blob: c23de226f725e14ca8ee1026f4584ebc32fe4d86 [file] [log] [blame]
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/db_iter.h"
#include "db/filename.h"
#include "db/dbformat.h"
#include "include/env.h"
#include "include/iterator.h"
#include "port/port.h"
#include "util/logging.h"
#include "util/mutexlock.h"
namespace leveldb {
#if 0
static void DumpInternalIter(Iterator* iter) {
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ParsedInternalKey k;
if (!ParseInternalKey(iter->key(), &k)) {
fprintf(stderr, "Corrupt '%s'\n", EscapeString(iter->key()).c_str());
} else {
fprintf(stderr, "@ '%s'\n", k.DebugString().c_str());
}
}
}
#endif
namespace {
// Memtables and sstables that make the DB representation contain
// (userkey,seq,type) => uservalue entries. DBIter
// combines multiple entries for the same userkey found in the DB
// representation into a single entry while accounting for sequence
// numbers, deletion markers, overwrites, etc.
class DBIter: public Iterator {
public:
DBIter(const std::string* dbname, Env* env,
const Comparator* cmp, Iterator* iter, SequenceNumber s)
: dbname_(dbname),
env_(env),
user_comparator_(cmp),
iter_(iter),
sequence_(s),
large_(NULL),
valid_(false) {
}
virtual ~DBIter() {
delete iter_;
delete large_;
}
virtual bool Valid() const { return valid_; }
virtual Slice key() const {
assert(valid_);
return key_;
}
virtual Slice value() const {
assert(valid_);
if (large_ == NULL) {
return value_;
} else {
MutexLock l(&large_->mutex);
if (!large_->produced) {
ReadIndirectValue();
}
return large_->value;
}
}
virtual void Next() {
assert(valid_);
// iter_ is already positioned past DBIter::key()
FindNextUserEntry();
}
virtual void Prev() {
assert(valid_);
bool ignored;
ScanUntilBeforeCurrentKey(&ignored);
FindPrevUserEntry();
}
virtual void Seek(const Slice& target) {
ParsedInternalKey ikey(target, sequence_, kValueTypeForSeek);
std::string tmp;
AppendInternalKey(&tmp, ikey);
iter_->Seek(tmp);
FindNextUserEntry();
}
virtual void SeekToFirst() {
iter_->SeekToFirst();
FindNextUserEntry();
}
virtual void SeekToLast();
virtual Status status() const {
if (status_.ok()) {
if (large_ != NULL && !large_->status.ok()) return large_->status;
return iter_->status();
} else {
return status_;
}
}
private:
void FindNextUserEntry();
void FindPrevUserEntry();
void SaveKey(const Slice& k) { key_.assign(k.data(), k.size()); }
void SaveValue(const Slice& v) {
if (value_.capacity() > v.size() + 1048576) {
std::string empty;
swap(empty, value_);
}
value_.assign(v.data(), v.size());
}
bool ParseKey(ParsedInternalKey* key);
void SkipPast(const Slice& k);
void ScanUntilBeforeCurrentKey(bool* found_live);
void ReadIndirectValue() const;
struct Large {
port::Mutex mutex;
std::string value;
bool produced;
Status status;
};
const std::string* const dbname_;
Env* const env_;
const Comparator* const user_comparator_;
// iter_ is positioned just past current entry for DBIter if valid_
Iterator* const iter_;
SequenceNumber const sequence_;
Status status_;
std::string key_; // Always a user key
std::string value_;
Large* large_; // Non-NULL if value is an indirect reference
bool valid_;
// No copying allowed
DBIter(const DBIter&);
void operator=(const DBIter&);
};
inline bool DBIter::ParseKey(ParsedInternalKey* ikey) {
if (!ParseInternalKey(iter_->key(), ikey)) {
status_ = Status::Corruption("corrupted internal key in DBIter");
return false;
} else {
return true;
}
}
void DBIter::FindNextUserEntry() {
if (large_ != NULL) {
if (status_.ok() && !large_->status.ok()) {
status_ = large_->status;
}
delete large_;
large_ = NULL;
}
while (iter_->Valid()) {
ParsedInternalKey ikey;
if (!ParseKey(&ikey)) {
// Skip past corrupted entry
iter_->Next();
continue;
}
if (ikey.sequence > sequence_) {
// Ignore entries newer than the snapshot
iter_->Next();
continue;
}
switch (ikey.type) {
case kTypeDeletion:
SaveKey(ikey.user_key); // Make local copy for use by SkipPast()
iter_->Next();
SkipPast(key_);
// Do not return deleted entries. Instead keep looping.
break;
case kTypeValue:
SaveKey(ikey.user_key);
SaveValue(iter_->value());
iter_->Next();
SkipPast(key_);
// Yield the value we just found.
valid_ = true;
return;
case kTypeLargeValueRef:
SaveKey(ikey.user_key);
// Save the large value ref as value_, and read it lazily on a call
// to value()
SaveValue(iter_->value());
large_ = new Large;
large_->produced = false;
iter_->Next();
SkipPast(key_);
// Yield the value we just found.
valid_ = true;
return;
}
}
valid_ = false;
key_.clear();
value_.clear();
assert(large_ == NULL);
}
void DBIter::SkipPast(const Slice& k) {
while (iter_->Valid()) {
ParsedInternalKey ikey;
// Note that if we cannot parse an internal key, we keep looping
// so that if we have a run like the following:
// <x,100,v> => value100
// <corrupted entry for user key x>
// <x,50,v> => value50
// we will skip over the corrupted entry as well as value50.
if (ParseKey(&ikey) && user_comparator_->Compare(ikey.user_key, k) != 0) {
break;
}
iter_->Next();
}
}
void DBIter::SeekToLast() {
// Position iter_ at the last uncorrupted user key and then
// let FindPrevUserEntry() do the heavy lifting to find
// a user key that is live.
iter_->SeekToLast();
ParsedInternalKey current;
while (iter_->Valid() && !ParseKey(&current)) {
iter_->Prev();
}
if (iter_->Valid()) {
SaveKey(current.user_key);
}
FindPrevUserEntry();
}
// Let X be the user key at which iter_ is currently positioned.
// Adjust DBIter to point at the last entry with a key <= X that
// has a live value.
void DBIter::FindPrevUserEntry() {
// Consider the following example:
//
// A@540
// A@400
//
// B@300
// B@200
// B@100 <- iter_
//
// C@301
// C@201
//
// The comments marked "(first iteration)" below relate what happens
// for the preceding example in the first iteration of the while loop
// below. There may be more than one iteration either if there are
// no live values for B, or if there is a corruption.
while (iter_->Valid()) {
std::string saved = key_;
bool found_live;
ScanUntilBeforeCurrentKey(&found_live);
// (first iteration) iter_ at A@400
if (found_live) {
// Step forward into range of entries with user key >= saved
if (!iter_->Valid()) {
iter_->SeekToFirst();
} else {
iter_->Next();
}
// (first iteration) iter_ at B@300
FindNextUserEntry(); // Sets key_ to the key of the next value it found
if (valid_ && user_comparator_->Compare(key_, saved) == 0) {
// (first iteration) iter_ at C@301
return;
}
// FindNextUserEntry() could not find any entries under the
// user key "saved". This is probably a corruption since
// ScanUntilBefore(saved) found a live value. So we skip
// backwards to an earlier key and ignore the corrupted
// entries for "saved".
//
// (first iteration) iter_ at C@301 and saved == "B"
key_ = saved;
bool ignored;
ScanUntilBeforeCurrentKey(&ignored);
// (first iteration) iter_ at A@400
}
}
valid_ = false;
key_.clear();
value_.clear();
}
void DBIter::ScanUntilBeforeCurrentKey(bool* found_live) {
*found_live = false;
if (!iter_->Valid()) {
iter_->SeekToLast();
}
while (iter_->Valid()) {
ParsedInternalKey current;
if (!ParseKey(&current)) {
iter_->Prev();
continue;
}
if (current.sequence > sequence_) {
// Ignore entries that are serialized after this read
iter_->Prev();
continue;
}
const int cmp = user_comparator_->Compare(current.user_key, key_);
if (cmp < 0) {
SaveKey(current.user_key);
return;
} else if (cmp == 0) {
switch (current.type) {
case kTypeDeletion:
*found_live = false;
break;
case kTypeValue:
case kTypeLargeValueRef:
*found_live = true;
break;
}
} else { // cmp > 0
*found_live = false;
}
iter_->Prev();
}
}
void DBIter::ReadIndirectValue() const {
assert(!large_->produced);
large_->produced = true;
LargeValueRef large_ref;
if (value_.size() != LargeValueRef::ByteSize()) {
large_->status = Status::Corruption("malformed large value reference");
return;
}
memcpy(large_ref.data, value_.data(), LargeValueRef::ByteSize());
std::string fname = LargeValueFileName(*dbname_, large_ref);
RandomAccessFile* file;
Status s = env_->NewRandomAccessFile(fname, &file);
if (s.ok()) {
uint64_t file_size = file->Size();
uint64_t value_size = large_ref.ValueSize();
large_->value.resize(value_size);
Slice result;
s = file->Read(0, file_size, &result,
const_cast<char*>(large_->value.data()));
if (s.ok()) {
if (result.size() == file_size) {
switch (large_ref.compression_type()) {
case kNoCompression: {
if (result.data() != large_->value.data()) {
large_->value.assign(result.data(), result.size());
}
break;
}
case kLightweightCompression: {
std::string uncompressed;
if (port::Lightweight_Uncompress(result.data(), result.size(),
&uncompressed) &&
uncompressed.size() == large_ref.ValueSize()) {
swap(uncompressed, large_->value);
} else {
s = Status::Corruption(
"Unable to read entire compressed large value file");
}
}
}
} else {
s = Status::Corruption("Unable to read entire large value file");
}
}
delete file; // Ignore errors on closing
}
if (!s.ok()) {
large_->value.clear();
large_->status = s;
}
}
} // anonymous namespace
Iterator* NewDBIterator(
const std::string* dbname,
Env* env,
const Comparator* user_key_comparator,
Iterator* internal_iter,
const SequenceNumber& sequence) {
return new DBIter(dbname, env, user_key_comparator, internal_iter, sequence);
}
}