blob: 85f906a9b4009a0e4da5f70fd37796350e0837fd [file] [log] [blame]
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "./bit_reader.h"
#include "./context.h"
#include "./decode.h"
#include "./huffman.h"
#include "./prefix.h"
#include "./safe_malloc.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
#ifdef BROTLI_DECODE_DEBUG
#define BROTLI_LOG_UINT(name) \
printf("[%s] %s = %zd\n", __func__, #name, (size_t)name)
#define BROTLI_LOG_ARRAY_INDEX(array_name, idx) \
printf("[%s] %s[%zd] = %zd\n", __func__, #array_name, \
(size_t)idx, (size_t)array_name[idx])
#else
#define BROTLI_LOG_UINT(name)
#define BROTLI_LOG_ARRAY_INDEX(array_name, idx)
#endif
static const int kDefaultCodeLength = 8;
static const int kCodeLengthLiterals = 16;
static const int kCodeLengthRepeatCode = 16;
static const int kCodeLengthExtraBits[3] = { 2, 3, 7 };
static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
static const int kNumLiteralCodes = 256;
static const int kNumInsertAndCopyCodes = 704;
static const int kNumBlockLengthCodes = 26;
#define CODE_LENGTH_CODES 19
static const uint8_t kCodeLengthCodeOrder[CODE_LENGTH_CODES] = {
17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};
#define NUM_DISTANCE_SHORT_CODES 16
static const int kDistanceShortCodeIndexOffset[NUM_DISTANCE_SHORT_CODES] = {
3, 2, 1, 0, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2
};
static const int kDistanceShortCodeValueOffset[NUM_DISTANCE_SHORT_CODES] = {
0, 0, 0, 0, -1, 1, -2, 2, -3, 3, -1, 1, -2, 2, -3, 3
};
static int DecodeSize(BrotliBitReader* br, size_t* len) {
int size_bytes = BrotliReadBits(br, 3);
*len = 0;
int i = 0;
for (; i < size_bytes; ++i) {
*len |= BrotliReadBits(br, 8) << (i * 8);
}
return !br->error_;
}
static int DecodeMetaBlockLength(int input_size_bits,
size_t remaining_length,
BrotliBitReader* br,
size_t* meta_block_length) {
if (BrotliReadBits(br, 1)) {
*meta_block_length = remaining_length;
return 1;
}
*meta_block_length = 0;
int shift = 0;
while (input_size_bits > 0) {
*meta_block_length |= BrotliReadBits(br, 8) << shift;
input_size_bits -= 8;
shift += 8;
}
if (input_size_bits > 0) {
*meta_block_length |= BrotliReadBits(br, input_size_bits) << shift;
}
++(*meta_block_length);
return !br->error_;
}
// Decodes the next Huffman code from bit-stream.
// FillBitWindow(br) needs to be called at minimum every second call
// to ReadSymbol, in order to pre-fetch enough bits.
static BROTLI_INLINE int ReadSymbol(const HuffmanTree* tree,
BrotliBitReader* br) {
if (tree->fixed_bit_length_ > 0) {
return BrotliReadBits(br, tree->fixed_bit_length_);
}
const HuffmanTreeNode* node = tree->root_;
uint32_t bits = BrotliPrefetchBits(br);
int bitpos = br->bit_pos_;
// Check if we find the bit combination from the Huffman lookup table.
const int lut_ix = bits & (HUFF_LUT - 1);
const int lut_bits = tree->lut_bits_[lut_ix];
if (lut_bits <= HUFF_LUT_BITS) {
BrotliSetBitPos(br, bitpos + lut_bits);
return tree->lut_symbol_[lut_ix];
}
node += tree->lut_jump_[lut_ix];
bitpos += HUFF_LUT_BITS;
bits >>= HUFF_LUT_BITS;
// Decode the value from a binary tree.
assert(node != NULL);
do {
node = HuffmanTreeNextNode(node, bits & 1);
bits >>= 1;
++bitpos;
} while (HuffmanTreeNodeIsNotLeaf(node));
BrotliSetBitPos(br, bitpos);
return node->symbol_;
}
static void PrintIntVector(const int* v, int len) {
while (len-- > 0) printf(" %d", *v++);
printf("\n");
}
static int ReadHuffmanCodeLengths(
const int* code_length_code_lengths,
int num_symbols, int* code_lengths,
BrotliBitReader* br) {
int ok = 0;
int symbol;
int max_symbol;
int prev_code_len = kDefaultCodeLength;
HuffmanTree tree;
if (!HuffmanTreeBuildImplicit(&tree, code_length_code_lengths,
CODE_LENGTH_CODES)) {
printf("[ReadHuffmanCodeLengths] Building code length tree failed: ");
PrintIntVector(code_length_code_lengths, CODE_LENGTH_CODES);
return 0;
}
int use_length = BrotliReadBits(br, 1);
BROTLI_LOG_UINT(use_length);
if (use_length) {
const int length_nbits = 2 + 2 * BrotliReadBits(br, 3);
max_symbol = 2 + BrotliReadBits(br, length_nbits);
BROTLI_LOG_UINT(length_nbits);
if (max_symbol > num_symbols) {
printf("[ReadHuffmanCodeLengths] max_symbol > num_symbols (%d vs %d)\n",
max_symbol, num_symbols);
goto End;
}
} else {
max_symbol = num_symbols;
}
BROTLI_LOG_UINT(max_symbol);
symbol = 0;
while (symbol < num_symbols) {
int code_len;
if (max_symbol-- == 0) break;
BrotliFillBitWindow(br);
code_len = ReadSymbol(&tree, br);
BROTLI_LOG_UINT(symbol);
BROTLI_LOG_UINT(code_len);
if (code_len < kCodeLengthLiterals) {
code_lengths[symbol++] = code_len;
if (code_len != 0) prev_code_len = code_len;
} else {
const int use_prev = (code_len == kCodeLengthRepeatCode);
const int slot = code_len - kCodeLengthLiterals;
const int extra_bits = kCodeLengthExtraBits[slot];
const int repeat_offset = kCodeLengthRepeatOffsets[slot];
const int length = use_prev ? prev_code_len : 0;
int repeat = BrotliReadBits(br, extra_bits) + repeat_offset;
BROTLI_LOG_UINT(repeat);
BROTLI_LOG_UINT(length);
if (symbol + repeat > num_symbols) {
printf("[ReadHuffmanCodeLengths] symbol + repeat > num_symbols "
"(%d + %d vs %d)\n", symbol, repeat, num_symbols);
goto End;
} else {
while (repeat-- > 0) {
code_lengths[symbol++] = length;
}
}
}
}
while (symbol < num_symbols) code_lengths[symbol++] = 0;
ok = 1;
End:
HuffmanTreeRelease(&tree);
return ok;
}
static const int64_t kUnitInterval = 1LL<<30;
static int RepairHuffmanCodeLengths(int num_symbols, int* code_lengths) {
int i;
int64_t space = kUnitInterval;
int max_length = 0;
for(i = 0; i < num_symbols; i++)
if (code_lengths[i] != 0) {
if (code_lengths[i] > max_length)
max_length = code_lengths[i];
space -= kUnitInterval >> code_lengths[i];
}
// The code which contains one symbol of length one cannot be made optimal.
if (max_length == 1)
return 1;
if (space < 0) {
int count_longest = 0;
for(i = 0; i < num_symbols; i++) {
if (code_lengths[i] == max_length)
count_longest++;
}
// Substitute all longest codes with sufficiently longer ones, so that all
// code words fit into the unit interval. Leftover space will be
// redistributed later.
space += count_longest * (kUnitInterval >> max_length);
if (space < 0)
return 0;
int new_length = max_length;
while (space < count_longest * (kUnitInterval >> new_length))
new_length++;
space -= count_longest * (kUnitInterval >> new_length);
for(i = 0; i < num_symbols; i++) {
if (code_lengths[i] == max_length)
code_lengths[i] = new_length;
}
}
while (space > 0) {
// Redistribute leftover space in an approximation of a uniform fashion.
for(i = 0; i < num_symbols; i++) {
if (code_lengths[i] > 1 && space >= (kUnitInterval >> code_lengths[i])) {
space -= kUnitInterval >> code_lengths[i];
code_lengths[i]--;
}
if (space == 0)
break;
}
}
return 1;
}
static int ReadHuffmanCode(int alphabet_size,
HuffmanTree* tree,
BrotliBitReader* br) {
int ok = 0;
const int simple_code = BrotliReadBits(br, 1);
BROTLI_LOG_UINT(simple_code);
if (simple_code) { // Read symbols, codes & code lengths directly.
int symbols[2] = { 0 };
int codes[2];
int code_lengths[2];
const int num_symbols = BrotliReadBits(br, 1) + 1;
const int first_symbol_len_code = BrotliReadBits(br, 1);
// The first code is either 1 bit or 8 bit code.
symbols[0] = BrotliReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
codes[0] = 0;
code_lengths[0] = num_symbols - 1;
// The second code (if present), is always 8 bit long.
if (num_symbols == 2) {
symbols[1] = BrotliReadBits(br, 8);
codes[1] = 1;
code_lengths[1] = num_symbols - 1;
}
BROTLI_LOG_UINT(num_symbols);
BROTLI_LOG_UINT(first_symbol_len_code);
BROTLI_LOG_UINT(symbols[0]);
BROTLI_LOG_UINT(symbols[1]);
ok = HuffmanTreeBuildExplicit(tree, code_lengths, codes, symbols,
alphabet_size, num_symbols);
if (!ok) {
printf("[ReadHuffmanCode] HuffmanTreeBuildExplicit failed: ");
PrintIntVector(code_lengths, num_symbols);
}
} else { // Decode Huffman-coded code lengths.
int* code_lengths = NULL;
int i;
int code_length_code_lengths[CODE_LENGTH_CODES] = { 0 };
const int num_codes = BrotliReadBits(br, 4) + 4;
BROTLI_LOG_UINT(num_codes);
if (num_codes > CODE_LENGTH_CODES) {
return 0;
}
code_lengths =
(int*)BrotliSafeMalloc((uint64_t)alphabet_size, sizeof(*code_lengths));
if (code_lengths == NULL) {
return 0;
}
for (i = 0; i < num_codes; ++i) {
int code_len_idx = kCodeLengthCodeOrder[i];
code_length_code_lengths[code_len_idx] = BrotliReadBits(br, 3);
BROTLI_LOG_ARRAY_INDEX(code_length_code_lengths, code_len_idx);
}
ok = ReadHuffmanCodeLengths(code_length_code_lengths, alphabet_size,
code_lengths, br) &&
RepairHuffmanCodeLengths(alphabet_size, code_lengths);
if (ok) {
ok = HuffmanTreeBuildImplicit(tree, code_lengths, alphabet_size);
if (!ok) {
printf("[ReadHuffmanCode] HuffmanTreeBuildImplicit failed: ");
PrintIntVector(code_lengths, alphabet_size);
}
}
free(code_lengths);
}
ok = ok && !br->error_;
if (!ok) {
return 0;
}
return 1;
}
static int ReadCopyDistance(const HuffmanTree* tree,
int num_direct_codes,
int postfix_bits,
uint32_t postfix_mask,
BrotliBitReader* br) {
BrotliFillBitWindow(br);
int code = ReadSymbol(tree, br);
if (code < num_direct_codes) {
return code;
}
code -= num_direct_codes;
int postfix = code & postfix_mask;
code >>= postfix_bits;
int nbits = (code >> 1) + 1;
int offset = ((2 + (code & 1)) << nbits) - 4;
return (num_direct_codes +
((offset + BrotliReadBits(br, nbits)) << postfix_bits) +
postfix);
}
static int ReadBlockLength(const HuffmanTree* tree, BrotliBitReader* br) {
BrotliFillBitWindow(br);
int code = ReadSymbol(tree, br);
int nbits = kBlockLengthPrefixCode[code].nbits;
return kBlockLengthPrefixCode[code].offset + BrotliReadBits(br, nbits);
}
static void ReadInsertAndCopy(const HuffmanTree* tree,
int* insert_len,
int* copy_len,
int* copy_dist,
BrotliBitReader* br) {
BrotliFillBitWindow(br);
int code = ReadSymbol(tree, br);
int range_idx = code >> 6;
if (range_idx >= 2) {
range_idx -= 2;
*copy_dist = -1;
} else {
*copy_dist = 0;
}
int insert_code = (kInsertRangeLut[range_idx] << 3) + ((code >> 3) & 7);
int copy_code = (kCopyRangeLut[range_idx] << 3) + (code & 7);
*insert_len =
kInsertLengthPrefixCode[insert_code].offset +
BrotliReadBits(br, kInsertLengthPrefixCode[insert_code].nbits);
*copy_len =
kCopyLengthPrefixCode[copy_code].offset +
BrotliReadBits(br, kCopyLengthPrefixCode[copy_code].nbits);
}
static int TranslateShortCodes(int code, int* ringbuffer, size_t* index) {
int val;
if (code < NUM_DISTANCE_SHORT_CODES) {
val = code;
int index_offset = kDistanceShortCodeIndexOffset[val];
int value_offset = kDistanceShortCodeValueOffset[val];
val = ringbuffer[(*index + index_offset) & 3] + value_offset;
} else {
val = code - NUM_DISTANCE_SHORT_CODES + 1;
}
if (code > 0) {
ringbuffer[*index & 3] = val;
++(*index);
}
return val;
}
static void MoveToFront(uint8_t* v, uint8_t index) {
uint8_t value = v[index];
uint8_t i = index;
for (; i; --i) v[i] = v[i - 1];
v[0] = value;
}
static void InverseMoveToFrontTransform(uint8_t* v, int v_len) {
uint8_t mtf[256];
int i;
for (i = 0; i < 256; ++i) {
mtf[i] = i;
}
for (i = 0; i < v_len; ++i) {
uint8_t index = v[i];
v[i] = mtf[index];
if (index) MoveToFront(mtf, index);
}
}
// Contains a collection of huffman trees with the same alphabet size.
typedef struct {
int alphabet_size;
int num_htrees;
HuffmanTree* htrees;
} HuffmanTreeGroup;
void HuffmanTreeGroupInit(HuffmanTreeGroup* group, int alphabet_size,
int ntrees) {
group->alphabet_size = alphabet_size;
group->num_htrees = ntrees;
group->htrees = (HuffmanTree*)malloc(sizeof(HuffmanTree) * ntrees);
}
void HuffmanTreeGroupRelease(HuffmanTreeGroup* group) {
int i;
for (i = 0; i < group->num_htrees; ++i) {
HuffmanTreeRelease(&group->htrees[i]);
}
free(group->htrees);
}
int HuffmanTreeGroupDecode(HuffmanTreeGroup* group, BrotliBitReader* br) {
int i;
for (i = 0; i < group->num_htrees; ++i) {
ReadHuffmanCode(group->alphabet_size, &group->htrees[i], br);
}
return 1;
}
int DecodeContextMap(int num_block_types,
int stream_type,
int* context_mode,
int* contexts_per_block,
int* num_htrees,
uint8_t** context_map,
BrotliBitReader* br) {
int use_context = BrotliReadBits(br, 1);
if (!use_context) {
*context_mode = 0;
*contexts_per_block = 1;
*context_map = NULL;
*num_htrees = num_block_types;
return 1;
}
switch (stream_type) {
case 0:
*context_mode = BrotliReadBits(br, 4);
*contexts_per_block = NumContexts(*context_mode);
break;
case 2:
*context_mode = 1;
*contexts_per_block = 4;
break;
}
int context_map_size = *contexts_per_block * num_block_types;
*num_htrees = BrotliReadBits(br, 8) + 1;
BROTLI_LOG_UINT(*context_mode);
BROTLI_LOG_UINT(context_map_size);
BROTLI_LOG_UINT(*num_htrees);
*context_map = (uint8_t*)malloc(context_map_size);
if (*num_htrees <= 1) {
memset(*context_map, 0, context_map_size);
return 1;
}
int i;
if (*num_htrees == context_map_size) {
for (i = 0; i < context_map_size; ++i) {
(*context_map)[i] = i;
}
return 1;
}
int use_rle_for_zeros = BrotliReadBits(br, 1);
int max_run_length_prefix = 0;
if (use_rle_for_zeros) {
max_run_length_prefix = BrotliReadBits(br, 4) + 1;
}
HuffmanTree tree_index_htree;
ReadHuffmanCode(*num_htrees + max_run_length_prefix,
&tree_index_htree, br);
if (use_rle_for_zeros) {
for (i = 0; i < context_map_size;) {
BrotliFillBitWindow(br);
int code = ReadSymbol(&tree_index_htree, br);
if (code == 0) {
(*context_map)[i] = 0;
++i;
} else if (code <= max_run_length_prefix) {
int reps = 1 + (1 << code) + BrotliReadBits(br, code);
while (--reps) {
(*context_map)[i] = 0;
++i;
}
} else {
(*context_map)[i] = code - max_run_length_prefix;
++i;
}
}
} else {
for (i = 0; i < context_map_size; ++i) {
BrotliFillBitWindow(br);
(*context_map)[i] = ReadSymbol(&tree_index_htree, br);
}
}
HuffmanTreeRelease(&tree_index_htree);
if (BrotliReadBits(br, 1)) {
InverseMoveToFrontTransform(*context_map, context_map_size);
}
return 1;
}
static BROTLI_INLINE void DecodeBlockType(const HuffmanTree* trees,
int tree_type,
int* block_types,
int* ringbuffers,
size_t* indexes,
BrotliBitReader* br) {
int* ringbuffer = ringbuffers + tree_type * 2;
size_t* index = indexes + tree_type;
int type_code = ReadSymbol(trees + tree_type, br);
int block_type;
if (type_code == 0) {
block_type = ringbuffer[*index & 1];
} else if (type_code == 1) {
block_type = ringbuffer[(*index - 1) & 1] + 1;
} else {
block_type = type_code - 2;
}
block_types[tree_type] = block_type;
ringbuffer[(*index) & 1] = block_type;
++(*index);
}
int BrotliDecompressedSize(size_t encoded_size,
const uint8_t* encoded_buffer,
size_t* decoded_size) {
BrotliBitReader br;
BrotliInitBitReader(&br, encoded_buffer, encoded_size);
return DecodeSize(&br, decoded_size);
}
int BrotliDecompressBuffer(size_t encoded_size,
const uint8_t* encoded_buffer,
size_t* decoded_size,
uint8_t* decoded_buffer) {
BrotliBitReader br;
BrotliInitBitReader(&br, encoded_buffer, encoded_size);
int ok = DecodeSize(&br, decoded_size);
if (!ok) return 0;
if (*decoded_size == 0) {
return 1;
}
size_t n = *decoded_size;
int input_size_bits = (n == (n &~ (n - 1))) ? -1 : 0;
while (n) {
++input_size_bits;
n >>= 1;
}
BROTLI_LOG_UINT(*decoded_size);
BROTLI_LOG_UINT(input_size_bits);
int i;
size_t pos = 0;
const size_t end = *decoded_size;
uint8_t* data = decoded_buffer;
// This ring buffer holds a few past copy distances that will be used by
// some special distance codes.
int dist_rb[4] = { 4, 11, 15, 16 };
size_t dist_rb_idx = 0;
HuffmanTreeGroup hgroup[3];
while (pos < end && ok) {
BROTLI_LOG_UINT(pos);
size_t meta_block_len = 0;
if (!DecodeMetaBlockLength(input_size_bits, end - pos,
&br, &meta_block_len)) {
printf("Could not decode meta-block length.\n");
ok = 0;
goto End;
}
BROTLI_LOG_UINT(meta_block_len);
size_t meta_block_end = pos + meta_block_len;
size_t block_length[3] = { 0 };
int block_type[3] = { 0 };
int num_block_types[3] = { 0 };
int block_type_rb[6] = { 0, 1, 0, 1, 0, 1 };
size_t block_type_rb_index[3] = { 0 };
HuffmanTree block_type_trees[3];
HuffmanTree block_len_trees[3];
for (i = 0; i < 3; ++i) {
block_type_trees[i].root_ = NULL;
block_len_trees[i].root_ = NULL;
if (BrotliReadBits(&br, 1)) {
num_block_types[i] = BrotliReadBits(&br, 8) + 1;
ReadHuffmanCode(num_block_types[i] + 2, &block_type_trees[i], &br);
ReadHuffmanCode(kNumBlockLengthCodes, &block_len_trees[i], &br);
block_length[i] = ReadBlockLength(&block_len_trees[i], &br);
block_type_rb_index[i] = 1;
} else {
num_block_types[i] = 1;
block_length[i] = meta_block_len;
}
}
BROTLI_LOG_UINT(num_block_types[0]);
BROTLI_LOG_UINT(num_block_types[1]);
BROTLI_LOG_UINT(num_block_types[2]);
BROTLI_LOG_UINT(block_length[0]);
BROTLI_LOG_UINT(block_length[1]);
BROTLI_LOG_UINT(block_length[2]);
int distance_postfix_bits = BrotliReadBits(&br, 2);
int num_direct_distance_codes =
NUM_DISTANCE_SHORT_CODES +
(BrotliReadBits(&br, 4) << distance_postfix_bits);
uint32_t distance_postfix_mask = (1 << distance_postfix_bits) - 1;
int num_distance_codes = (num_direct_distance_codes +
(48 << distance_postfix_bits));
BROTLI_LOG_UINT(num_direct_distance_codes);
BROTLI_LOG_UINT(distance_postfix_bits);
uint8_t* context_map;
int context_mode;
int contexts_per_block;
int num_literal_htrees;
DecodeContextMap(num_block_types[0], 0, &context_mode, &contexts_per_block,
&num_literal_htrees, &context_map, &br);
uint8_t* dist_context_map;
int dist_context_mode;
int dist_contexts_per_block;
int num_dist_htrees;
DecodeContextMap(num_block_types[2], 2, &dist_context_mode,
&dist_contexts_per_block,
&num_dist_htrees, &dist_context_map, &br);
HuffmanTreeGroupInit(&hgroup[0], kNumLiteralCodes, num_literal_htrees);
HuffmanTreeGroupInit(&hgroup[1], kNumInsertAndCopyCodes,
num_block_types[1]);
HuffmanTreeGroupInit(&hgroup[2], num_distance_codes, num_dist_htrees);
for (i = 0; i < 3; ++i) {
HuffmanTreeGroupDecode(&hgroup[i], &br);
}
HuffmanTree* literal_htrees = hgroup[0].htrees;
int context_offset = 0;
uint8_t* context_map_slice = context_map;
uint8_t literal_htree_index = 0;
int dist_context_offset = 0;
uint8_t* dist_context_map_slice = dist_context_map;
uint8_t dist_htree_index = 0;
while (pos < meta_block_end) {
if (block_length[1] == 0) {
DecodeBlockType(block_type_trees, 1, block_type, block_type_rb,
block_type_rb_index, &br);
block_length[1] = ReadBlockLength(&block_len_trees[1], &br);
}
--block_length[1];
int insert_length;
int copy_length;
int distance_code;
ReadInsertAndCopy(&hgroup[1].htrees[block_type[1]],
&insert_length, &copy_length, &distance_code, &br);
BROTLI_LOG_UINT(insert_length);
BROTLI_LOG_UINT(copy_length);
BROTLI_LOG_UINT(distance_code);
int j;
for (j = 0; j < insert_length; ++j) {
if (block_length[0] == 0) {
DecodeBlockType(block_type_trees, 0, block_type, block_type_rb,
block_type_rb_index, &br);
block_length[0] = ReadBlockLength(&block_len_trees[0], &br);
literal_htree_index = block_type[0];
context_offset = block_type[0] * contexts_per_block;
context_map_slice = context_map + context_offset;
}
--block_length[0];
BrotliFillBitWindow(&br);
// Figure out htree
if (contexts_per_block > 1) {
uint8_t prev_byte = pos > 0 ? data[pos - 1] : 0;
uint8_t prev_byte2 = pos > 1 ? data[pos - 2] : 0;
uint8_t prev_byte3 = pos > 2 ? data[pos - 3] : 0;
uint8_t context = Context(prev_byte, prev_byte2, prev_byte3,
context_mode);
BROTLI_LOG_UINT(context);
literal_htree_index = context_map_slice[context];
}
data[pos] = ReadSymbol(&literal_htrees[literal_htree_index], &br);
BROTLI_LOG_UINT(literal_htree_index);
BROTLI_LOG_ARRAY_INDEX(data, pos);
++pos;
}
if (br.error_) {
printf("Read error after decoding literal sequence.\n");
ok = 0;
goto End;
}
if (pos == meta_block_end) break;
if (distance_code < 0) {
if (block_length[2] == 0) {
DecodeBlockType(block_type_trees, 2, block_type, block_type_rb,
block_type_rb_index, &br);
block_length[2] = ReadBlockLength(&block_len_trees[2], &br);
dist_htree_index = block_type[2];
dist_context_offset = block_type[2] * dist_contexts_per_block;
dist_context_map_slice = dist_context_map + dist_context_offset;
}
--block_length[2];
if (dist_contexts_per_block > 1) {
uint8_t context = copy_length > 4 ? 3 : copy_length - 2;
dist_htree_index = dist_context_map_slice[context];
}
distance_code = ReadCopyDistance(&hgroup[2].htrees[dist_htree_index],
num_direct_distance_codes,
distance_postfix_bits,
distance_postfix_mask,
&br);
if (br.error_) {
printf("Could not read copy distance.\n");
ok = 0;
goto End;
}
}
// Convert the distance code to the actual distance by possibly looking
// up past distnaces from the ringbuffer.
int dist = TranslateShortCodes(distance_code, dist_rb, &dist_rb_idx);
BROTLI_LOG_UINT(dist);
// Do the actual copy if it is valid.
if (pos >= dist && pos + copy_length <= end) {
int j;
for (j = 0; j < copy_length; ++j) {
data[pos + j] = data[pos + j - dist];
}
pos += copy_length;
} else {
printf("Invalid backward reference. pos: %zd dist: %d "
"len: %d end:%zd\n",
pos, dist, copy_length, end);
ok = 0;
goto End;
}
}
End:
free(context_map);
free(dist_context_map);
for (i = 0; i < 3; ++i) {
HuffmanTreeGroupRelease(&hgroup[i]);
HuffmanTreeRelease(&block_type_trees[i]);
HuffmanTreeRelease(&block_len_trees[i]);
}
}
return ok;
}
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif