blob: ca93391559e59496b070140d5e3cf8b5943115fe [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <limits.h>
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/encoder/vp9_extend.h"
#include "vp9/encoder/vp9_firstpass.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_encoder.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/vpx_timer.h"
#include "vpx_scale/vpx_scale.h"
static void temporal_filter_predictors_mb_c(MACROBLOCKD *xd,
uint8_t *y_mb_ptr,
uint8_t *u_mb_ptr,
uint8_t *v_mb_ptr,
int stride,
int uv_block_size,
int mv_row,
int mv_col,
uint8_t *pred,
struct scale_factors *scale,
int x, int y) {
const int which_mv = 0;
const MV mv = { mv_row, mv_col };
const InterpKernel *const kernel =
vp9_get_interp_kernel(xd->mi[0]->mbmi.interp_filter);
enum mv_precision mv_precision_uv;
int uv_stride;
if (uv_block_size == 8) {
uv_stride = (stride + 1) >> 1;
mv_precision_uv = MV_PRECISION_Q4;
} else {
uv_stride = stride;
mv_precision_uv = MV_PRECISION_Q3;
}
vp9_build_inter_predictor(y_mb_ptr, stride,
&pred[0], 16,
&mv,
scale,
16, 16,
which_mv,
kernel, MV_PRECISION_Q3, x, y);
vp9_build_inter_predictor(u_mb_ptr, uv_stride,
&pred[256], uv_block_size,
&mv,
scale,
uv_block_size, uv_block_size,
which_mv,
kernel, mv_precision_uv, x, y);
vp9_build_inter_predictor(v_mb_ptr, uv_stride,
&pred[512], uv_block_size,
&mv,
scale,
uv_block_size, uv_block_size,
which_mv,
kernel, mv_precision_uv, x, y);
}
void vp9_temporal_filter_apply_c(uint8_t *frame1,
unsigned int stride,
uint8_t *frame2,
unsigned int block_size,
int strength,
int filter_weight,
unsigned int *accumulator,
uint16_t *count) {
unsigned int i, j, k;
int modifier;
int byte = 0;
for (i = 0, k = 0; i < block_size; i++) {
for (j = 0; j < block_size; j++, k++) {
int src_byte = frame1[byte];
int pixel_value = *frame2++;
modifier = src_byte - pixel_value;
// This is an integer approximation of:
// float coeff = (3.0 * modifer * modifier) / pow(2, strength);
// modifier = (int)roundf(coeff > 16 ? 0 : 16-coeff);
modifier *= modifier;
modifier *= 3;
modifier += 1 << (strength - 1);
modifier >>= strength;
if (modifier > 16)
modifier = 16;
modifier = 16 - modifier;
modifier *= filter_weight;
count[k] += modifier;
accumulator[k] += modifier * pixel_value;
byte++;
}
byte += stride - block_size;
}
}
static int temporal_filter_find_matching_mb_c(VP9_COMP *cpi,
uint8_t *arf_frame_buf,
uint8_t *frame_ptr_buf,
int stride) {
MACROBLOCK *x = &cpi->mb;
MACROBLOCKD* const xd = &x->e_mbd;
int step_param;
int sadpb = x->sadperbit16;
int bestsme = INT_MAX;
int distortion;
unsigned int sse;
MV best_ref_mv1 = {0, 0};
MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */
MV *ref_mv = &x->e_mbd.mi[0]->bmi[0].as_mv[0].as_mv;
// Save input state
struct buf_2d src = x->plane[0].src;
struct buf_2d pre = xd->plane[0].pre[0];
best_ref_mv1_full.col = best_ref_mv1.col >> 3;
best_ref_mv1_full.row = best_ref_mv1.row >> 3;
// Setup frame pointers
x->plane[0].src.buf = arf_frame_buf;
x->plane[0].src.stride = stride;
xd->plane[0].pre[0].buf = frame_ptr_buf;
xd->plane[0].pre[0].stride = stride;
step_param = cpi->sf.reduce_first_step_size + (cpi->oxcf.speed > 5 ? 1 : 0);
step_param = MIN(step_param, cpi->sf.max_step_search_steps - 2);
// Ignore mv costing by sending NULL pointer instead of cost arrays
vp9_hex_search(x, &best_ref_mv1_full, step_param, sadpb, 1,
&cpi->fn_ptr[BLOCK_16X16], 0, &best_ref_mv1, ref_mv);
// Ignore mv costing by sending NULL pointer instead of cost array
bestsme = cpi->find_fractional_mv_step(x, ref_mv,
&best_ref_mv1,
cpi->common.allow_high_precision_mv,
x->errorperbit,
&cpi->fn_ptr[BLOCK_16X16],
0, cpi->sf.subpel_iters_per_step,
NULL, NULL,
&distortion, &sse);
// Restore input state
x->plane[0].src = src;
xd->plane[0].pre[0] = pre;
return bestsme;
}
static void temporal_filter_iterate_c(VP9_COMP *cpi,
int frame_count,
int alt_ref_index,
int strength,
struct scale_factors *scale) {
int byte;
int frame;
int mb_col, mb_row;
unsigned int filter_weight;
int mb_cols = cpi->common.mb_cols;
int mb_rows = cpi->common.mb_rows;
int mb_y_offset = 0;
int mb_uv_offset = 0;
DECLARE_ALIGNED_ARRAY(16, unsigned int, accumulator, 16 * 16 * 3);
DECLARE_ALIGNED_ARRAY(16, uint16_t, count, 16 * 16 * 3);
MACROBLOCKD *mbd = &cpi->mb.e_mbd;
YV12_BUFFER_CONFIG *f = cpi->frames[alt_ref_index];
uint8_t *dst1, *dst2;
DECLARE_ALIGNED_ARRAY(16, uint8_t, predictor, 16 * 16 * 3);
const int mb_uv_height = 16 >> mbd->plane[1].subsampling_y;
// Save input state
uint8_t* input_buffer[MAX_MB_PLANE];
int i;
// TODO(aconverse): Add 4:2:2 support
assert(mbd->plane[1].subsampling_x == mbd->plane[1].subsampling_y);
for (i = 0; i < MAX_MB_PLANE; i++)
input_buffer[i] = mbd->plane[i].pre[0].buf;
for (mb_row = 0; mb_row < mb_rows; mb_row++) {
// Source frames are extended to 16 pixels. This is different than
// L/A/G reference frames that have a border of 32 (VP9ENCBORDERINPIXELS)
// A 6/8 tap filter is used for motion search. This requires 2 pixels
// before and 3 pixels after. So the largest Y mv on a border would
// then be 16 - VP9_INTERP_EXTEND. The UV blocks are half the size of the
// Y and therefore only extended by 8. The largest mv that a UV block
// can support is 8 - VP9_INTERP_EXTEND. A UV mv is half of a Y mv.
// (16 - VP9_INTERP_EXTEND) >> 1 which is greater than
// 8 - VP9_INTERP_EXTEND.
// To keep the mv in play for both Y and UV planes the max that it
// can be on a border is therefore 16 - (2*VP9_INTERP_EXTEND+1).
cpi->mb.mv_row_min = -((mb_row * 16) + (17 - 2 * VP9_INTERP_EXTEND));
cpi->mb.mv_row_max = ((cpi->common.mb_rows - 1 - mb_row) * 16)
+ (17 - 2 * VP9_INTERP_EXTEND);
for (mb_col = 0; mb_col < mb_cols; mb_col++) {
int i, j, k;
int stride;
vpx_memset(accumulator, 0, 16 * 16 * 3 * sizeof(accumulator[0]));
vpx_memset(count, 0, 16 * 16 * 3 * sizeof(count[0]));
cpi->mb.mv_col_min = -((mb_col * 16) + (17 - 2 * VP9_INTERP_EXTEND));
cpi->mb.mv_col_max = ((cpi->common.mb_cols - 1 - mb_col) * 16)
+ (17 - 2 * VP9_INTERP_EXTEND);
for (frame = 0; frame < frame_count; frame++) {
const int thresh_low = 10000;
const int thresh_high = 20000;
if (cpi->frames[frame] == NULL)
continue;
mbd->mi[0]->bmi[0].as_mv[0].as_mv.row = 0;
mbd->mi[0]->bmi[0].as_mv[0].as_mv.col = 0;
if (frame == alt_ref_index) {
filter_weight = 2;
} else {
// Find best match in this frame by MC
int err = temporal_filter_find_matching_mb_c(cpi,
cpi->frames[alt_ref_index]->y_buffer + mb_y_offset,
cpi->frames[frame]->y_buffer + mb_y_offset,
cpi->frames[frame]->y_stride);
// Assign higher weight to matching MB if it's error
// score is lower. If not applying MC default behavior
// is to weight all MBs equal.
filter_weight = err < thresh_low
? 2 : err < thresh_high ? 1 : 0;
}
if (filter_weight != 0) {
// Construct the predictors
temporal_filter_predictors_mb_c(mbd,
cpi->frames[frame]->y_buffer + mb_y_offset,
cpi->frames[frame]->u_buffer + mb_uv_offset,
cpi->frames[frame]->v_buffer + mb_uv_offset,
cpi->frames[frame]->y_stride,
mb_uv_height,
mbd->mi[0]->bmi[0].as_mv[0].as_mv.row,
mbd->mi[0]->bmi[0].as_mv[0].as_mv.col,
predictor, scale,
mb_col * 16, mb_row * 16);
// Apply the filter (YUV)
vp9_temporal_filter_apply(f->y_buffer + mb_y_offset, f->y_stride,
predictor, 16, strength, filter_weight,
accumulator, count);
vp9_temporal_filter_apply(f->u_buffer + mb_uv_offset, f->uv_stride,
predictor + 256, mb_uv_height, strength,
filter_weight, accumulator + 256,
count + 256);
vp9_temporal_filter_apply(f->v_buffer + mb_uv_offset, f->uv_stride,
predictor + 512, mb_uv_height, strength,
filter_weight, accumulator + 512,
count + 512);
}
}
// Normalize filter output to produce AltRef frame
dst1 = cpi->alt_ref_buffer.y_buffer;
stride = cpi->alt_ref_buffer.y_stride;
byte = mb_y_offset;
for (i = 0, k = 0; i < 16; i++) {
for (j = 0; j < 16; j++, k++) {
unsigned int pval = accumulator[k] + (count[k] >> 1);
pval *= cpi->fixed_divide[count[k]];
pval >>= 19;
dst1[byte] = (uint8_t)pval;
// move to next pixel
byte++;
}
byte += stride - 16;
}
dst1 = cpi->alt_ref_buffer.u_buffer;
dst2 = cpi->alt_ref_buffer.v_buffer;
stride = cpi->alt_ref_buffer.uv_stride;
byte = mb_uv_offset;
for (i = 0, k = 256; i < mb_uv_height; i++) {
for (j = 0; j < mb_uv_height; j++, k++) {
int m = k + 256;
// U
unsigned int pval = accumulator[k] + (count[k] >> 1);
pval *= cpi->fixed_divide[count[k]];
pval >>= 19;
dst1[byte] = (uint8_t)pval;
// V
pval = accumulator[m] + (count[m] >> 1);
pval *= cpi->fixed_divide[count[m]];
pval >>= 19;
dst2[byte] = (uint8_t)pval;
// move to next pixel
byte++;
}
byte += stride - mb_uv_height;
}
mb_y_offset += 16;
mb_uv_offset += mb_uv_height;
}
mb_y_offset += 16 * (f->y_stride - mb_cols);
mb_uv_offset += mb_uv_height * (f->uv_stride - mb_cols);
}
// Restore input state
for (i = 0; i < MAX_MB_PLANE; i++)
mbd->plane[i].pre[0].buf = input_buffer[i];
}
void vp9_temporal_filter_prepare(VP9_COMP *cpi, int distance) {
VP9_COMMON *const cm = &cpi->common;
int frame = 0;
int frames_to_blur = 0;
int start_frame = 0;
int strength = cpi->active_arnr_strength;
int max_frames = cpi->active_arnr_frames;
int frames_to_blur_backward = distance;
int frames_to_blur_forward = vp9_lookahead_depth(cpi->lookahead)
- (distance + 1);
struct scale_factors sf;
// Determine which input frames to filter.
if (frames_to_blur_forward > frames_to_blur_backward)
frames_to_blur_forward = frames_to_blur_backward;
if (frames_to_blur_backward > frames_to_blur_forward)
frames_to_blur_backward = frames_to_blur_forward;
// When max_frames is even we have 1 more frame backward than forward
if (frames_to_blur_forward > (max_frames - 1) / 2)
frames_to_blur_forward = (max_frames - 1) / 2;
if (frames_to_blur_backward > (max_frames / 2))
frames_to_blur_backward = max_frames / 2;
frames_to_blur = frames_to_blur_backward + frames_to_blur_forward + 1;
start_frame = distance + frames_to_blur_forward;
// Setup scaling factors. Scaling on each of the arnr frames is not supported
vp9_setup_scale_factors_for_frame(&sf,
get_frame_new_buffer(cm)->y_crop_width,
get_frame_new_buffer(cm)->y_crop_height,
cm->width, cm->height);
// Setup frame pointers, NULL indicates frame not included in filter
vp9_zero(cpi->frames);
for (frame = 0; frame < frames_to_blur; ++frame) {
int which_buffer = start_frame - frame;
struct lookahead_entry *buf = vp9_lookahead_peek(cpi->lookahead,
which_buffer);
cpi->frames[frames_to_blur - 1 - frame] = &buf->img;
}
temporal_filter_iterate_c(cpi, frames_to_blur, frames_to_blur_backward,
strength, &sf);
}
void vp9_configure_arnr_filter(VP9_COMP *cpi,
const unsigned int frames_to_arnr,
const int group_boost) {
int q;
int half_gf_int;
int frames_after_arf;
int frames_bwd;
int frames_fwd = (cpi->oxcf.arnr_max_frames - 1) >> 1;
// Define the arnr filter width for this group of frames. We only
// filter frames that lie within a distance of half the GF interval
// from the ARF frame. We also have to trap cases where the filter
// extends beyond the end of the lookahead buffer.
// Note: frames_to_arnr parameter is the offset of the arnr
// frame from the current frame.
half_gf_int = cpi->rc.baseline_gf_interval >> 1;
frames_after_arf = vp9_lookahead_depth(cpi->lookahead)
- frames_to_arnr - 1;
if (frames_fwd > frames_after_arf)
frames_fwd = frames_after_arf;
if (frames_fwd > half_gf_int)
frames_fwd = half_gf_int;
frames_bwd = frames_fwd;
// For even length filter there is one more frame backward
// than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff.
if (frames_bwd < half_gf_int)
frames_bwd += (cpi->oxcf.arnr_max_frames + 1) & 0x1;
cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd;
// Adjust the strength based on active max q
if (cpi->common.current_video_frame > 1)
q = ((int)vp9_convert_qindex_to_q(cpi->rc.avg_frame_qindex[INTER_FRAME]));
else
q = ((int)vp9_convert_qindex_to_q(cpi->rc.avg_frame_qindex[KEY_FRAME]));
if (q > 16) {
cpi->active_arnr_strength = cpi->oxcf.arnr_strength;
} else {
cpi->active_arnr_strength = cpi->oxcf.arnr_strength - ((16 - q) / 2);
if (cpi->active_arnr_strength < 0)
cpi->active_arnr_strength = 0;
}
// Adjust number of frames in filter and strength based on gf boost level.
if (cpi->active_arnr_frames > (group_boost / 150)) {
cpi->active_arnr_frames = (group_boost / 150);
cpi->active_arnr_frames += !(cpi->active_arnr_frames & 1);
}
if (cpi->active_arnr_strength > (group_boost / 300)) {
cpi->active_arnr_strength = (group_boost / 300);
}
}