blob: 5ed0c58ec4e5a4e42463e8520fc92b5c487c02e9 [file] [log] [blame]
//
// Copyright (c) 2012-2013 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Renderer11.cpp: Implements a back-end specific class for the D3D11 renderer.
#include "common/debug.h"
#include "libGLESv2/main.h"
#include "libGLESv2/utilities.h"
#include "libGLESv2/mathutil.h"
#include "libGLESv2/Buffer.h"
#include "libGLESv2/Program.h"
#include "libGLESv2/ProgramBinary.h"
#include "libGLESv2/Framebuffer.h"
#include "libGLESv2/renderer/Renderer11.h"
#include "libGLESv2/renderer/RenderTarget11.h"
#include "libGLESv2/renderer/renderer11_utils.h"
#include "libGLESv2/renderer/ShaderExecutable11.h"
#include "libGLESv2/renderer/SwapChain11.h"
#include "libGLESv2/renderer/Image11.h"
#include "libGLESv2/renderer/VertexBuffer11.h"
#include "libGLESv2/renderer/IndexBuffer11.h"
#include "libGLESv2/renderer/VertexDataManager.h"
#include "libGLESv2/renderer/IndexDataManager.h"
#include "libGLESv2/renderer/TextureStorage11.h"
#include "libEGL/Config.h"
#include "libEGL/Display.h"
namespace rx
{
static const DXGI_FORMAT RenderTargetFormats[] =
{
DXGI_FORMAT_R8G8B8A8_UNORM
};
static const DXGI_FORMAT DepthStencilFormats[] =
{
DXGI_FORMAT_D24_UNORM_S8_UINT
};
Renderer11::Renderer11(egl::Display *display, HDC hDc) : Renderer(display), mDc(hDc)
{
mVertexDataManager = NULL;
mIndexDataManager = NULL;
mLineLoopIB = NULL;
mD3d11Module = NULL;
mDxgiModule = NULL;
mDeviceLost = false;
mDevice = NULL;
mDeviceContext = NULL;
mDxgiAdapter = NULL;
mDxgiFactory = NULL;
}
Renderer11::~Renderer11()
{
releaseDeviceResources();
if (mDxgiFactory)
{
mDxgiFactory->Release();
mDxgiFactory = NULL;
}
if (mDxgiAdapter)
{
mDxgiAdapter->Release();
mDxgiAdapter = NULL;
}
if (mDeviceContext)
{
mDeviceContext->Release();
mDeviceContext = NULL;
}
if (mDevice)
{
mDevice->Release();
mDevice = NULL;
}
if (mD3d11Module)
{
FreeLibrary(mD3d11Module);
mD3d11Module = NULL;
}
if (mDxgiModule)
{
FreeLibrary(mDxgiModule);
mDxgiModule = NULL;
}
}
Renderer11 *Renderer11::makeRenderer11(Renderer *renderer)
{
ASSERT(dynamic_cast<rx::Renderer11*>(renderer) != NULL);
return static_cast<rx::Renderer11*>(renderer);
}
EGLint Renderer11::initialize()
{
if (!initializeCompiler())
{
return EGL_NOT_INITIALIZED;
}
mDxgiModule = LoadLibrary(TEXT("dxgi.dll"));
mD3d11Module = LoadLibrary(TEXT("d3d11.dll"));
if (mD3d11Module == NULL || mDxgiModule == NULL)
{
ERR("Could not load D3D11 or DXGI library - aborting!\n");
return EGL_NOT_INITIALIZED;
}
PFN_D3D11_CREATE_DEVICE D3D11CreateDevice = (PFN_D3D11_CREATE_DEVICE)GetProcAddress(mD3d11Module, "D3D11CreateDevice");
if (D3D11CreateDevice == NULL)
{
ERR("Could not retrieve D3D11CreateDevice address - aborting!\n");
return EGL_NOT_INITIALIZED;
}
D3D_FEATURE_LEVEL featureLevel[] =
{
D3D_FEATURE_LEVEL_11_0,
D3D_FEATURE_LEVEL_10_1,
D3D_FEATURE_LEVEL_10_0,
};
HRESULT result = D3D11CreateDevice(NULL,
D3D_DRIVER_TYPE_HARDWARE,
NULL,
#if defined(_DEBUG)
D3D11_CREATE_DEVICE_DEBUG,
#else
0,
#endif
featureLevel,
sizeof(featureLevel)/sizeof(featureLevel[0]),
D3D11_SDK_VERSION,
&mDevice,
&mFeatureLevel,
&mDeviceContext);
if (!mDevice || FAILED(result))
{
ERR("Could not create D3D11 device - aborting!\n");
return EGL_NOT_INITIALIZED; // Cleanup done by destructor through glDestroyRenderer
}
IDXGIDevice *dxgiDevice = NULL;
result = mDevice->QueryInterface(__uuidof(IDXGIDevice), (void**)&dxgiDevice);
if (FAILED(result))
{
ERR("Could not query DXGI device - aborting!\n");
return EGL_NOT_INITIALIZED;
}
result = dxgiDevice->GetParent(__uuidof(IDXGIAdapter), (void**)&mDxgiAdapter);
if (FAILED(result))
{
ERR("Could not retrieve DXGI adapter - aborting!\n");
return EGL_NOT_INITIALIZED;
}
dxgiDevice->Release();
mDxgiAdapter->GetDesc(&mAdapterDescription);
memset(mDescription, 0, sizeof(mDescription));
wcstombs(mDescription, mAdapterDescription.Description, sizeof(mDescription) - 1);
result = mDxgiAdapter->GetParent(__uuidof(IDXGIFactory), (void**)&mDxgiFactory);
if (!mDxgiFactory || FAILED(result))
{
ERR("Could not create DXGI factory - aborting!\n");
return EGL_NOT_INITIALIZED;
}
initializeDevice();
return EGL_SUCCESS;
}
// do any one-time device initialization
// NOTE: this is also needed after a device lost/reset
// to reset the scene status and ensure the default states are reset.
void Renderer11::initializeDevice()
{
mStateCache.initialize(mDevice);
mInputLayoutCache.initialize(mDevice, mDeviceContext);
ASSERT(!mVertexDataManager && !mIndexDataManager);
mVertexDataManager = new VertexDataManager(this);
mIndexDataManager = new IndexDataManager(this);
markAllStateDirty();
}
int Renderer11::generateConfigs(ConfigDesc **configDescList)
{
unsigned int numRenderFormats = sizeof(RenderTargetFormats) / sizeof(RenderTargetFormats[0]);
unsigned int numDepthFormats = sizeof(DepthStencilFormats) / sizeof(DepthStencilFormats[0]);
(*configDescList) = new ConfigDesc[numRenderFormats * numDepthFormats];
int numConfigs = 0;
for (unsigned int formatIndex = 0; formatIndex < numRenderFormats; formatIndex++)
{
for (unsigned int depthStencilIndex = 0; depthStencilIndex < numDepthFormats; depthStencilIndex++)
{
DXGI_FORMAT renderTargetFormat = RenderTargetFormats[formatIndex];
UINT formatSupport = 0;
HRESULT result = mDevice->CheckFormatSupport(renderTargetFormat, &formatSupport);
if (SUCCEEDED(result) && (formatSupport & D3D11_FORMAT_SUPPORT_RENDER_TARGET))
{
DXGI_FORMAT depthStencilFormat = DepthStencilFormats[depthStencilIndex];
UINT formatSupport = 0;
HRESULT result = mDevice->CheckFormatSupport(depthStencilFormat, &formatSupport);
if (SUCCEEDED(result) && (formatSupport & D3D11_FORMAT_SUPPORT_DEPTH_STENCIL))
{
ConfigDesc newConfig;
newConfig.renderTargetFormat = d3d11_gl::ConvertBackBufferFormat(renderTargetFormat);
newConfig.depthStencilFormat = d3d11_gl::ConvertDepthStencilFormat(depthStencilFormat);
newConfig.multiSample = 0; // FIXME: enumerate multi-sampling
newConfig.fastConfig = true; // Assume all DX11 format conversions to be fast
(*configDescList)[numConfigs++] = newConfig;
}
}
}
}
return numConfigs;
}
void Renderer11::deleteConfigs(ConfigDesc *configDescList)
{
delete [] (configDescList);
}
void Renderer11::sync(bool block)
{
// TODO
UNIMPLEMENTED();
}
SwapChain *Renderer11::createSwapChain(HWND window, HANDLE shareHandle, GLenum backBufferFormat, GLenum depthBufferFormat)
{
return new rx::SwapChain11(this, window, shareHandle, backBufferFormat, depthBufferFormat);
}
void Renderer11::setSamplerState(gl::SamplerType type, int index, const gl::SamplerState &samplerState)
{
if (type == gl::SAMPLER_PIXEL)
{
if (index < 0 || index >= gl::MAX_TEXTURE_IMAGE_UNITS)
{
ERR("Pixel shader sampler index %i is not valid.", index);
return;
}
if (mForceSetPixelSamplerStates[index] || memcmp(&samplerState, &mCurPixelSamplerStates[index], sizeof(gl::SamplerState)) != 0)
{
ID3D11SamplerState *dxSamplerState = mStateCache.getSamplerState(samplerState);
if (!dxSamplerState)
{
ERR("NULL sampler state returned by RenderStateCache::getSamplerState, setting the default"
"sampler state for pixel shaders at slot %i.", index);
}
mDeviceContext->PSSetSamplers(index, 1, &dxSamplerState);
mCurPixelSamplerStates[index] = samplerState;
}
mForceSetPixelSamplerStates[index] = false;
}
else if (type == gl::SAMPLER_VERTEX)
{
if (index < 0 || index >= gl::MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF)
{
ERR("Vertex shader sampler index %i is not valid.", index);
return;
}
if (mForceSetVertexSamplerStates[index] || memcmp(&samplerState, &mCurVertexSamplerStates[index], sizeof(gl::SamplerState)) != 0)
{
ID3D11SamplerState *dxSamplerState = mStateCache.getSamplerState(samplerState);
if (!dxSamplerState)
{
ERR("NULL sampler state returned by RenderStateCache::getSamplerState, setting the default"
"sampler state for vertex shaders at slot %i.", index);
}
mDeviceContext->VSSetSamplers(index, 1, &dxSamplerState);
mCurVertexSamplerStates[index] = samplerState;
}
mForceSetVertexSamplerStates[index] = false;
}
else UNREACHABLE();
}
void Renderer11::setTexture(gl::SamplerType type, int index, gl::Texture *texture)
{
ID3D11ShaderResourceView *textureSRV = NULL;
if (texture)
{
TextureStorageInterface *texStorage = texture->getNativeTexture();
if (texStorage)
{
TextureStorage11 *storage11 = TextureStorage11::makeTextureStorage11(texStorage->getStorageInstance());
textureSRV = storage11->getSRV();
}
// If we get NULL back from getSRV here, something went wrong in the texture class and we're unexpectedly
// missing the shader resource view
ASSERT(textureSRV != NULL);
}
if (type == gl::SAMPLER_PIXEL)
{
if (index < 0 || index >= gl::MAX_TEXTURE_IMAGE_UNITS)
{
ERR("Pixel shader sampler index %i is not valid.", index);
return;
}
mDeviceContext->PSSetShaderResources(index, 1, &textureSRV);
}
else if (type == gl::SAMPLER_VERTEX)
{
if (index < 0 || index >= gl::MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF)
{
ERR("Vertex shader sampler index %i is not valid.", index);
return;
}
mDeviceContext->VSSetShaderResources(index, 1, &textureSRV);
}
else UNREACHABLE();
}
void Renderer11::setRasterizerState(const gl::RasterizerState &rasterState)
{
if (mForceSetRasterState || memcmp(&rasterState, &mCurRasterState, sizeof(gl::RasterizerState)) != 0)
{
ID3D11RasterizerState *dxRasterState = mStateCache.getRasterizerState(rasterState, mScissorEnabled,
mCurDepthSize);
if (!dxRasterState)
{
ERR("NULL rasterizer state returned by RenderStateCache::getRasterizerState, setting the default"
"rasterizer state.");
}
mDeviceContext->RSSetState(dxRasterState);
mCurRasterState = rasterState;
}
mForceSetRasterState = false;
}
void Renderer11::setBlendState(const gl::BlendState &blendState, const gl::Color &blendColor,
unsigned int sampleMask)
{
if (mForceSetBlendState ||
memcmp(&blendState, &mCurBlendState, sizeof(gl::BlendState)) != 0 ||
memcmp(&blendColor, &mCurBlendColor, sizeof(gl::Color)) != 0 ||
sampleMask != mCurSampleMask)
{
ID3D11BlendState *dxBlendState = mStateCache.getBlendState(blendState);
if (!dxBlendState)
{
ERR("NULL blend state returned by RenderStateCache::getBlendState, setting the default "
"blend state.");
}
const float blendColors[] = { blendColor.red, blendColor.green, blendColor.blue, blendColor.alpha };
mDeviceContext->OMSetBlendState(dxBlendState, blendColors, sampleMask);
mCurBlendState = blendState;
mCurBlendColor = blendColor;
mCurSampleMask = sampleMask;
}
mForceSetBlendState = false;
}
void Renderer11::setDepthStencilState(const gl::DepthStencilState &depthStencilState, int stencilRef,
int stencilBackRef, bool frontFaceCCW)
{
if (mForceSetDepthStencilState ||
memcmp(&depthStencilState, &mCurDepthStencilState, sizeof(gl::DepthStencilState)) != 0 ||
stencilRef != mCurStencilRef || stencilBackRef != mCurStencilBackRef)
{
if (depthStencilState.stencilWritemask != depthStencilState.stencilBackWritemask ||
stencilRef != stencilBackRef ||
depthStencilState.stencilMask != depthStencilState.stencilBackMask)
{
ERR("Separate front/back stencil writemasks, reference values, or stencil mask values are "
"invalid under WebGL.");
return error(GL_INVALID_OPERATION);
}
ID3D11DepthStencilState *dxDepthStencilState = mStateCache.getDepthStencilState(depthStencilState);
if (!dxDepthStencilState)
{
ERR("NULL depth stencil state returned by RenderStateCache::getDepthStencilState, "
"setting the default depth stencil state.");
}
mDeviceContext->OMSetDepthStencilState(dxDepthStencilState, static_cast<UINT>(stencilRef));
mCurDepthStencilState = depthStencilState;
mCurStencilRef = stencilRef;
mCurStencilBackRef = stencilBackRef;
}
mForceSetDepthStencilState = false;
}
void Renderer11::setScissorRectangle(const gl::Rectangle &scissor, bool enabled)
{
if (mForceSetScissor || memcmp(&scissor, &mCurScissor, sizeof(gl::Rectangle)) != 0 ||
enabled != mScissorEnabled)
{
if (enabled)
{
D3D11_RECT rect;
rect.left = gl::clamp(scissor.x, 0, static_cast<int>(mRenderTargetDesc.width));
rect.top = gl::clamp(scissor.y, 0, static_cast<int>(mRenderTargetDesc.height));
rect.right = gl::clamp(scissor.x + scissor.width, 0, static_cast<int>(mRenderTargetDesc.width));
rect.bottom = gl::clamp(scissor.y + scissor.height, 0, static_cast<int>(mRenderTargetDesc.height));
mDeviceContext->RSSetScissorRects(1, &rect);
}
if (enabled != mScissorEnabled)
{
mForceSetRasterState = true;
}
mCurScissor = scissor;
mScissorEnabled = enabled;
}
mForceSetScissor = false;
}
bool Renderer11::setViewport(const gl::Rectangle &viewport, float zNear, float zFar, GLenum drawMode, GLenum frontFace,
bool ignoreViewport, gl::ProgramBinary *currentProgram, bool forceSetUniforms)
{
gl::Rectangle actualViewport = viewport;
float actualZNear = gl::clamp01(zNear);
float actualZFar = gl::clamp01(zFar);
if (ignoreViewport)
{
actualViewport.x = 0;
actualViewport.y = 0;
actualViewport.width = mRenderTargetDesc.width;
actualViewport.height = mRenderTargetDesc.height;
actualZNear = 0.0f;
actualZFar = 1.0f;
}
D3D11_VIEWPORT dxViewport;
dxViewport.TopLeftX = gl::clamp(actualViewport.x, 0, static_cast<int>(mRenderTargetDesc.width));
dxViewport.TopLeftY = gl::clamp(actualViewport.y, 0, static_cast<int>(mRenderTargetDesc.height));
dxViewport.Width = gl::clamp(actualViewport.width, 0, static_cast<int>(mRenderTargetDesc.width) - static_cast<int>(dxViewport.TopLeftX));
dxViewport.Height = gl::clamp(actualViewport.height, 0, static_cast<int>(mRenderTargetDesc.height) - static_cast<int>(dxViewport.TopLeftY));
dxViewport.MinDepth = actualZNear;
dxViewport.MaxDepth = actualZFar;
if (dxViewport.Width <= 0 || dxViewport.Height <= 0)
{
return false; // Nothing to render
}
bool viewportChanged = mForceSetViewport || memcmp(&actualViewport, &mCurViewport, sizeof(gl::Rectangle)) != 0 ||
actualZNear != mCurNear || actualZFar != mCurFar;
if (viewportChanged)
{
mDeviceContext->RSSetViewports(1, &dxViewport);
mCurViewport = actualViewport;
mCurNear = actualZNear;
mCurFar = actualZFar;
}
if (currentProgram && (viewportChanged || forceSetUniforms))
{
currentProgram->applyDxHalfPixelSize(0.0f, 0.0f);
// These values are used for computing gl_FragCoord in Program::linkVaryings().
currentProgram->applyDxCoord(actualViewport.width * 0.5f,
actualViewport.height * 0.5f,
actualViewport.x + (actualViewport.width * 0.5f),
actualViewport.y + (actualViewport.height * 0.5f));
GLfloat ccw = !gl::IsTriangleMode(drawMode) ? 0.0f : (frontFace == GL_CCW ? 1.0f : -1.0f);
currentProgram->applyDxDepthFront((actualZFar - actualZNear) * 0.5f, (actualZNear + actualZFar) * 0.5f, ccw);
currentProgram->applyDxDepthRange(actualZNear, actualZFar, actualZFar - actualZNear);
}
mForceSetViewport = false;
return true;
}
bool Renderer11::applyPrimitiveType(GLenum mode, GLsizei count)
{
D3D11_PRIMITIVE_TOPOLOGY primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_UNDEFINED;
switch (mode)
{
case GL_POINTS: primitiveTopology = D3D11_PRIMITIVE_TOPOLOGY_POINTLIST; break;
case GL_LINES: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_LINELIST; break;
case GL_LINE_LOOP: UNIMPLEMENTED(); /* TODO */ break;
case GL_LINE_STRIP: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_LINESTRIP; break;
case GL_TRIANGLES: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST; break;
case GL_TRIANGLE_STRIP: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP; break;
case GL_TRIANGLE_FAN: UNIMPLEMENTED(); /* TODO */ break;
default:
return error(GL_INVALID_ENUM, false);
}
mDeviceContext->IASetPrimitiveTopology(primitiveTopology);
return count > 0;
}
bool Renderer11::applyRenderTarget(gl::Framebuffer *framebuffer)
{
// Get the color render buffer and serial
gl::Renderbuffer *renderbufferObject = NULL;
unsigned int renderTargetSerial = 0;
if (framebuffer->getColorbufferType() != GL_NONE)
{
renderbufferObject = framebuffer->getColorbuffer();
if (!renderbufferObject)
{
ERR("render target pointer unexpectedly null.");
return false;
}
renderTargetSerial = renderbufferObject->getSerial();
}
// Get the depth stencil render buffer and serials
gl::Renderbuffer *depthStencil = NULL;
unsigned int depthbufferSerial = 0;
unsigned int stencilbufferSerial = 0;
if (framebuffer->getDepthbufferType() != GL_NONE)
{
depthStencil = framebuffer->getDepthbuffer();
if (!depthStencil)
{
ERR("Depth stencil pointer unexpectedly null.");
return false;
}
depthbufferSerial = depthStencil->getSerial();
}
else if (framebuffer->getStencilbufferType() != GL_NONE)
{
depthStencil = framebuffer->getStencilbuffer();
if (!depthStencil)
{
ERR("Depth stencil pointer unexpectedly null.");
return false;
}
stencilbufferSerial = depthStencil->getSerial();
}
// Extract the render target dimensions and view
unsigned int renderTargetWidth = 0;
unsigned int renderTargetHeight = 0;
GLenum renderTargetFormat = 0;
ID3D11RenderTargetView* framebufferRTV = NULL;
if (renderbufferObject)
{
RenderTarget11 *renderTarget = RenderTarget11::makeRenderTarget11(renderbufferObject->getRenderTarget());
if (!renderTarget)
{
ERR("render target pointer unexpectedly null.");
return false;
}
framebufferRTV = renderTarget->getRenderTargetView();
if (!framebufferRTV)
{
ERR("render target view pointer unexpectedly null.");
return false;
}
renderTargetWidth = renderbufferObject->getWidth();
renderTargetHeight = renderbufferObject->getHeight();
renderTargetFormat = renderbufferObject->getActualFormat();
}
// Extract the depth stencil sizes and view
unsigned int depthSize = 0;
unsigned int stencilSize = 0;
ID3D11DepthStencilView* framebufferDSV = NULL;
if (depthStencil)
{
RenderTarget11 *depthStencilRenderTarget = RenderTarget11::makeRenderTarget11(depthStencil->getDepthStencil());
if (!depthStencilRenderTarget)
{
ERR("render target pointer unexpectedly null.");
if (framebufferRTV)
{
framebufferRTV->Release();
}
return false;
}
framebufferDSV = depthStencilRenderTarget->getDepthStencilView();
if (!framebufferDSV)
{
ERR("depth stencil view pointer unexpectedly null.");
if (framebufferRTV)
{
framebufferRTV->Release();
}
return false;
}
// If there is no render buffer, the width, height and format values come from
// the depth stencil
if (!renderbufferObject)
{
renderTargetWidth = depthStencil->getWidth();
renderTargetHeight = depthStencil->getHeight();
renderTargetFormat = depthStencil->getActualFormat();
}
depthSize = depthStencil->getDepthSize();
stencilSize = depthStencil->getStencilSize();
}
// Apply the render target and depth stencil
if (!mRenderTargetDescInitialized || !mDepthStencilInitialized ||
renderTargetSerial != mAppliedRenderTargetSerial ||
depthbufferSerial != mAppliedDepthbufferSerial ||
stencilbufferSerial != mAppliedStencilbufferSerial)
{
mDeviceContext->OMSetRenderTargets(1, &framebufferRTV, framebufferDSV);
mRenderTargetDesc.width = renderTargetWidth;
mRenderTargetDesc.height = renderTargetHeight;
mRenderTargetDesc.format = renderTargetFormat;
mForceSetViewport = true; // TODO: It may not be required to clamp the viewport in D3D11
mForceSetScissor = true; // TODO: It may not be required to clamp the scissor in D3D11
if (!mDepthStencilInitialized || depthSize != mCurDepthSize)
{
mCurDepthSize = depthSize;
mForceSetRasterState = true;
}
mCurStencilSize = stencilSize;
mAppliedRenderTargetSerial = renderTargetSerial;
mAppliedDepthbufferSerial = depthbufferSerial;
mAppliedStencilbufferSerial = stencilbufferSerial;
mRenderTargetDescInitialized = true;
mDepthStencilInitialized = true;
}
if (framebufferRTV)
{
framebufferRTV->Release();
}
if (framebufferDSV)
{
framebufferDSV->Release();
}
return true;
}
GLenum Renderer11::applyVertexBuffer(gl::ProgramBinary *programBinary, gl::VertexAttribute vertexAttributes[], GLint first, GLsizei count, GLsizei instances)
{
TranslatedAttribute attributes[gl::MAX_VERTEX_ATTRIBS];
GLenum err = mVertexDataManager->prepareVertexData(vertexAttributes, programBinary, first, count, attributes, instances);
if (err != GL_NO_ERROR)
{
return err;
}
return mInputLayoutCache.applyVertexBuffers(attributes, programBinary);
}
GLenum Renderer11::applyIndexBuffer(const GLvoid *indices, gl::Buffer *elementArrayBuffer, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo)
{
GLenum err = mIndexDataManager->prepareIndexData(type, count, elementArrayBuffer, indices, indexInfo);
if (err == GL_NO_ERROR)
{
if (indexInfo->serial != mAppliedIBSerial)
{
IndexBuffer11* indexBuffer = IndexBuffer11::makeIndexBuffer11(indexInfo->indexBuffer);
mDeviceContext->IASetIndexBuffer(indexBuffer->getBuffer(), indexBuffer->getIndexFormat(), indexInfo->startOffset);
mAppliedIBSerial = indexInfo->serial;
}
}
return err;
}
void Renderer11::drawArrays(GLenum mode, GLsizei count, GLsizei instances)
{
mDeviceContext->Draw(count, 0);
}
void Renderer11::drawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, gl::Buffer *elementArrayBuffer, const TranslatedIndexData &indexInfo)
{
if (mode == GL_LINE_LOOP)
{
drawLineLoop(count, type, indices, indexInfo.minIndex, elementArrayBuffer);
}
else
{
mDeviceContext->DrawIndexed(count, 0, -static_cast<int>(indexInfo.minIndex));
}
}
void Renderer11::drawLineLoop(GLsizei count, GLenum type, const GLvoid *indices, int minIndex, gl::Buffer *elementArrayBuffer)
{
// Get the raw indices for an indexed draw
if (type != GL_NONE && elementArrayBuffer)
{
gl::Buffer *indexBuffer = elementArrayBuffer;
intptr_t offset = reinterpret_cast<intptr_t>(indices);
indices = static_cast<const GLubyte*>(indexBuffer->data()) + offset;
}
if (!mLineLoopIB)
{
mLineLoopIB = new StreamingIndexBufferInterface(this);
if (!mLineLoopIB->reserveBufferSpace(INITIAL_INDEX_BUFFER_SIZE, GL_UNSIGNED_INT))
{
delete mLineLoopIB;
mLineLoopIB = NULL;
ERR("Could not create a 32-bit looping index buffer for GL_LINE_LOOP.");
return error(GL_OUT_OF_MEMORY);
}
}
const int spaceNeeded = (count + 1) * sizeof(unsigned int);
if (!mLineLoopIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_INT))
{
ERR("Could not reserve enough space in looping index buffer for GL_LINE_LOOP.");
return error(GL_OUT_OF_MEMORY);
}
void* mappedMemory = NULL;
int offset = mLineLoopIB->mapBuffer(spaceNeeded, &mappedMemory);
if (offset == -1 || mappedMemory == NULL)
{
ERR("Could not map index buffer for GL_LINE_LOOP.");
return error(GL_OUT_OF_MEMORY);
}
unsigned int *data = reinterpret_cast<unsigned int*>(mappedMemory);
switch (type)
{
case GL_NONE: // Non-indexed draw
for (int i = 0; i < count; i++)
{
data[i] = i;
}
data[count] = 0;
break;
case GL_UNSIGNED_BYTE:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLubyte*>(indices)[i];
}
data[count] = static_cast<const GLubyte*>(indices)[0];
break;
case GL_UNSIGNED_SHORT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLushort*>(indices)[i];
}
data[count] = static_cast<const GLushort*>(indices)[0];
break;
case GL_UNSIGNED_INT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLuint*>(indices)[i];
}
data[count] = static_cast<const GLuint*>(indices)[0];
break;
default: UNREACHABLE();
}
if (!mLineLoopIB->unmapBuffer())
{
ERR("Could not unmap index buffer for GL_LINE_LOOP.");
return error(GL_OUT_OF_MEMORY);
}
if (mAppliedIBSerial != mLineLoopIB->getSerial())
{
IndexBuffer11 *indexBuffer = IndexBuffer11::makeIndexBuffer11(mLineLoopIB->getIndexBuffer());
mDeviceContext->IASetIndexBuffer(indexBuffer->getBuffer(), indexBuffer->getIndexFormat(), offset);
mAppliedIBSerial = mLineLoopIB->getSerial();
}
mDeviceContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_LINELIST);
mDeviceContext->DrawIndexed(count, 0, -minIndex);
}
void Renderer11::applyShaders(gl::ProgramBinary *programBinary)
{
unsigned int programBinarySerial = programBinary->getSerial();
if (programBinarySerial != mAppliedProgramBinarySerial)
{
ShaderExecutable *vertexExe = programBinary->getVertexExecutable();
ShaderExecutable *pixelExe = programBinary->getPixelExecutable();
ID3D11VertexShader *vertexShader = NULL;
if (vertexExe) vertexShader = ShaderExecutable11::makeShaderExecutable11(vertexExe)->getVertexShader();
ID3D11PixelShader *pixelShader = NULL;
if (pixelExe) pixelShader = ShaderExecutable11::makeShaderExecutable11(pixelExe)->getPixelShader();
mDeviceContext->PSSetShader(pixelShader, NULL, 0);
mDeviceContext->VSSetShader(vertexShader, NULL, 0);
programBinary->dirtyAllUniforms();
mAppliedProgramBinarySerial = programBinarySerial;
}
}
void Renderer11::applyUniforms(const gl::UniformArray *uniformArray)
{
D3D11_BUFFER_DESC constantBufferDescription = {0};
constantBufferDescription.ByteWidth = D3D10_REQ_CONSTANT_BUFFER_ELEMENT_COUNT * sizeof(float[4]);
constantBufferDescription.Usage = D3D11_USAGE_DYNAMIC;
constantBufferDescription.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
constantBufferDescription.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
constantBufferDescription.MiscFlags = 0;
constantBufferDescription.StructureByteStride = 0;
ID3D11Buffer *constantBufferVS = NULL;
HRESULT result = mDevice->CreateBuffer(&constantBufferDescription, NULL, &constantBufferVS);
ASSERT(SUCCEEDED(result));
ID3D11Buffer *constantBufferPS = NULL;
result = mDevice->CreateBuffer(&constantBufferDescription, NULL, &constantBufferPS);
ASSERT(SUCCEEDED(result));
D3D11_MAPPED_SUBRESOURCE mapVS = {0};
result = mDeviceContext->Map(constantBufferVS, 0, D3D11_MAP_WRITE_DISCARD, 0, &mapVS);
ASSERT(SUCCEEDED(result));
D3D11_MAPPED_SUBRESOURCE mapPS = {0};
result = mDeviceContext->Map(constantBufferPS, 0, D3D11_MAP_WRITE_DISCARD, 0, &mapPS);
ASSERT(SUCCEEDED(result));
float (*cVS)[4] = (float(*)[4])mapVS.pData;
float (*cPS)[4] = (float(*)[4])mapPS.pData;
for (gl::UniformArray::const_iterator uniform_iterator = uniformArray->begin(); uniform_iterator != uniformArray->end(); uniform_iterator++)
{
const gl::Uniform *uniform = *uniform_iterator;
GLfloat (*f)[4] = (GLfloat(*)[4])uniform->data;
switch (uniform->type)
{
case GL_SAMPLER_2D:
case GL_SAMPLER_CUBE:
break;
case GL_FLOAT:
case GL_FLOAT_VEC2:
case GL_FLOAT_VEC3:
case GL_FLOAT_VEC4:
case GL_FLOAT_MAT2:
case GL_FLOAT_MAT3:
case GL_FLOAT_MAT4:
if (uniform->vs.registerCount)
{
for (unsigned int i = 0; i < uniform->vs.registerCount; i++)
{
cVS[uniform->vs.registerIndex + i][0] = f[i][0];
cVS[uniform->vs.registerIndex + i][1] = f[i][1];
cVS[uniform->vs.registerIndex + i][2] = f[i][2];
cVS[uniform->vs.registerIndex + i][3] = f[i][3];
}
}
if (uniform->ps.registerCount)
{
for (unsigned int i = 0; i < uniform->ps.registerCount; i++)
{
cPS[uniform->ps.registerIndex + i][0] = f[i][0];
cPS[uniform->ps.registerIndex + i][1] = f[i][1];
cPS[uniform->ps.registerIndex + i][2] = f[i][2];
cPS[uniform->ps.registerIndex + i][3] = f[i][3];
}
}
break;
default:
UNIMPLEMENTED(); // FIXME
UNREACHABLE();
}
}
mDeviceContext->Unmap(constantBufferVS, 0);
mDeviceContext->VSSetConstantBuffers(0, 1, &constantBufferVS);
constantBufferVS->Release();
mDeviceContext->Unmap(constantBufferPS, 0);
mDeviceContext->PSSetConstantBuffers(0, 1, &constantBufferPS);
constantBufferPS->Release();
}
void Renderer11::clear(const gl::ClearParameters &clearParams, gl::Framebuffer *frameBuffer)
{
if (clearParams.mask & GL_COLOR_BUFFER_BIT)
{
gl::Renderbuffer *renderbufferObject = frameBuffer->getColorbuffer();
if (renderbufferObject)
{
RenderTarget11 *renderTarget = RenderTarget11::makeRenderTarget11(renderbufferObject->getRenderTarget());
if (!renderTarget)
{
ERR("render target pointer unexpectedly null.");
return;
}
ID3D11RenderTargetView *framebufferRTV = renderTarget->getRenderTargetView();
if (!framebufferRTV)
{
ERR("render target view pointer unexpectedly null.");
return;
}
if (mScissorEnabled && (mCurScissor.x > 0 || mCurScissor.y > 0 ||
mCurScissor.x + mCurScissor.width < renderTarget->getWidth() ||
mCurScissor.y + mCurScissor.height < renderTarget->getHeight()))
{
// TODO: clearing of subregion of render target
UNIMPLEMENTED();
}
bool alphaUnmasked = (gl::GetAlphaSize(mRenderTargetDesc.format) == 0) || clearParams.colorMaskAlpha;
const bool needMaskedColorClear = (clearParams.mask & GL_COLOR_BUFFER_BIT) &&
!(clearParams.colorMaskRed && clearParams.colorMaskGreen &&
clearParams.colorMaskBlue && alphaUnmasked);
if (needMaskedColorClear)
{
// TODO: masked color clearing
UNIMPLEMENTED();
}
else
{
const float clearValues[4] = { clearParams.colorClearValue.red,
clearParams.colorClearValue.green,
clearParams.colorClearValue.blue,
clearParams.colorClearValue.alpha };
mDeviceContext->ClearRenderTargetView(framebufferRTV, clearValues);
}
framebufferRTV->Release();
}
}
if (clearParams.mask & GL_DEPTH_BUFFER_BIT || clearParams.mask & GL_STENCIL_BUFFER_BIT)
{
gl::Renderbuffer *renderbufferObject = frameBuffer->getDepthOrStencilbuffer();
if (renderbufferObject)
{
RenderTarget11 *renderTarget = RenderTarget11::makeRenderTarget11(renderbufferObject->getDepthStencil());
if (!renderTarget)
{
ERR("render target pointer unexpectedly null.");
return;
}
ID3D11DepthStencilView *framebufferDSV = renderTarget->getDepthStencilView();
if (!framebufferDSV)
{
ERR("depth stencil view pointer unexpectedly null.");
return;
}
if (mScissorEnabled && (mCurScissor.x > 0 || mCurScissor.y > 0 ||
mCurScissor.x + mCurScissor.width < renderTarget->getWidth() ||
mCurScissor.y + mCurScissor.height < renderTarget->getHeight()))
{
// TODO: clearing of subregion of depth stencil view
UNIMPLEMENTED();
}
unsigned int stencilUnmasked = 0x0;
if ((clearParams.mask & GL_STENCIL_BUFFER_BIT) && frameBuffer->hasStencil())
{
unsigned int stencilSize = gl::GetStencilSize(frameBuffer->getStencilbuffer()->getActualFormat());
stencilUnmasked = (0x1 << stencilSize) - 1;
}
const bool needMaskedStencilClear = (clearParams.mask & GL_STENCIL_BUFFER_BIT) &&
(clearParams.stencilWriteMask & stencilUnmasked) != stencilUnmasked;
if (needMaskedStencilClear)
{
// TODO: masked clearing of depth stencil
UNIMPLEMENTED();
}
else
{
UINT clearFlags = 0;
if (clearParams.mask & GL_DEPTH_BUFFER_BIT)
{
clearFlags |= D3D11_CLEAR_DEPTH;
}
if (clearParams.mask & GL_STENCIL_BUFFER_BIT)
{
clearFlags |= D3D11_CLEAR_STENCIL;
}
float depthClear = clearParams.depthClearValue;
UINT8 stencilClear = clearParams.stencilClearValue & 0x000000FF;
mDeviceContext->ClearDepthStencilView(framebufferDSV, clearFlags, depthClear, stencilClear);
}
framebufferDSV->Release();
}
}
}
void Renderer11::markAllStateDirty()
{
mAppliedRenderTargetSerial = 0;
mAppliedDepthbufferSerial = 0;
mAppliedStencilbufferSerial = 0;
mDepthStencilInitialized = false;
mRenderTargetDescInitialized = false;
for (int i = 0; i < gl::MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF; i++)
{
mForceSetVertexSamplerStates[i] = true;
}
for (int i = 0; i < gl::MAX_TEXTURE_IMAGE_UNITS; i++)
{
mForceSetPixelSamplerStates[i] = true;
}
mForceSetBlendState = true;
mForceSetRasterState = true;
mForceSetDepthStencilState = true;
mForceSetScissor = true;
mForceSetViewport = true;
mAppliedIBSerial = 0;
mAppliedProgramBinarySerial = 0;
}
void Renderer11::releaseDeviceResources()
{
mStateCache.clear();
mInputLayoutCache.clear();
delete mVertexDataManager;
mVertexDataManager = NULL;
delete mIndexDataManager;
mIndexDataManager = NULL;
delete mLineLoopIB;
mLineLoopIB = NULL;
}
void Renderer11::markDeviceLost()
{
mDeviceLost = true;
}
bool Renderer11::isDeviceLost()
{
return mDeviceLost;
}
// set notify to true to broadcast a message to all contexts of the device loss
bool Renderer11::testDeviceLost(bool notify)
{
bool isLost = false;
// TODO
//UNIMPLEMENTED();
if (isLost)
{
// ensure we note the device loss --
// we'll probably get this done again by markDeviceLost
// but best to remember it!
// Note that we don't want to clear the device loss status here
// -- this needs to be done by resetDevice
mDeviceLost = true;
if (notify)
{
mDisplay->notifyDeviceLost();
}
}
return isLost;
}
bool Renderer11::testDeviceResettable()
{
HRESULT status = D3D_OK;
// TODO
UNIMPLEMENTED();
switch (status)
{
case D3DERR_DEVICENOTRESET:
case D3DERR_DEVICEHUNG:
return true;
default:
return false;
}
}
bool Renderer11::resetDevice()
{
releaseDeviceResources();
// TODO
UNIMPLEMENTED();
// reset device defaults
initializeDevice();
mDeviceLost = false;
return true;
}
DWORD Renderer11::getAdapterVendor() const
{
return mAdapterDescription.VendorId;
}
const char *Renderer11::getAdapterDescription() const
{
return mDescription;
}
GUID Renderer11::getAdapterIdentifier() const
{
// TODO
// UNIMPLEMENTED();
GUID foo = {0};
return foo;
}
bool Renderer11::getDXT1TextureSupport()
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getDXT3TextureSupport()
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getDXT5TextureSupport()
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getDepthTextureSupport() const
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getFloat32TextureSupport(bool *filtering, bool *renderable)
{
// TODO
// UNIMPLEMENTED();
*filtering = false;
*renderable = false;
return false;
}
bool Renderer11::getFloat16TextureSupport(bool *filtering, bool *renderable)
{
// TODO
// UNIMPLEMENTED();
*filtering = false;
*renderable = false;
return false;
}
bool Renderer11::getLuminanceTextureSupport()
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getLuminanceAlphaTextureSupport()
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getTextureFilterAnisotropySupport() const
{
// TODO
// UNIMPLEMENTED();
return false;
}
float Renderer11::getTextureMaxAnisotropy() const
{
// TODO
// UNIMPLEMENTED();
return 1.0f;
}
bool Renderer11::getEventQuerySupport()
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getVertexTextureSupport() const
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getNonPower2TextureSupport() const
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getOcclusionQuerySupport() const
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getInstancingSupport() const
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getShareHandleSupport() const
{
// TODO
// UNIMPLEMENTED();
// PIX doesn't seem to support using share handles, so disable them.
return false && !gl::perfActive();
}
int Renderer11::getMajorShaderModel() const
{
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0: return D3D11_SHADER_MAJOR_VERSION; // 5
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0: return D3D10_SHADER_MAJOR_VERSION; // 4
default: UNREACHABLE(); return 0;
}
}
float Renderer11::getMaxPointSize() const
{
// TODO
// UNIMPLEMENTED();
return 1.0f;
}
int Renderer11::getMaxTextureWidth() const
{
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0: return D3D11_REQ_TEXTURE2D_U_OR_V_DIMENSION; // 16384
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0: return D3D10_REQ_TEXTURE2D_U_OR_V_DIMENSION; // 8192
default: UNREACHABLE(); return 0;
}
}
int Renderer11::getMaxTextureHeight() const
{
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0: return D3D11_REQ_TEXTURE2D_U_OR_V_DIMENSION; // 16384
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0: return D3D10_REQ_TEXTURE2D_U_OR_V_DIMENSION; // 8192
default: UNREACHABLE(); return 0;
}
}
bool Renderer11::get32BitIndexSupport() const
{
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0: return D3D10_REQ_DRAWINDEXED_INDEX_COUNT_2_TO_EXP >= 32; // true
default: UNREACHABLE(); return false;
}
}
int Renderer11::getMinSwapInterval() const
{
return 0;
}
int Renderer11::getMaxSwapInterval() const
{
return 4;
}
int Renderer11::getMaxSupportedSamples() const
{
// TODO
// UNIMPLEMENTED();
return 1;
}
bool Renderer11::copyToRenderTarget(TextureStorageInterface2D *dest, TextureStorageInterface2D *source)
{
if (source && dest)
{
TextureStorage11_2D *source11 = TextureStorage11_2D::makeTextureStorage11_2D(source->getStorageInstance());
TextureStorage11_2D *dest11 = TextureStorage11_2D::makeTextureStorage11_2D(dest->getStorageInstance());
mDeviceContext->CopyResource(dest11->getBaseTexture(), source11->getBaseTexture());
return true;
}
return false;
}
bool Renderer11::copyToRenderTarget(TextureStorageInterfaceCube *dest, TextureStorageInterfaceCube *source)
{
if (source && dest)
{
TextureStorage11_Cube *source11 = TextureStorage11_Cube::makeTextureStorage11_Cube(source->getStorageInstance());
TextureStorage11_Cube *dest11 = TextureStorage11_Cube::makeTextureStorage11_Cube(dest->getStorageInstance());
mDeviceContext->CopyResource(dest11->getBaseTexture(), source11->getBaseTexture());
return true;
}
return false;
}
bool Renderer11::copyImage(gl::Framebuffer *framebuffer, const RECT &sourceRect, GLenum destFormat,
GLint xoffset, GLint yoffset, TextureStorageInterface2D *storage, GLint level)
{
// TODO
UNIMPLEMENTED();
return false;
}
bool Renderer11::copyImage(gl::Framebuffer *framebuffer, const RECT &sourceRect, GLenum destFormat,
GLint xoffset, GLint yoffset, TextureStorageInterfaceCube *storage, GLenum target, GLint level)
{
// TODO
UNIMPLEMENTED();
return false;
}
RenderTarget *Renderer11::createRenderTarget(SwapChain *swapChain, bool depth)
{
SwapChain11 *swapChain11 = SwapChain11::makeSwapChain11(swapChain);
RenderTarget11 *renderTarget = NULL;
if (depth)
{
renderTarget = new RenderTarget11(this, swapChain11->getDepthStencil(), swapChain11->getWidth(), swapChain11->getHeight());
}
else
{
renderTarget = new RenderTarget11(this, swapChain11->getRenderTarget(), swapChain11->getWidth(), swapChain11->getHeight());
}
return renderTarget;
}
RenderTarget *Renderer11::createRenderTarget(int width, int height, GLenum format, GLsizei samples, bool depth)
{
RenderTarget11 *renderTarget = new RenderTarget11(this, width, height, format, samples, depth);
return renderTarget;
}
ShaderExecutable *Renderer11::loadExecutable(const void *function, size_t length, GLenum type)
{
ShaderExecutable11 *executable = NULL;
switch (type)
{
case GL_VERTEX_SHADER:
{
ID3D11VertexShader *vshader = NULL;
HRESULT result = mDevice->CreateVertexShader(function, length, NULL, &vshader);
ASSERT(SUCCEEDED(result));
if (vshader)
{
executable = new ShaderExecutable11(function, length, vshader);
}
}
break;
case GL_FRAGMENT_SHADER:
{
ID3D11PixelShader *pshader = NULL;
HRESULT result = mDevice->CreatePixelShader(function, length, NULL, &pshader);
ASSERT(SUCCEEDED(result));
if (pshader)
{
executable = new ShaderExecutable11(function, length, pshader);
}
}
break;
default:
UNREACHABLE();
break;
}
return executable;
}
ShaderExecutable *Renderer11::compileToExecutable(gl::InfoLog &infoLog, const char *shaderHLSL, GLenum type)
{
const char *profile = NULL;
switch (type)
{
case GL_VERTEX_SHADER:
profile = "vs_4_0";
break;
case GL_FRAGMENT_SHADER:
profile = "ps_4_0";
break;
default:
UNREACHABLE();
return NULL;
}
ID3DBlob *binary = compileToBinary(infoLog, shaderHLSL, profile, false);
if (!binary)
return NULL;
ShaderExecutable *executable = loadExecutable((DWORD *)binary->GetBufferPointer(), binary->GetBufferSize(), type);
binary->Release();
return executable;
}
VertexBuffer *Renderer11::createVertexBuffer()
{
return new VertexBuffer11(this);
}
IndexBuffer *Renderer11::createIndexBuffer()
{
return new IndexBuffer11(this);
}
bool Renderer11::blitRect(gl::Framebuffer *readTarget, gl::Rectangle *readRect, gl::Framebuffer *drawTarget, gl::Rectangle *drawRect,
bool blitRenderTarget, bool blitDepthStencil)
{
// TODO
UNIMPLEMENTED();
return false;
}
void Renderer11::readPixels(gl::Framebuffer *framebuffer, GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type,
GLsizei outputPitch, bool packReverseRowOrder, GLint packAlignment, void* pixels)
{
ID3D11Texture2D *colorBufferTexture = NULL;
gl::Renderbuffer *colorbuffer = framebuffer->getColorbuffer();
if (colorbuffer)
{
RenderTarget11 *renderTarget = RenderTarget11::makeRenderTarget11(colorbuffer->getRenderTarget());
if (renderTarget)
{
ID3D11RenderTargetView *colorBufferRTV = renderTarget->getRenderTargetView();
if (colorBufferRTV)
{
ID3D11Resource *textureResource = NULL;
colorBufferRTV->GetResource(&textureResource);
if (textureResource)
{
HRESULT result = textureResource->QueryInterface(IID_ID3D11Texture2D, (void**)&colorBufferTexture);
textureResource->Release();
if (FAILED(result))
{
ERR("Failed to extract the ID3D11Texture2D from the render target resource, "
"HRESULT: 0x%X.", result);
return;
}
}
}
}
}
if (colorBufferTexture)
{
gl::Rectangle area;
area.x = x;
area.y = y;
area.width = width;
area.height = height;
readTextureData(colorBufferTexture, 0, area, format, type, outputPitch, packReverseRowOrder,
packAlignment, pixels);
colorBufferTexture->Release();
colorBufferTexture = NULL;
}
}
Image *Renderer11::createImage()
{
return new Image11();
}
void Renderer11::generateMipmap(Image *dest, Image *src)
{
// TODO
UNIMPLEMENTED();
return;
}
TextureStorage *Renderer11::createTextureStorage2D(SwapChain *swapChain)
{
SwapChain11 *swapChain11 = SwapChain11::makeSwapChain11(swapChain);
return new TextureStorage11_2D(this, swapChain11);
}
TextureStorage *Renderer11::createTextureStorage2D(int levels, GLenum internalformat, GLenum usage, bool forceRenderable, GLsizei width, GLsizei height)
{
return new TextureStorage11_2D(this, levels, internalformat, usage, forceRenderable, width, height);
}
TextureStorage *Renderer11::createTextureStorageCube(int levels, GLenum internalformat, GLenum usage, bool forceRenderable, int size)
{
return new TextureStorage11_Cube(this, levels, internalformat, usage, forceRenderable, size);
}
static inline unsigned int getFastPixelCopySize(DXGI_FORMAT sourceFormat, GLenum destFormat, GLenum destType)
{
if (sourceFormat == DXGI_FORMAT_A8_UNORM &&
destFormat == GL_ALPHA &&
destType == GL_UNSIGNED_BYTE)
{
return 1;
}
else if (sourceFormat == DXGI_FORMAT_R8G8B8A8_UNORM &&
destFormat == GL_RGBA &&
destType == GL_UNSIGNED_BYTE)
{
return 4;
}
else if (sourceFormat == DXGI_FORMAT_B8G8R8A8_UNORM &&
destFormat == GL_BGRA_EXT &&
destType == GL_UNSIGNED_BYTE)
{
return 4;
}
else if (sourceFormat == DXGI_FORMAT_R16G16B16A16_FLOAT &&
destFormat == GL_RGBA &&
destType == GL_HALF_FLOAT_OES)
{
return 8;
}
else if (sourceFormat == DXGI_FORMAT_R32G32B32_FLOAT &&
destFormat == GL_RGB &&
destType == GL_FLOAT)
{
return 12;
}
else if (sourceFormat == DXGI_FORMAT_R32G32B32A32_FLOAT &&
destFormat == GL_RGBA &&
destType == GL_FLOAT)
{
return 16;
}
else
{
return 0;
}
}
static inline void readPixelColor(const unsigned char *data, DXGI_FORMAT format, unsigned int x,
unsigned int y, int inputPitch, gl::Color *outColor)
{
switch (format)
{
case DXGI_FORMAT_R8G8B8A8_UNORM:
{
unsigned int rgba = *reinterpret_cast<const unsigned int*>(data + 4 * x + y * inputPitch);
outColor->red = (rgba & 0xFF000000) * (1.0f / 0xFF000000);
outColor->green = (rgba & 0x00FF0000) * (1.0f / 0x00FF0000);
outColor->blue = (rgba & 0x0000FF00) * (1.0f / 0x0000FF00);
outColor->alpha = (rgba & 0x000000FF) * (1.0f / 0x000000FF);
}
break;
case DXGI_FORMAT_A8_UNORM:
{
outColor->red = 0.0f;
outColor->green = 0.0f;
outColor->blue = 0.0f;
outColor->alpha = *(data + x + y * inputPitch) / 255.0f;
}
break;
case DXGI_FORMAT_R32G32B32A32_FLOAT:
{
outColor->red = *(reinterpret_cast<const float*>(data + 16 * x + y * inputPitch) + 0);
outColor->green = *(reinterpret_cast<const float*>(data + 16 * x + y * inputPitch) + 1);
outColor->blue = *(reinterpret_cast<const float*>(data + 16 * x + y * inputPitch) + 2);
outColor->alpha = *(reinterpret_cast<const float*>(data + 16 * x + y * inputPitch) + 3);
}
break;
case DXGI_FORMAT_R32G32B32_FLOAT:
{
outColor->red = *(reinterpret_cast<const float*>(data + 12 * x + y * inputPitch) + 0);
outColor->green = *(reinterpret_cast<const float*>(data + 12 * x + y * inputPitch) + 1);
outColor->blue = *(reinterpret_cast<const float*>(data + 12 * x + y * inputPitch) + 2);
outColor->alpha = 1.0f;
}
break;
case DXGI_FORMAT_R16G16B16A16_FLOAT:
{
outColor->red = gl::float16ToFloat32(*(reinterpret_cast<const unsigned short*>(data + 8 * x + y * inputPitch) + 0));
outColor->green = gl::float16ToFloat32(*(reinterpret_cast<const unsigned short*>(data + 8 * x + y * inputPitch) + 1));
outColor->blue = gl::float16ToFloat32(*(reinterpret_cast<const unsigned short*>(data + 8 * x + y * inputPitch) + 2));
outColor->alpha = gl::float16ToFloat32(*(reinterpret_cast<const unsigned short*>(data + 8 * x + y * inputPitch) + 3));
}
break;
case DXGI_FORMAT_B8G8R8A8_UNORM:
{
unsigned int bgra = *reinterpret_cast<const unsigned int*>(data + 4 * x + y * inputPitch);
outColor->red = (bgra & 0x0000FF00) * (1.0f / 0x0000FF00);
outColor->blue = (bgra & 0xFF000000) * (1.0f / 0xFF000000);
outColor->green = (bgra & 0x00FF0000) * (1.0f / 0x00FF0000);
outColor->alpha = (bgra & 0x000000FF) * (1.0f / 0x000000FF);
}
break;
case DXGI_FORMAT_R8_UNORM:
{
outColor->red = *(data + x + y * inputPitch) / 255.0f;
outColor->green = 0.0f;
outColor->blue = 0.0f;
outColor->alpha = 1.0f;
}
break;
case DXGI_FORMAT_R8G8_UNORM:
{
unsigned short rg = *reinterpret_cast<const unsigned short*>(data + 2 * x + y * inputPitch);
outColor->red = (rg & 0xFF00) * (1.0f / 0xFF00);
outColor->green = (rg & 0x00FF) * (1.0f / 0x00FF);
outColor->blue = 0.0f;
outColor->alpha = 1.0f;
}
break;
case DXGI_FORMAT_R16_FLOAT:
{
outColor->red = gl::float16ToFloat32(*reinterpret_cast<const unsigned short*>(data + 2 * x + y * inputPitch));
outColor->green = 0.0f;
outColor->blue = 0.0f;
outColor->alpha = 1.0f;
}
break;
case DXGI_FORMAT_R16G16_FLOAT:
{
outColor->red = gl::float16ToFloat32(*(reinterpret_cast<const unsigned short*>(data + 4 * x + y * inputPitch) + 0));
outColor->green = gl::float16ToFloat32(*(reinterpret_cast<const unsigned short*>(data + 4 * x + y * inputPitch) + 1));
outColor->blue = 0.0f;
outColor->alpha = 1.0f;
}
break;
default:
ERR("ReadPixelColor not implemented for DXGI format %u.", format);
UNIMPLEMENTED();
break;
}
}
static inline void writePixelColor(const gl::Color &color, GLenum format, GLenum type, unsigned int x,
unsigned int y, int outputPitch, void *outData)
{
unsigned char* byteData = reinterpret_cast<unsigned char*>(outData);
unsigned short* shortData = reinterpret_cast<unsigned short*>(outData);
switch (format)
{
case GL_RGBA:
switch (type)
{
case GL_UNSIGNED_BYTE:
byteData[4 * x + y * outputPitch + 0] = static_cast<unsigned char>(255 * color.red + 0.5f);
byteData[4 * x + y * outputPitch + 1] = static_cast<unsigned char>(255 * color.green + 0.5f);
byteData[4 * x + y * outputPitch + 2] = static_cast<unsigned char>(255 * color.blue + 0.5f);
byteData[4 * x + y * outputPitch + 3] = static_cast<unsigned char>(255 * color.alpha + 0.5f);
break;
default:
ERR("WritePixelColor not implemented for format GL_RGBA and type 0x%X.", type);
UNIMPLEMENTED();
break;
}
break;
case GL_BGRA_EXT:
switch (type)
{
case GL_UNSIGNED_BYTE:
byteData[4 * x + y * outputPitch + 0] = static_cast<unsigned char>(255 * color.blue + 0.5f);
byteData[4 * x + y * outputPitch + 1] = static_cast<unsigned char>(255 * color.green + 0.5f);
byteData[4 * x + y * outputPitch + 2] = static_cast<unsigned char>(255 * color.red + 0.5f);
byteData[4 * x + y * outputPitch + 3] = static_cast<unsigned char>(255 * color.alpha + 0.5f);
break;
case GL_UNSIGNED_SHORT_4_4_4_4_REV_EXT:
// According to the desktop GL spec in the "Transfer of Pixel Rectangles" section
// this type is packed as follows:
// 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
// --------------------------------------------------------------------------------
// | 4th | 3rd | 2nd | 1st component |
// --------------------------------------------------------------------------------
// in the case of BGRA_EXT, B is the first component, G the second, and so forth.
shortData[x + y * outputPitch / sizeof(unsigned short)] =
(static_cast<unsigned short>(15 * color.alpha + 0.5f) << 12) |
(static_cast<unsigned short>(15 * color.red + 0.5f) << 8) |
(static_cast<unsigned short>(15 * color.green + 0.5f) << 4) |
(static_cast<unsigned short>(15 * color.blue + 0.5f) << 0);
break;
case GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT:
// According to the desktop GL spec in the "Transfer of Pixel Rectangles" section
// this type is packed as follows:
// 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
// --------------------------------------------------------------------------------
// | 4th | 3rd | 2nd | 1st component |
// --------------------------------------------------------------------------------
// in the case of BGRA_EXT, B is the first component, G the second, and so forth.
shortData[x + y * outputPitch / sizeof(unsigned short)] =
(static_cast<unsigned short>( color.alpha + 0.5f) << 15) |
(static_cast<unsigned short>(31 * color.red + 0.5f) << 10) |
(static_cast<unsigned short>(31 * color.green + 0.5f) << 5) |
(static_cast<unsigned short>(31 * color.blue + 0.5f) << 0);
break;
default:
ERR("WritePixelColor not implemented for format GL_BGRA_EXT and type 0x%X.", type);
UNIMPLEMENTED();
break;
}
break;
case GL_RGB:
switch (type)
{
case GL_UNSIGNED_SHORT_5_6_5:
shortData[x + y * outputPitch / sizeof(unsigned short)] =
(static_cast<unsigned short>(31 * color.blue + 0.5f) << 0) |
(static_cast<unsigned short>(63 * color.green + 0.5f) << 5) |
(static_cast<unsigned short>(31 * color.red + 0.5f) << 11);
break;
case GL_UNSIGNED_BYTE:
byteData[3 * x + y * outputPitch + 0] = static_cast<unsigned char>(255 * color.red + 0.5f);
byteData[3 * x + y * outputPitch + 1] = static_cast<unsigned char>(255 * color.green + 0.5f);
byteData[3 * x + y * outputPitch + 2] = static_cast<unsigned char>(255 * color.blue + 0.5f);
break;
default:
ERR("WritePixelColor not implemented for format GL_RGB and type 0x%X.", type);
UNIMPLEMENTED();
break;
}
break;
default:
ERR("WritePixelColor not implemented for format 0x%X.", format);
UNIMPLEMENTED();
break;
}
}
void Renderer11::readTextureData(ID3D11Texture2D *texture, unsigned int subResource, const gl::Rectangle &area,
GLenum format, GLenum type, GLsizei outputPitch, bool packReverseRowOrder,
GLint packAlignment, void *pixels)
{
D3D11_TEXTURE2D_DESC textureDesc;
texture->GetDesc(&textureDesc);
D3D11_TEXTURE2D_DESC stagingDesc;
stagingDesc.Width = area.width;
stagingDesc.Height = area.height;
stagingDesc.MipLevels = 1;
stagingDesc.ArraySize = 1;
stagingDesc.Format = textureDesc.Format;
stagingDesc.SampleDesc.Count = 1;
stagingDesc.SampleDesc.Quality = 0;
stagingDesc.Usage = D3D11_USAGE_STAGING;
stagingDesc.BindFlags = 0;
stagingDesc.CPUAccessFlags = D3D11_CPU_ACCESS_READ;
stagingDesc.MiscFlags = 0;
ID3D11Texture2D* stagingTex = NULL;
HRESULT result = mDevice->CreateTexture2D(&stagingDesc, NULL, &stagingTex);
if (FAILED(result))
{
ERR("Failed to create staging texture for readPixels, HRESULT: 0x%X.", result);
return;
}
ID3D11Texture2D* srcTex = NULL;
if (textureDesc.SampleDesc.Count > 1)
{
D3D11_TEXTURE2D_DESC resolveDesc;
resolveDesc.Width = textureDesc.Width;
resolveDesc.Height = textureDesc.Height;
resolveDesc.MipLevels = 1;
resolveDesc.ArraySize = 1;
resolveDesc.Format = textureDesc.Format;
resolveDesc.SampleDesc.Count = 1;
resolveDesc.SampleDesc.Quality = 0;
resolveDesc.Usage = D3D11_USAGE_DEFAULT;
resolveDesc.BindFlags = 0;
resolveDesc.CPUAccessFlags = 0;
resolveDesc.MiscFlags = 0;
result = mDevice->CreateTexture2D(&resolveDesc, NULL, &srcTex);
if (FAILED(result))
{
ERR("Failed to create resolve texture for readPixels, HRESULT: 0x%X.", result);
stagingTex->Release();
return;
}
mDeviceContext->ResolveSubresource(srcTex, 0, texture, subResource, textureDesc.Format);
subResource = 0;
}
else
{
srcTex = texture;
srcTex->AddRef();
}
D3D11_BOX srcBox;
srcBox.left = area.x;
srcBox.right = area.x + area.width;
srcBox.top = area.y;
srcBox.bottom = area.y + area.height;
srcBox.front = 0;
srcBox.back = 1;
mDeviceContext->CopySubresourceRegion(stagingTex, 0, 0, 0, 0, srcTex, subResource, &srcBox);
srcTex->Release();
srcTex = NULL;
D3D11_MAPPED_SUBRESOURCE mapping;
mDeviceContext->Map(stagingTex, 0, D3D11_MAP_READ, 0, &mapping);
unsigned char *source;
int inputPitch;
if (packReverseRowOrder)
{
source = static_cast<unsigned char*>(mapping.pData) + mapping.RowPitch * (area.height - 1);
inputPitch = -static_cast<int>(mapping.RowPitch);
}
else
{
source = static_cast<unsigned char*>(mapping.pData);
inputPitch = static_cast<int>(mapping.RowPitch);
}
unsigned int fastPixelSize = getFastPixelCopySize(textureDesc.Format, format, type);
if (fastPixelSize != 0)
{
unsigned char *dest = static_cast<unsigned char*>(pixels);
for (int j = 0; j < area.height; j++)
{
memcpy(dest + j * outputPitch, source + j * inputPitch, area.width * fastPixelSize);
}
}
else
{
gl::Color pixelColor;
for (int j = 0; j < area.height; j++)
{
for (int i = 0; i < area.width; i++)
{
readPixelColor(source, textureDesc.Format, i, j, inputPitch, &pixelColor);
writePixelColor(pixelColor, format, type, i, j, outputPitch, pixels);
}
}
}
mDeviceContext->Unmap(stagingTex, 0);
stagingTex->Release();
stagingTex = NULL;
}
}