blob: 6c15f6ef993ae727e68e0e764cd6e266f176d912 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/**
* @file
* VP9 SVC encoding support via libvpx
*/
#include <assert.h>
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define VPX_DISABLE_CTRL_TYPECHECKS 1
#define VPX_CODEC_DISABLE_COMPAT 1
#include "vpx/svc_context.h"
#include "vpx/vp8cx.h"
#include "vpx/vpx_encoder.h"
#include "vpx_mem/vpx_mem.h"
#ifdef __MINGW32__
#define strtok_r strtok_s
#ifndef MINGW_HAS_SECURE_API
// proto from /usr/x86_64-w64-mingw32/include/sec_api/string_s.h
_CRTIMP char *__cdecl strtok_s(char *str, const char *delim, char **context);
#endif /* MINGW_HAS_SECURE_API */
#endif /* __MINGW32__ */
#ifdef _MSC_VER
#define strdup _strdup
#define strtok_r strtok_s
#endif
#define SVC_REFERENCE_FRAMES 8
#define SUPERFRAME_SLOTS (8)
#define SUPERFRAME_BUFFER_SIZE (SUPERFRAME_SLOTS * sizeof(uint32_t) + 2)
#define OPTION_BUFFER_SIZE 256
#define COMPONENTS 4 // psnr & sse statistics maintained for total, y, u, v
static const char *DEFAULT_QUANTIZER_VALUES = "60,53,39,33,27";
static const char *DEFAULT_SCALE_FACTORS = "4/16,5/16,7/16,11/16,16/16";
// One encoded frame
typedef struct FrameData {
void *buf; // compressed data buffer
size_t size; // length of compressed data
vpx_codec_frame_flags_t flags; /**< flags for this frame */
struct FrameData *next;
} FrameData;
typedef struct SvcInternal {
char options[OPTION_BUFFER_SIZE]; // set by vpx_svc_set_options
char quantizers[OPTION_BUFFER_SIZE]; // set by vpx_svc_set_quantizers
char scale_factors[OPTION_BUFFER_SIZE]; // set by vpx_svc_set_scale_factors
// values extracted from option, quantizers
int scaling_factor_num[VPX_SS_MAX_LAYERS];
int scaling_factor_den[VPX_SS_MAX_LAYERS];
int quantizer[VPX_SS_MAX_LAYERS];
// accumulated statistics
double psnr_sum[VPX_SS_MAX_LAYERS][COMPONENTS]; // total/Y/U/V
uint64_t sse_sum[VPX_SS_MAX_LAYERS][COMPONENTS];
uint32_t bytes_sum[VPX_SS_MAX_LAYERS];
// codec encoding values
int width; // width of highest layer
int height; // height of highest layer
int kf_dist; // distance between keyframes
// state variables
int encode_frame_count;
int frame_received;
int frame_within_gop;
vpx_enc_frame_flags_t enc_frame_flags;
int layers;
int layer;
int is_keyframe;
FrameData *frame_list;
FrameData *frame_temp;
char *rc_stats_buf;
size_t rc_stats_buf_size;
size_t rc_stats_buf_used;
char message_buffer[2048];
vpx_codec_ctx_t *codec_ctx;
} SvcInternal;
// create FrameData from encoder output
static struct FrameData *fd_create(void *buf, size_t size,
vpx_codec_frame_flags_t flags) {
struct FrameData *const frame_data =
(struct FrameData *)vpx_malloc(sizeof(*frame_data));
if (frame_data == NULL) {
return NULL;
}
frame_data->buf = vpx_malloc(size);
if (frame_data->buf == NULL) {
vpx_free(frame_data);
return NULL;
}
vpx_memcpy(frame_data->buf, buf, size);
frame_data->size = size;
frame_data->flags = flags;
return frame_data;
}
// free FrameData
static void fd_free(struct FrameData *p) {
if (p) {
if (p->buf)
vpx_free(p->buf);
vpx_free(p);
}
}
// add FrameData to list
static void fd_list_add(struct FrameData **list, struct FrameData *layer_data) {
struct FrameData **p = list;
while (*p != NULL) p = &(*p)->next;
*p = layer_data;
layer_data->next = NULL;
}
// free FrameData list
static void fd_free_list(struct FrameData *list) {
struct FrameData *p = list;
while (p) {
list = list->next;
fd_free(p);
p = list;
}
}
static SvcInternal *get_svc_internal(SvcContext *svc_ctx) {
if (svc_ctx == NULL) return NULL;
if (svc_ctx->internal == NULL) {
SvcInternal *const si = (SvcInternal *)malloc(sizeof(*si));
if (si != NULL) {
memset(si, 0, sizeof(*si));
}
svc_ctx->internal = si;
}
return (SvcInternal *)svc_ctx->internal;
}
static const SvcInternal *get_const_svc_internal(const SvcContext *svc_ctx) {
if (svc_ctx == NULL) return NULL;
return (const SvcInternal *)svc_ctx->internal;
}
static void svc_log_reset(SvcContext *svc_ctx) {
SvcInternal *const si = (SvcInternal *)svc_ctx->internal;
si->message_buffer[0] = '\0';
}
static int svc_log(SvcContext *svc_ctx, SVC_LOG_LEVEL level,
const char *fmt, ...) {
char buf[512];
int retval = 0;
va_list ap;
SvcInternal *const si = get_svc_internal(svc_ctx);
if (level > svc_ctx->log_level) {
return retval;
}
va_start(ap, fmt);
retval = vsnprintf(buf, sizeof(buf), fmt, ap);
va_end(ap);
if (svc_ctx->log_print) {
printf("%s", buf);
} else {
strncat(si->message_buffer, buf,
sizeof(si->message_buffer) - strlen(si->message_buffer) - 1);
}
if (level == SVC_LOG_ERROR) {
si->codec_ctx->err_detail = si->message_buffer;
}
return retval;
}
static vpx_codec_err_t parse_quantizer_values(SvcContext *svc_ctx,
const char *quantizer_values) {
char *input_string;
char *token;
const char *delim = ",";
char *save_ptr;
int found = 0;
int i, q;
vpx_codec_err_t res = VPX_CODEC_OK;
SvcInternal *const si = get_svc_internal(svc_ctx);
if (quantizer_values == NULL || strlen(quantizer_values) == 0) {
input_string = strdup(DEFAULT_QUANTIZER_VALUES);
} else {
input_string = strdup(quantizer_values);
}
token = strtok_r(input_string, delim, &save_ptr);
for (i = 0; i < svc_ctx->spatial_layers; ++i) {
if (token != NULL) {
q = atoi(token);
if (q <= 0 || q > 100) {
svc_log(svc_ctx, SVC_LOG_ERROR,
"svc-quantizer-values: invalid value %s\n", token);
res = VPX_CODEC_INVALID_PARAM;
break;
}
token = strtok_r(NULL, delim, &save_ptr);
found = i + 1;
} else {
q = 0;
}
si->quantizer[i + VPX_SS_MAX_LAYERS - svc_ctx->spatial_layers] = q;
}
if (res == VPX_CODEC_OK && found != svc_ctx->spatial_layers) {
svc_log(svc_ctx, SVC_LOG_ERROR,
"svc: quantizers: %d values required, but only %d specified\n",
svc_ctx->spatial_layers, found);
res = VPX_CODEC_INVALID_PARAM;
}
free(input_string);
return res;
}
static void log_invalid_scale_factor(SvcContext *svc_ctx, const char *value) {
svc_log(svc_ctx, SVC_LOG_ERROR, "svc scale-factors: invalid value %s\n",
value);
}
static vpx_codec_err_t parse_scale_factors(SvcContext *svc_ctx,
const char *scale_factors) {
char *input_string;
char *token;
const char *delim = ",";
char *save_ptr;
int found = 0;
int i;
int64_t num, den;
vpx_codec_err_t res = VPX_CODEC_OK;
SvcInternal *const si = get_svc_internal(svc_ctx);
if (scale_factors == NULL || strlen(scale_factors) == 0) {
input_string = strdup(DEFAULT_SCALE_FACTORS);
} else {
input_string = strdup(scale_factors);
}
token = strtok_r(input_string, delim, &save_ptr);
for (i = 0; i < svc_ctx->spatial_layers; ++i) {
num = den = 0;
if (token != NULL) {
num = strtol(token, &token, 10);
if (num <= 0) {
log_invalid_scale_factor(svc_ctx, token);
res = VPX_CODEC_INVALID_PARAM;
break;
}
if (*token++ != '/') {
log_invalid_scale_factor(svc_ctx, token);
res = VPX_CODEC_INVALID_PARAM;
break;
}
den = strtol(token, &token, 10);
if (den <= 0) {
log_invalid_scale_factor(svc_ctx, token);
res = VPX_CODEC_INVALID_PARAM;
break;
}
token = strtok_r(NULL, delim, &save_ptr);
found = i + 1;
}
si->scaling_factor_num[i + VPX_SS_MAX_LAYERS - svc_ctx->spatial_layers] =
(int)num;
si->scaling_factor_den[i + VPX_SS_MAX_LAYERS - svc_ctx->spatial_layers] =
(int)den;
}
if (res == VPX_CODEC_OK && found != svc_ctx->spatial_layers) {
svc_log(svc_ctx, SVC_LOG_ERROR,
"svc: scale-factors: %d values required, but only %d specified\n",
svc_ctx->spatial_layers, found);
res = VPX_CODEC_INVALID_PARAM;
}
free(input_string);
return res;
}
/**
* Parse SVC encoding options
* Format: encoding-mode=<svc_mode>,layers=<layer_count>
* scale-factors=<n1>/<d1>,<n2>/<d2>,...
* quantizers=<q1>,<q2>,...
* svc_mode = [i|ip|alt_ip|gf]
*/
static vpx_codec_err_t parse_options(SvcContext *svc_ctx, const char *options) {
char *input_string;
char *option_name;
char *option_value;
char *input_ptr;
vpx_codec_err_t res = VPX_CODEC_OK;
if (options == NULL) return VPX_CODEC_OK;
input_string = strdup(options);
// parse option name
option_name = strtok_r(input_string, "=", &input_ptr);
while (option_name != NULL) {
// parse option value
option_value = strtok_r(NULL, " ", &input_ptr);
if (option_value == NULL) {
svc_log(svc_ctx, SVC_LOG_ERROR, "option missing value: %s\n",
option_name);
res = VPX_CODEC_INVALID_PARAM;
break;
}
if (strcmp("layers", option_name) == 0) {
svc_ctx->spatial_layers = atoi(option_value);
} else if (strcmp("scale-factors", option_name) == 0) {
res = parse_scale_factors(svc_ctx, option_value);
if (res != VPX_CODEC_OK) break;
} else if (strcmp("quantizers", option_name) == 0) {
res = parse_quantizer_values(svc_ctx, option_value);
if (res != VPX_CODEC_OK) break;
} else {
svc_log(svc_ctx, SVC_LOG_ERROR, "invalid option: %s\n", option_name);
res = VPX_CODEC_INVALID_PARAM;
break;
}
option_name = strtok_r(NULL, "=", &input_ptr);
}
free(input_string);
return res;
}
vpx_codec_err_t vpx_svc_set_options(SvcContext *svc_ctx, const char *options) {
SvcInternal *const si = get_svc_internal(svc_ctx);
if (svc_ctx == NULL || options == NULL || si == NULL) {
return VPX_CODEC_INVALID_PARAM;
}
strncpy(si->options, options, sizeof(si->options));
si->options[sizeof(si->options) - 1] = '\0';
return VPX_CODEC_OK;
}
vpx_codec_err_t vpx_svc_set_quantizers(SvcContext *svc_ctx,
const char *quantizers) {
SvcInternal *const si = get_svc_internal(svc_ctx);
if (svc_ctx == NULL || quantizers == NULL || si == NULL) {
return VPX_CODEC_INVALID_PARAM;
}
strncpy(si->quantizers, quantizers, sizeof(si->quantizers));
si->quantizers[sizeof(si->quantizers) - 1] = '\0';
return VPX_CODEC_OK;
}
vpx_codec_err_t vpx_svc_set_scale_factors(SvcContext *svc_ctx,
const char *scale_factors) {
SvcInternal *const si = get_svc_internal(svc_ctx);
if (svc_ctx == NULL || scale_factors == NULL || si == NULL) {
return VPX_CODEC_INVALID_PARAM;
}
strncpy(si->scale_factors, scale_factors, sizeof(si->scale_factors));
si->scale_factors[sizeof(si->scale_factors) - 1] = '\0';
return VPX_CODEC_OK;
}
vpx_codec_err_t vpx_svc_init(SvcContext *svc_ctx, vpx_codec_ctx_t *codec_ctx,
vpx_codec_iface_t *iface,
vpx_codec_enc_cfg_t *enc_cfg) {
vpx_codec_err_t res;
SvcInternal *const si = get_svc_internal(svc_ctx);
if (svc_ctx == NULL || codec_ctx == NULL || iface == NULL ||
enc_cfg == NULL) {
return VPX_CODEC_INVALID_PARAM;
}
if (si == NULL) return VPX_CODEC_MEM_ERROR;
si->codec_ctx = codec_ctx;
si->width = enc_cfg->g_w;
si->height = enc_cfg->g_h;
if (enc_cfg->kf_max_dist < 2) {
svc_log(svc_ctx, SVC_LOG_ERROR, "key frame distance too small: %d\n",
enc_cfg->kf_max_dist);
return VPX_CODEC_INVALID_PARAM;
}
si->kf_dist = enc_cfg->kf_max_dist;
if (svc_ctx->spatial_layers == 0)
svc_ctx->spatial_layers = VPX_SS_DEFAULT_LAYERS;
if (svc_ctx->spatial_layers < 1 ||
svc_ctx->spatial_layers > VPX_SS_MAX_LAYERS) {
svc_log(svc_ctx, SVC_LOG_ERROR, "spatial layers: invalid value: %d\n",
svc_ctx->spatial_layers);
return VPX_CODEC_INVALID_PARAM;
}
res = parse_quantizer_values(svc_ctx, si->quantizers);
if (res != VPX_CODEC_OK) return res;
res = parse_scale_factors(svc_ctx, si->scale_factors);
if (res != VPX_CODEC_OK) return res;
// Parse aggregate command line options. Options must start with
// "layers=xx" then followed by other options
res = parse_options(svc_ctx, si->options);
if (res != VPX_CODEC_OK) return res;
si->layers = svc_ctx->spatial_layers;
// Assign target bitrate for each layer. We calculate the ratio
// from the resolution for now.
// TODO(Minghai): Optimize the mechanism of allocating bits after
// implementing svc two pass rate control.
if (si->layers > 1) {
int i;
float total = 0;
float alloc_ratio[VPX_SS_MAX_LAYERS] = {0};
assert(si->layers <= VPX_SS_MAX_LAYERS);
for (i = 0; i < si->layers; ++i) {
int pos = i + VPX_SS_MAX_LAYERS - svc_ctx->spatial_layers;
if (pos < VPX_SS_MAX_LAYERS && si->scaling_factor_den[pos] > 0) {
alloc_ratio[i] = (float)(si->scaling_factor_num[pos] * 1.0 /
si->scaling_factor_den[pos]);
alloc_ratio[i] *= alloc_ratio[i];
total += alloc_ratio[i];
}
}
for (i = 0; i < si->layers; ++i) {
if (total > 0) {
enc_cfg->ss_target_bitrate[i] = (unsigned int)
(enc_cfg->rc_target_bitrate * alloc_ratio[i] / total);
}
}
}
// modify encoder configuration
enc_cfg->ss_number_layers = si->layers;
enc_cfg->ts_number_layers = 1; // Temporal layers not used in this encoder.
// TODO(ivanmaltz): determine if these values need to be set explicitly for
// svc, or if the normal default/override mechanism can be used
enc_cfg->rc_dropframe_thresh = 0;
enc_cfg->rc_resize_allowed = 0;
if (enc_cfg->g_pass == VPX_RC_ONE_PASS) {
enc_cfg->rc_min_quantizer = 33;
enc_cfg->rc_max_quantizer = 33;
}
enc_cfg->rc_undershoot_pct = 100;
enc_cfg->rc_overshoot_pct = 15;
enc_cfg->rc_buf_initial_sz = 500;
enc_cfg->rc_buf_optimal_sz = 600;
enc_cfg->rc_buf_sz = 1000;
enc_cfg->g_error_resilient = 1;
// Initialize codec
res = vpx_codec_enc_init(codec_ctx, iface, enc_cfg, VPX_CODEC_USE_PSNR);
if (res != VPX_CODEC_OK) {
svc_log(svc_ctx, SVC_LOG_ERROR, "svc_enc_init error\n");
return res;
}
vpx_codec_control(codec_ctx, VP9E_SET_SVC, 1);
vpx_codec_control(codec_ctx, VP8E_SET_TOKEN_PARTITIONS, 1);
vpx_codec_control(codec_ctx, VP8E_SET_ENABLEAUTOALTREF, 0);
return VPX_CODEC_OK;
}
static void accumulate_frame_size_for_each_layer(SvcInternal *const si,
const uint8_t *const buf,
const size_t size) {
uint8_t marker = buf[size - 1];
if ((marker & 0xe0) == 0xc0) {
const uint32_t frames = (marker & 0x7) + 1;
const uint32_t mag = ((marker >> 3) & 0x3) + 1;
const size_t index_sz = 2 + mag * frames;
uint8_t marker2 = buf[size - index_sz];
if (size >= index_sz && marker2 == marker) {
// found a valid superframe index
uint32_t i, j;
const uint8_t *x = &buf[size - index_sz + 1];
// frames has a maximum of 8 and mag has a maximum of 4.
for (i = 0; i < frames; i++) {
uint32_t this_sz = 0;
for (j = 0; j < mag; j++)
this_sz |= (*x++) << (j * 8);
si->bytes_sum[i] += this_sz;
}
}
}
}
// SVC Algorithm flags - these get mapped to VP8_EFLAG_* defined in vp8cx.h
// encoder should reference the last frame
#define USE_LAST (1 << 0)
// encoder should reference the alt ref frame
#define USE_ARF (1 << 1)
// encoder should reference the golden frame
#define USE_GF (1 << 2)
// encoder should copy current frame to the last frame buffer
#define UPDATE_LAST (1 << 3)
// encoder should copy current frame to the alt ref frame buffer
#define UPDATE_ARF (1 << 4)
// encoder should copy current frame to the golden frame
#define UPDATE_GF (1 << 5)
static int map_vp8_flags(int svc_flags) {
int flags = 0;
if (!(svc_flags & USE_LAST)) flags |= VP8_EFLAG_NO_REF_LAST;
if (!(svc_flags & USE_ARF)) flags |= VP8_EFLAG_NO_REF_ARF;
if (!(svc_flags & USE_GF)) flags |= VP8_EFLAG_NO_REF_GF;
if (svc_flags & UPDATE_LAST) {
// last is updated automatically
} else {
flags |= VP8_EFLAG_NO_UPD_LAST;
}
if (svc_flags & UPDATE_ARF) {
flags |= VP8_EFLAG_FORCE_ARF;
} else {
flags |= VP8_EFLAG_NO_UPD_ARF;
}
if (svc_flags & UPDATE_GF) {
flags |= VP8_EFLAG_FORCE_GF;
} else {
flags |= VP8_EFLAG_NO_UPD_GF;
}
return flags;
}
static void calculate_enc_frame_flags(SvcContext *svc_ctx) {
vpx_enc_frame_flags_t flags = VPX_EFLAG_FORCE_KF;
SvcInternal *const si = get_svc_internal(svc_ctx);
const int is_keyframe = (si->frame_within_gop == 0);
// keyframe layer zero is identical for all modes
if (is_keyframe && si->layer == 0) {
si->enc_frame_flags = VPX_EFLAG_FORCE_KF;
return;
}
if (si->layer == 0) {
flags = map_vp8_flags(USE_LAST | UPDATE_LAST);
} else if (is_keyframe) {
flags = map_vp8_flags(USE_ARF | UPDATE_LAST);
} else {
flags = map_vp8_flags(USE_LAST | USE_ARF | UPDATE_LAST);
}
si->enc_frame_flags = flags;
}
vpx_codec_err_t vpx_svc_get_layer_resolution(const SvcContext *svc_ctx,
int layer,
unsigned int *width,
unsigned int *height) {
int w, h, index, num, den;
const SvcInternal *const si = get_const_svc_internal(svc_ctx);
if (svc_ctx == NULL || si == NULL || width == NULL || height == NULL) {
return VPX_CODEC_INVALID_PARAM;
}
if (layer < 0 || layer >= si->layers) return VPX_CODEC_INVALID_PARAM;
index = layer + VPX_SS_MAX_LAYERS - si->layers;
num = si->scaling_factor_num[index];
den = si->scaling_factor_den[index];
if (num == 0 || den == 0) return VPX_CODEC_INVALID_PARAM;
w = si->width * num / den;
h = si->height * num / den;
// make height and width even to make chrome player happy
w += w % 2;
h += h % 2;
*width = w;
*height = h;
return VPX_CODEC_OK;
}
static void set_svc_parameters(SvcContext *svc_ctx,
vpx_codec_ctx_t *codec_ctx) {
int layer, layer_index;
vpx_svc_parameters_t svc_params;
SvcInternal *const si = get_svc_internal(svc_ctx);
memset(&svc_params, 0, sizeof(svc_params));
svc_params.temporal_layer = 0;
svc_params.spatial_layer = si->layer;
svc_params.flags = si->enc_frame_flags;
layer = si->layer;
if (VPX_CODEC_OK != vpx_svc_get_layer_resolution(svc_ctx, layer,
&svc_params.width,
&svc_params.height)) {
svc_log(svc_ctx, SVC_LOG_ERROR, "vpx_svc_get_layer_resolution failed\n");
}
layer_index = layer + VPX_SS_MAX_LAYERS - si->layers;
if (codec_ctx->config.enc->g_pass == VPX_RC_ONE_PASS) {
svc_params.min_quantizer = si->quantizer[layer_index];
svc_params.max_quantizer = si->quantizer[layer_index];
} else {
svc_params.min_quantizer = codec_ctx->config.enc->rc_min_quantizer;
svc_params.max_quantizer = codec_ctx->config.enc->rc_max_quantizer;
}
svc_params.distance_from_i_frame = si->frame_within_gop;
// Use buffer i for layer i LST
svc_params.lst_fb_idx = si->layer;
// Use buffer i-1 for layer i Alt (Inter-layer prediction)
svc_params.alt_fb_idx = (si->layer > 0) ? si->layer - 1 : 0;
svc_params.gld_fb_idx = svc_params.lst_fb_idx;
svc_log(svc_ctx, SVC_LOG_DEBUG, "SVC frame: %d, layer: %d, %dx%d, q: %d\n",
si->encode_frame_count, si->layer, svc_params.width,
svc_params.height, svc_params.min_quantizer);
if (svc_params.flags == VPX_EFLAG_FORCE_KF) {
svc_log(svc_ctx, SVC_LOG_DEBUG, "flags == VPX_EFLAG_FORCE_KF\n");
} else {
svc_log(
svc_ctx, SVC_LOG_DEBUG, "Using: LST/GLD/ALT [%2d|%2d|%2d]\n",
svc_params.flags & VP8_EFLAG_NO_REF_LAST ? -1 : svc_params.lst_fb_idx,
svc_params.flags & VP8_EFLAG_NO_REF_GF ? -1 : svc_params.gld_fb_idx,
svc_params.flags & VP8_EFLAG_NO_REF_ARF ? -1 : svc_params.alt_fb_idx);
svc_log(
svc_ctx, SVC_LOG_DEBUG, "Updating: LST/GLD/ALT [%2d|%2d|%2d]\n",
svc_params.flags & VP8_EFLAG_NO_UPD_LAST ? -1 : svc_params.lst_fb_idx,
svc_params.flags & VP8_EFLAG_NO_UPD_GF ? -1 : svc_params.gld_fb_idx,
svc_params.flags & VP8_EFLAG_NO_UPD_ARF ? -1 : svc_params.alt_fb_idx);
}
vpx_codec_control(codec_ctx, VP9E_SET_SVC_PARAMETERS, &svc_params);
}
/**
* Encode a frame into multiple layers
* Create a superframe containing the individual layers
*/
vpx_codec_err_t vpx_svc_encode(SvcContext *svc_ctx, vpx_codec_ctx_t *codec_ctx,
struct vpx_image *rawimg, vpx_codec_pts_t pts,
int64_t duration, int deadline) {
vpx_codec_err_t res;
vpx_codec_iter_t iter;
const vpx_codec_cx_pkt_t *cx_pkt;
int layer_for_psnr = 0;
SvcInternal *const si = get_svc_internal(svc_ctx);
if (svc_ctx == NULL || codec_ctx == NULL || si == NULL) {
return VPX_CODEC_INVALID_PARAM;
}
svc_log_reset(svc_ctx);
si->rc_stats_buf_used = 0;
si->layers = svc_ctx->spatial_layers;
if (si->encode_frame_count == 0) {
si->frame_within_gop = 0;
}
si->is_keyframe = (si->frame_within_gop == 0);
if (rawimg != NULL) {
svc_log(svc_ctx, SVC_LOG_DEBUG,
"vpx_svc_encode layers: %d, frame_count: %d, "
"frame_within_gop: %d\n", si->layers, si->encode_frame_count,
si->frame_within_gop);
}
if (rawimg != NULL) {
// encode each layer
for (si->layer = 0; si->layer < si->layers; ++si->layer) {
calculate_enc_frame_flags(svc_ctx);
set_svc_parameters(svc_ctx, codec_ctx);
}
}
res = vpx_codec_encode(codec_ctx, rawimg, pts, (uint32_t)duration, 0,
deadline);
if (res != VPX_CODEC_OK) {
return res;
}
// save compressed data
iter = NULL;
while ((cx_pkt = vpx_codec_get_cx_data(codec_ctx, &iter))) {
switch (cx_pkt->kind) {
case VPX_CODEC_CX_FRAME_PKT: {
fd_list_add(&si->frame_list, fd_create(cx_pkt->data.frame.buf,
cx_pkt->data.frame.sz,
cx_pkt->data.frame.flags));
accumulate_frame_size_for_each_layer(si, cx_pkt->data.frame.buf,
cx_pkt->data.frame.sz);
svc_log(svc_ctx, SVC_LOG_DEBUG, "SVC frame: %d, kf: %d, size: %d, "
"pts: %d\n", si->frame_received,
(cx_pkt->data.frame.flags & VPX_FRAME_IS_KEY) ? 1 : 0,
(int)cx_pkt->data.frame.sz, (int)cx_pkt->data.frame.pts);
++si->frame_received;
layer_for_psnr = 0;
break;
}
case VPX_CODEC_PSNR_PKT: {
int i;
svc_log(svc_ctx, SVC_LOG_DEBUG,
"SVC frame: %d, layer: %d, PSNR(Total/Y/U/V): "
"%2.3f %2.3f %2.3f %2.3f \n",
si->frame_received, layer_for_psnr,
cx_pkt->data.psnr.psnr[0], cx_pkt->data.psnr.psnr[1],
cx_pkt->data.psnr.psnr[2], cx_pkt->data.psnr.psnr[3]);
svc_log(svc_ctx, SVC_LOG_DEBUG,
"SVC frame: %d, layer: %d, SSE(Total/Y/U/V): "
"%2.3f %2.3f %2.3f %2.3f \n",
si->frame_received, layer_for_psnr,
cx_pkt->data.psnr.sse[0], cx_pkt->data.psnr.sse[1],
cx_pkt->data.psnr.sse[2], cx_pkt->data.psnr.sse[3]);
for (i = 0; i < COMPONENTS; i++) {
si->psnr_sum[layer_for_psnr][i] += cx_pkt->data.psnr.psnr[i];
si->sse_sum[layer_for_psnr][i] += cx_pkt->data.psnr.sse[i];
}
++layer_for_psnr;
break;
}
case VPX_CODEC_STATS_PKT: {
size_t new_size = si->rc_stats_buf_used +
cx_pkt->data.twopass_stats.sz;
if (new_size > si->rc_stats_buf_size) {
char *p = (char*)realloc(si->rc_stats_buf, new_size);
if (p == NULL) {
svc_log(svc_ctx, SVC_LOG_ERROR, "Error allocating stats buf\n");
return VPX_CODEC_MEM_ERROR;
}
si->rc_stats_buf = p;
si->rc_stats_buf_size = new_size;
}
memcpy(si->rc_stats_buf + si->rc_stats_buf_used,
cx_pkt->data.twopass_stats.buf, cx_pkt->data.twopass_stats.sz);
si->rc_stats_buf_used += cx_pkt->data.twopass_stats.sz;
break;
}
default: {
break;
}
}
}
if (rawimg != NULL) {
++si->frame_within_gop;
++si->encode_frame_count;
}
return VPX_CODEC_OK;
}
const char *vpx_svc_get_message(const SvcContext *svc_ctx) {
const SvcInternal *const si = get_const_svc_internal(svc_ctx);
if (svc_ctx == NULL || si == NULL) return NULL;
return si->message_buffer;
}
// We will maintain a list of output frame buffers since with lag_in_frame
// we need to output all frame buffers at the end. vpx_svc_get_buffer() will
// remove a frame buffer from the list the put it to a temporal pointer, which
// will be removed at the next vpx_svc_get_buffer() or when closing encoder.
void *vpx_svc_get_buffer(SvcContext *svc_ctx) {
SvcInternal *const si = get_svc_internal(svc_ctx);
if (svc_ctx == NULL || si == NULL || si->frame_list == NULL) return NULL;
if (si->frame_temp)
fd_free(si->frame_temp);
si->frame_temp = si->frame_list;
si->frame_list = si->frame_list->next;
return si->frame_temp->buf;
}
size_t vpx_svc_get_frame_size(const SvcContext *svc_ctx) {
const SvcInternal *const si = get_const_svc_internal(svc_ctx);
if (svc_ctx == NULL || si == NULL || si->frame_list == NULL) return 0;
return si->frame_list->size;
}
int vpx_svc_get_encode_frame_count(const SvcContext *svc_ctx) {
const SvcInternal *const si = get_const_svc_internal(svc_ctx);
if (svc_ctx == NULL || si == NULL) return 0;
return si->encode_frame_count;
}
int vpx_svc_is_keyframe(const SvcContext *svc_ctx) {
const SvcInternal *const si = get_const_svc_internal(svc_ctx);
if (svc_ctx == NULL || si == NULL || si->frame_list == NULL) return 0;
return (si->frame_list->flags & VPX_FRAME_IS_KEY) != 0;
}
void vpx_svc_set_keyframe(SvcContext *svc_ctx) {
SvcInternal *const si = get_svc_internal(svc_ctx);
if (svc_ctx == NULL || si == NULL) return;
si->frame_within_gop = 0;
}
static double calc_psnr(double d) {
if (d == 0) return 100;
return -10.0 * log(d) / log(10.0);
}
// dump accumulated statistics and reset accumulated values
const char *vpx_svc_dump_statistics(SvcContext *svc_ctx) {
int number_of_frames, encode_frame_count;
int i, j;
uint32_t bytes_total = 0;
double scale[COMPONENTS];
double psnr[COMPONENTS];
double mse[COMPONENTS];
double y_scale;
SvcInternal *const si = get_svc_internal(svc_ctx);
if (svc_ctx == NULL || si == NULL) return NULL;
svc_log_reset(svc_ctx);
encode_frame_count = si->encode_frame_count;
if (si->encode_frame_count <= 0) return vpx_svc_get_message(svc_ctx);
svc_log(svc_ctx, SVC_LOG_INFO, "\n");
for (i = 0; i < si->layers; ++i) {
number_of_frames = encode_frame_count;
svc_log(svc_ctx, SVC_LOG_INFO,
"Layer %d Average PSNR=[%2.3f, %2.3f, %2.3f, %2.3f], Bytes=[%u]\n",
i, (double)si->psnr_sum[i][0] / number_of_frames,
(double)si->psnr_sum[i][1] / number_of_frames,
(double)si->psnr_sum[i][2] / number_of_frames,
(double)si->psnr_sum[i][3] / number_of_frames, si->bytes_sum[i]);
// the following psnr calculation is deduced from ffmpeg.c#print_report
y_scale = si->width * si->height * 255.0 * 255.0 * number_of_frames;
scale[1] = y_scale;
scale[2] = scale[3] = y_scale / 4; // U or V
scale[0] = y_scale * 1.5; // total
for (j = 0; j < COMPONENTS; j++) {
psnr[j] = calc_psnr(si->sse_sum[i][j] / scale[j]);
mse[j] = si->sse_sum[i][j] * 255.0 * 255.0 / scale[j];
}
svc_log(svc_ctx, SVC_LOG_INFO,
"Layer %d Overall PSNR=[%2.3f, %2.3f, %2.3f, %2.3f]\n", i, psnr[0],
psnr[1], psnr[2], psnr[3]);
svc_log(svc_ctx, SVC_LOG_INFO,
"Layer %d Overall MSE=[%2.3f, %2.3f, %2.3f, %2.3f]\n", i, mse[0],
mse[1], mse[2], mse[3]);
bytes_total += si->bytes_sum[i];
// clear sums for next time
si->bytes_sum[i] = 0;
for (j = 0; j < COMPONENTS; ++j) {
si->psnr_sum[i][j] = 0;
si->sse_sum[i][j] = 0;
}
}
// only display statistics once
si->encode_frame_count = 0;
svc_log(svc_ctx, SVC_LOG_INFO, "Total Bytes=[%u]\n", bytes_total);
return vpx_svc_get_message(svc_ctx);
}
void vpx_svc_release(SvcContext *svc_ctx) {
SvcInternal *si;
if (svc_ctx == NULL) return;
// do not use get_svc_internal as it will unnecessarily allocate an
// SvcInternal if it was not already allocated
si = (SvcInternal *)svc_ctx->internal;
if (si != NULL) {
fd_free(si->frame_temp);
fd_free_list(si->frame_list);
if (si->rc_stats_buf) {
free(si->rc_stats_buf);
}
free(si);
svc_ctx->internal = NULL;
}
}
size_t vpx_svc_get_rc_stats_buffer_size(const SvcContext *svc_ctx) {
const SvcInternal *const si = get_const_svc_internal(svc_ctx);
if (svc_ctx == NULL || si == NULL) return 0;
return si->rc_stats_buf_used;
}
char *vpx_svc_get_rc_stats_buffer(const SvcContext *svc_ctx) {
const SvcInternal *const si = get_const_svc_internal(svc_ctx);
if (svc_ctx == NULL || si == NULL) return NULL;
return si->rc_stats_buf;
}