updateCallArgs(
Instruction *i, void (Instruction::*setArg)(int, Value *),
T (Function::*proto))
{
Function *g = i->asFlow()->target.fn;
Subroutine *subg = conv.getSubroutine(g);
for (unsigned a = 0; a < (g->*proto).size(); ++a) {
Value *v = (g->*proto)[a].get();
const Converter::Location &l = subg->values.l.find(v)->second;
Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx);
(i->*setArg)(a, array->acquire(sub->values, l.i, l.c));
}
}
template<typename T> inline void
Converter::BindArgumentsPass::updatePrototype(
BitSet *set, void (Function::*updateSet)(), T (Function::*proto))
{
(func->*updateSet)();
for (unsigned i = 0; i < set->getSize(); ++i) {
Value *v = func->getLValue(i);
// only include values with a matching TGSI register
if (set->test(i) && sub->values.l.find(v) != sub->values.l.end())
(func->*proto).push_back(v);
}
}
bool
Converter::BindArgumentsPass::visit(Function *f)
{
sub = conv.getSubroutine(f);
for (ArrayList::Iterator bi = f->allBBlocks.iterator();
!bi.end(); bi.next()) {
for (Instruction *i = BasicBlock::get(bi)->getFirst();
i; i = i->next) {
if (i->op == OP_CALL && !i->asFlow()->builtin) {
updateCallArgs(i, &Instruction::setSrc, &Function::ins);
updateCallArgs(i, &Instruction::setDef, &Function::outs);
}
}
}
if (func == prog->main && prog->getType() != Program::TYPE_COMPUTE)
return true;
updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet,
&Function::buildLiveSets, &Function::ins);
updatePrototype(&BasicBlock::get(f->cfgExit)->defSet,
&Function::buildDefSets, &Function::outs);
return true;
}
bool
Converter::run()
{
BasicBlock *entry = new BasicBlock(prog->main);
BasicBlock *leave = new BasicBlock(prog->main);
prog->main->setEntry(entry);
prog->main->setExit(leave);
setPosition(entry, true);
sub.cur = getSubroutine(prog->main);
if (info->io.genUserClip > 0) {
for (int c = 0; c < 4; ++c)
clipVtx[c] = getScratch();
}
if (prog->getType() == Program::TYPE_FRAGMENT) {
Symbol *sv = mkSysVal(SV_POSITION, 3);
fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
}
for (ip = 0; ip < code->scan.num_instructions; ++ip) {
if (!handleInstruction(&code->insns[ip]))
return false;
}
if (!BindArgumentsPass(*this).run(prog))
return false;
return true;
}
} // unnamed namespace
namespace nv50_ir {
bool
Program::makeFromTGSI(struct nv50_ir_prog_info *info)
{
tgsi::Source src(info);
if (!src.scanSource())
return false;
tlsSize = info->bin.tlsSpace;
Converter builder(this, &src);
return builder.run();
}
} // namespace nv50_ir