blob: 41e6fc7983e969d256574edb69c7db318aff39a8 [file] [log] [blame]
//
// Copyright (c) 2012 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Renderer11.cpp: Implements a back-end specific class for the D3D11 renderer.
#include "common/debug.h"
#include "libGLESv2/main.h"
#include "libGLESv2/utilities.h"
#include "libGLESv2/mathutil.h"
#include "libGLESv2/Buffer.h"
#include "libGLESv2/Program.h"
#include "libGLESv2/ProgramBinary.h"
#include "libGLESv2/Framebuffer.h"
#include "libGLESv2/renderer/Renderer11.h"
#include "libGLESv2/renderer/RenderTarget11.h"
#include "libGLESv2/renderer/renderer11_utils.h"
#include "libGLESv2/renderer/ShaderExecutable11.h"
#include "libGLESv2/renderer/SwapChain11.h"
#include "libEGL/Config.h"
#include "libEGL/Display.h"
#if !defined(ANGLE_COMPILE_OPTIMIZATION_LEVEL)
#define ANGLE_COMPILE_OPTIMIZATION_LEVEL D3DCOMPILE_OPTIMIZATION_LEVEL3
#endif
namespace rx
{
static const DXGI_FORMAT RenderTargetFormats[] =
{
DXGI_FORMAT_R8G8B8A8_UNORM
};
static const DXGI_FORMAT DepthStencilFormats[] =
{
DXGI_FORMAT_D24_UNORM_S8_UINT
};
Renderer11::Renderer11(egl::Display *display, HDC hDc) : Renderer(display), mDc(hDc)
{
mD3d11Module = NULL;
mDxgiModule = NULL;
mD3dCompilerModule = NULL;
mDeviceLost = false;
mDevice = NULL;
mDeviceContext = NULL;
mDxgiAdapter = NULL;
mDxgiFactory = NULL;
}
Renderer11::~Renderer11()
{
releaseDeviceResources();
if (mDxgiFactory)
{
mDxgiFactory->Release();
mDxgiFactory = NULL;
}
if (mDxgiAdapter)
{
mDxgiAdapter->Release();
mDxgiAdapter = NULL;
}
if (mDeviceContext)
{
mDeviceContext->Release();
mDeviceContext = NULL;
}
if (mDevice)
{
mDevice->Release();
mDevice = NULL;
}
if (mD3d11Module)
{
FreeLibrary(mD3d11Module);
mD3d11Module = NULL;
}
if (mDxgiModule)
{
FreeLibrary(mDxgiModule);
mDxgiModule = NULL;
}
if (mD3dCompilerModule)
{
FreeLibrary(mD3dCompilerModule);
mD3dCompilerModule = NULL;
}
}
Renderer11 *Renderer11::makeRenderer11(Renderer *renderer)
{
ASSERT(dynamic_cast<rx::Renderer11*>(renderer) != NULL);
return static_cast<rx::Renderer11*>(renderer);
}
EGLint Renderer11::initialize()
{
mDxgiModule = LoadLibrary(TEXT("dxgi.dll"));
mD3d11Module = LoadLibrary(TEXT("d3d11.dll"));
if (mD3d11Module == NULL || mDxgiModule == NULL)
{
ERR("Could not load D3D11 or DXGI library - aborting!\n");
return EGL_NOT_INITIALIZED;
}
PFN_D3D11_CREATE_DEVICE D3D11CreateDevice = (PFN_D3D11_CREATE_DEVICE)GetProcAddress(mD3d11Module, "D3D11CreateDevice");
if (D3D11CreateDevice == NULL)
{
ERR("Could not retrieve D3D11CreateDevice address - aborting!\n");
return EGL_NOT_INITIALIZED;
}
D3D_FEATURE_LEVEL featureLevel[] =
{
D3D_FEATURE_LEVEL_11_0,
D3D_FEATURE_LEVEL_10_1,
D3D_FEATURE_LEVEL_10_0,
};
HRESULT result = D3D11CreateDevice(NULL,
D3D_DRIVER_TYPE_HARDWARE,
NULL,
#if defined(_DEBUG)
D3D11_CREATE_DEVICE_DEBUG,
#else
0,
#endif
featureLevel,
sizeof(featureLevel)/sizeof(featureLevel[0]),
D3D11_SDK_VERSION,
&mDevice,
&mFeatureLevel,
&mDeviceContext);
if (!mDevice || FAILED(result))
{
ERR("Could not create D3D11 device - aborting!\n");
return EGL_NOT_INITIALIZED; // Cleanup done by destructor through glDestroyRenderer
}
IDXGIDevice *dxgiDevice = NULL;
result = mDevice->QueryInterface(__uuidof(IDXGIDevice), (void**)&dxgiDevice);
if (FAILED(result))
{
ERR("Could not query DXGI device - aborting!\n");
return EGL_NOT_INITIALIZED;
}
result = dxgiDevice->GetParent(__uuidof(IDXGIAdapter), (void**)&mDxgiAdapter);
if (FAILED(result))
{
ERR("Could not retrieve DXGI adapter - aborting!\n");
return EGL_NOT_INITIALIZED;
}
dxgiDevice->Release();
mDxgiAdapter->GetDesc(&mAdapterDescription);
memset(mDescription, 0, sizeof(mDescription));
wcstombs(mDescription, mAdapterDescription.Description, sizeof(mDescription) - 1);
result = mDxgiAdapter->GetParent(__uuidof(IDXGIFactory), (void**)&mDxgiFactory);
if (!mDxgiFactory || FAILED(result))
{
ERR("Could not create DXGI factory - aborting!\n");
return EGL_NOT_INITIALIZED;
}
#if defined(ANGLE_PRELOADED_D3DCOMPILER_MODULE_NAMES)
// Find a D3DCompiler module that had already been loaded based on a predefined list of versions.
static TCHAR* d3dCompilerNames[] = ANGLE_PRELOADED_D3DCOMPILER_MODULE_NAMES;
for (int i = 0; i < sizeof(d3dCompilerNames) / sizeof(*d3dCompilerNames); ++i)
{
if (GetModuleHandleEx(0, d3dCompilerNames[i], &mD3dCompilerModule))
{
break;
}
}
#else
// Load the version of the D3DCompiler DLL associated with the Direct3D version ANGLE was built with.
mD3dCompilerModule = LoadLibrary(D3DCOMPILER_DLL);
#endif // ANGLE_PRELOADED_D3DCOMPILER_MODULE_NAMES
if (!mD3dCompilerModule)
{
terminate();
return false;
}
mD3DCompileFunc = reinterpret_cast<pD3DCompile>(GetProcAddress(mD3dCompilerModule, "D3DCompile"));
ASSERT(mD3DCompileFunc);
initializeDevice();
return EGL_SUCCESS;
}
// do any one-time device initialization
// NOTE: this is also needed after a device lost/reset
// to reset the scene status and ensure the default states are reset.
void Renderer11::initializeDevice()
{
mStateCache.initialize(mDevice);
markAllStateDirty();
// Permanent non-default states
// TODO
// UNIMPLEMENTED();
}
int Renderer11::generateConfigs(ConfigDesc **configDescList)
{
unsigned int numRenderFormats = sizeof(RenderTargetFormats) / sizeof(RenderTargetFormats[0]);
unsigned int numDepthFormats = sizeof(DepthStencilFormats) / sizeof(DepthStencilFormats[0]);
(*configDescList) = new ConfigDesc[numRenderFormats * numDepthFormats];
int numConfigs = 0;
for (unsigned int formatIndex = 0; formatIndex < numRenderFormats; formatIndex++)
{
for (unsigned int depthStencilIndex = 0; depthStencilIndex < numDepthFormats; depthStencilIndex++)
{
DXGI_FORMAT renderTargetFormat = RenderTargetFormats[formatIndex];
UINT formatSupport = 0;
HRESULT result = mDevice->CheckFormatSupport(renderTargetFormat, &formatSupport);
if (SUCCEEDED(result) && (formatSupport & D3D11_FORMAT_SUPPORT_RENDER_TARGET))
{
DXGI_FORMAT depthStencilFormat = DepthStencilFormats[depthStencilIndex];
UINT formatSupport = 0;
HRESULT result = mDevice->CheckFormatSupport(depthStencilFormat, &formatSupport);
if (SUCCEEDED(result) && (formatSupport & D3D11_FORMAT_SUPPORT_DEPTH_STENCIL))
{
ConfigDesc newConfig;
newConfig.renderTargetFormat = d3d11_gl::ConvertBackBufferFormat(renderTargetFormat);
newConfig.depthStencilFormat = d3d11_gl::ConvertDepthStencilFormat(depthStencilFormat);
newConfig.multiSample = 0; // FIXME: enumerate multi-sampling
newConfig.fastConfig = true; // Assume all DX11 format conversions to be fast
(*configDescList)[numConfigs++] = newConfig;
}
}
}
}
return numConfigs;
}
void Renderer11::deleteConfigs(ConfigDesc *configDescList)
{
delete [] (configDescList);
}
void Renderer11::sync(bool block)
{
// TODO
UNIMPLEMENTED();
}
SwapChain *Renderer11::createSwapChain(HWND window, HANDLE shareHandle, GLenum backBufferFormat, GLenum depthBufferFormat)
{
return new rx::SwapChain11(this, window, shareHandle, backBufferFormat, depthBufferFormat);
}
void Renderer11::setSamplerState(gl::SamplerType type, int index, const gl::SamplerState &samplerState)
{
// TODO
UNIMPLEMENTED();
}
void Renderer11::setTexture(gl::SamplerType type, int index, gl::Texture *texture)
{
// TODO
UNIMPLEMENTED();
}
void Renderer11::setRasterizerState(const gl::RasterizerState &rasterState)
{
if (mForceSetRasterState || memcmp(&rasterState, &mCurRasterState, sizeof(gl::RasterizerState)) != 0)
{
ID3D11RasterizerState *dxRasterState = mStateCache.getRasterizerState(rasterState, mCurDepthSize);
if (!dxRasterState)
{
ERR("NULL blend state returned by RenderStateCache::getRasterizerState, setting the "
"rasterizer state.");
}
mDeviceContext->RSSetState(dxRasterState);
if (dxRasterState)
{
dxRasterState->Release();
}
mCurRasterState = rasterState;
}
mForceSetRasterState = false;
}
void Renderer11::setBlendState(const gl::BlendState &blendState, const gl::Color &blendColor,
unsigned int sampleMask)
{
if (mForceSetBlendState ||
memcmp(&blendState, &mCurBlendState, sizeof(gl::BlendState)) != 0 ||
memcmp(&blendColor, &mCurBlendColor, sizeof(gl::Color)) != 0 ||
sampleMask != mCurSampleMask)
{
ID3D11BlendState *dxBlendState = mStateCache.getBlendState(blendState);
if (!dxBlendState)
{
ERR("NULL blend state returned by RenderStateCache::getBlendState, setting the default "
"blend state.");
}
const float blendColors[] = { blendColor.red, blendColor.green, blendColor.blue, blendColor.alpha };
mDeviceContext->OMSetBlendState(dxBlendState, blendColors, sampleMask);
if (dxBlendState)
{
dxBlendState->Release();
}
mCurBlendState = blendState;
mCurBlendColor = blendColor;
mCurSampleMask = sampleMask;
}
mForceSetBlendState = false;
}
void Renderer11::setDepthStencilState(const gl::DepthStencilState &depthStencilState, int stencilRef,
int stencilBackRef, bool frontFaceCCW)
{
if (mForceSetDepthStencilState ||
memcmp(&depthStencilState, &mCurDepthStencilState, sizeof(gl::DepthStencilState)) != 0 ||
stencilRef != mCurStencilRef || stencilBackRef != mCurStencilBackRef)
{
if (depthStencilState.stencilWritemask != depthStencilState.stencilBackWritemask ||
stencilRef != stencilBackRef ||
depthStencilState.stencilMask != depthStencilState.stencilBackMask)
{
ERR("Separate front/back stencil writemasks, reference values, or stencil mask values are "
"invalid under WebGL.");
return error(GL_INVALID_OPERATION);
}
ID3D11DepthStencilState *dxDepthStencilState = mStateCache.getDepthStencilState(depthStencilState);
if (!dxDepthStencilState)
{
ERR("NULL depth stencil state returned by RenderStateCache::getDepthStencilState, "
"setting the default depth stencil state.");
}
mDeviceContext->OMSetDepthStencilState(dxDepthStencilState, static_cast<UINT>(stencilRef));
if (dxDepthStencilState)
{
dxDepthStencilState->Release();
}
mCurDepthStencilState = depthStencilState;
mCurStencilRef = stencilRef;
mCurStencilBackRef = stencilBackRef;
}
mForceSetDepthStencilState = false;
}
void Renderer11::setScissorRectangle(const gl::Rectangle &scissor)
{
if (mForceSetScissor || memcmp(&scissor, &mCurScissor, sizeof(gl::Rectangle)) != 0)
{
D3D11_RECT rect;
rect.left = gl::clamp(scissor.x, 0, static_cast<int>(mRenderTargetDesc.width));
rect.top = gl::clamp(scissor.y, 0, static_cast<int>(mRenderTargetDesc.height));
rect.right = gl::clamp(scissor.x + scissor.width, 0, static_cast<int>(mRenderTargetDesc.width));
rect.bottom = gl::clamp(scissor.y + scissor.height, 0, static_cast<int>(mRenderTargetDesc.height));
mDeviceContext->RSSetScissorRects(1, &rect);
mCurScissor = scissor;
}
mForceSetScissor = false;
}
bool Renderer11::setViewport(const gl::Rectangle &viewport, float zNear, float zFar, bool ignoreViewport,
gl::ProgramBinary *currentProgram, bool forceSetUniforms)
{
gl::Rectangle actualViewport = viewport;
float actualZNear = gl::clamp01(zNear);
float actualZFar = gl::clamp01(zFar);
if (ignoreViewport)
{
actualViewport.x = 0;
actualViewport.y = 0;
actualViewport.width = mRenderTargetDesc.width;
actualViewport.height = mRenderTargetDesc.height;
actualZNear = 0.0f;
actualZFar = 1.0f;
}
D3D11_VIEWPORT dxViewport;
dxViewport.TopLeftX = gl::clamp(actualViewport.x, 0, static_cast<int>(mRenderTargetDesc.width));
dxViewport.TopLeftY = gl::clamp(actualViewport.y, 0, static_cast<int>(mRenderTargetDesc.height));
dxViewport.Width = gl::clamp(actualViewport.width, 0, static_cast<int>(mRenderTargetDesc.width) - static_cast<int>(dxViewport.TopLeftX));
dxViewport.Height = gl::clamp(actualViewport.height, 0, static_cast<int>(mRenderTargetDesc.height) - static_cast<int>(dxViewport.TopLeftY));
dxViewport.MinDepth = actualZNear;
dxViewport.MaxDepth = actualZFar;
if (dxViewport.Width <= 0 || dxViewport.Height <= 0)
{
return false; // Nothing to render
}
bool viewportChanged = mForceSetViewport || memcmp(&actualViewport, &mCurViewport, sizeof(gl::Rectangle)) != 0 ||
actualZNear != mCurNear || actualZFar != mCurFar;
if (viewportChanged)
{
mDeviceContext->RSSetViewports(1, &dxViewport);
mCurViewport = actualViewport;
mCurNear = actualZNear;
mCurFar = actualZFar;
}
if (currentProgram && (viewportChanged || forceSetUniforms))
{
GLint halfPixelSize = currentProgram->getDxHalfPixelSizeLocation();
GLfloat xy[2] = { 0.0f, 0.0f };
currentProgram->setUniform2fv(halfPixelSize, 1, xy);
// These values are used for computing gl_FragCoord in Program::linkVaryings().
GLint coord = currentProgram->getDxCoordLocation();
GLfloat whxy[4] = { actualViewport.width * 0.5f,
actualViewport.height * 0.5f,
actualViewport.x + (actualViewport.width * 0.5f),
actualViewport.y + (actualViewport.height * 0.5f) };
currentProgram->setUniform4fv(coord, 1, whxy);
GLint depth = currentProgram->getDxDepthLocation();
GLfloat dz[2] = { (actualZFar - actualZNear) * 0.5f, (actualZNear + actualZFar) * 0.5f };
currentProgram->setUniform2fv(depth, 1, dz);
GLint depthRange = currentProgram->getDxDepthRangeLocation();
GLfloat nearFarDiff[3] = { actualZNear, actualZFar, actualZFar - actualZNear };
currentProgram->setUniform3fv(depthRange, 1, nearFarDiff);
}
mForceSetViewport = false;
return true;
}
bool Renderer11::applyPrimitiveType(GLenum mode, GLsizei count)
{
D3D11_PRIMITIVE_TOPOLOGY primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_UNDEFINED;
switch (mode)
{
case GL_POINTS: primitiveTopology = D3D11_PRIMITIVE_TOPOLOGY_POINTLIST; break;
case GL_LINES: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_LINELIST; break;
case GL_LINE_LOOP: UNIMPLEMENTED(); /* TODO */ break;
case GL_LINE_STRIP: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_LINESTRIP; break;
case GL_TRIANGLES: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST; break;
case GL_TRIANGLE_STRIP: primitiveTopology = D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP; break;
case GL_TRIANGLE_FAN: UNIMPLEMENTED(); /* TODO */ break;
default:
return error(GL_INVALID_ENUM, false);
}
mDeviceContext->IASetPrimitiveTopology(primitiveTopology);
return count > 0;
}
bool Renderer11::applyRenderTarget(gl::Framebuffer *framebuffer)
{
// Get the color render buffer and serial
gl::Renderbuffer *renderbufferObject = NULL;
unsigned int renderTargetSerial = 0;
if (framebuffer->getColorbufferType() != GL_NONE)
{
renderbufferObject = framebuffer->getColorbuffer();
if (!renderbufferObject)
{
ERR("render target pointer unexpectedly null.");
return false;
}
renderTargetSerial = renderbufferObject->getSerial();
}
// Get the depth stencil render buffer and serials
gl::Renderbuffer *depthStencil = NULL;
unsigned int depthbufferSerial = 0;
unsigned int stencilbufferSerial = 0;
if (framebuffer->getDepthbufferType() != GL_NONE)
{
depthStencil = framebuffer->getDepthbuffer();
if (!depthStencil)
{
ERR("Depth stencil pointer unexpectedly null.");
return false;
}
depthbufferSerial = depthStencil->getSerial();
}
else if (framebuffer->getStencilbufferType() != GL_NONE)
{
depthStencil = framebuffer->getStencilbuffer();
if (!depthStencil)
{
ERR("Depth stencil pointer unexpectedly null.");
return false;
}
stencilbufferSerial = depthStencil->getSerial();
}
// Extract the render target dimensions and view
unsigned int renderTargetWidth = 0;
unsigned int renderTargetHeight = 0;
GLenum renderTargetFormat = 0;
ID3D11RenderTargetView* framebufferRTV = NULL;
if (renderbufferObject)
{
RenderTarget11 *renderTarget = RenderTarget11::makeRenderTarget11(renderbufferObject->getRenderTarget());
if (!renderTarget)
{
ERR("render target pointer unexpectedly null.");
return false;
}
framebufferRTV = renderTarget->getRenderTargetView();
if (!framebufferRTV)
{
ERR("render target view pointer unexpectedly null.");
return false;
}
renderTargetWidth = renderbufferObject->getWidth();
renderTargetHeight = renderbufferObject->getHeight();
renderTargetFormat = renderbufferObject->getActualFormat();
}
// Extract the depth stencil sizes and view
unsigned int depthSize = 0;
unsigned int stencilSize = 0;
ID3D11DepthStencilView* framebufferDSV = NULL;
if (depthStencil)
{
RenderTarget11 *depthStencilRenderTarget = RenderTarget11::makeRenderTarget11(depthStencil->getDepthStencil());
if (!depthStencilRenderTarget)
{
ERR("render target pointer unexpectedly null.");
if (framebufferRTV)
{
framebufferRTV->Release();
}
return false;
}
framebufferDSV = depthStencilRenderTarget->getDepthStencilView();
if (!framebufferDSV)
{
ERR("depth stencil view pointer unexpectedly null.");
if (framebufferRTV)
{
framebufferRTV->Release();
}
return false;
}
// If there is no render buffer, the width, height and format values come from
// the depth stencil
if (!renderbufferObject)
{
renderTargetWidth = depthStencil->getWidth();
renderTargetHeight = depthStencil->getHeight();
renderTargetFormat = depthStencil->getActualFormat();
}
depthSize = depthStencil->getDepthSize();
stencilSize = depthStencil->getStencilSize();
}
// Apply the render target and depth stencil
if (!mRenderTargetDescInitialized || !mDepthStencilInitialized ||
renderTargetSerial != mAppliedRenderTargetSerial ||
depthbufferSerial != mAppliedDepthbufferSerial ||
stencilbufferSerial != mAppliedStencilbufferSerial)
{
mDeviceContext->OMSetRenderTargets(1, &framebufferRTV, framebufferDSV);
mRenderTargetDesc.width = renderTargetWidth;
mRenderTargetDesc.height = renderTargetHeight;
mRenderTargetDesc.format = renderTargetFormat;
mForceSetViewport = true; // TODO: It may not be required to clamp the viewport in D3D11
mForceSetScissor = true; // TODO: It may not be required to clamp the scissor in D3D11
if (!mDepthStencilInitialized || depthSize != mCurDepthSize)
{
mCurDepthSize = depthSize;
mForceSetRasterState = true;
}
mCurStencilSize = stencilSize;
mAppliedRenderTargetSerial = renderTargetSerial;
mAppliedDepthbufferSerial = depthbufferSerial;
mAppliedStencilbufferSerial = stencilbufferSerial;
mRenderTargetDescInitialized = true;
mDepthStencilInitialized = true;
}
if (framebufferRTV)
{
framebufferRTV->Release();
}
if (framebufferDSV)
{
framebufferDSV->Release();
}
return true;
}
GLenum Renderer11::applyVertexBuffer(gl::ProgramBinary *programBinary, gl::VertexAttribute vertexAttributes[], GLint first, GLsizei count, GLsizei instances)
{
// TODO: Create/update vertex buffers for arbitrary GL attributes
ASSERT(vertexAttributes[0].mBoundBuffer.get() == 0); // UNIMPLEMENTED();
UINT stride = vertexAttributes[0].mStride != 0 ? vertexAttributes[0].mStride : vertexAttributes[0].typeSize();
UINT size = stride * count;
D3D11_BUFFER_DESC vertexBufferDescription = {0};
vertexBufferDescription.ByteWidth = size;
vertexBufferDescription.Usage = D3D11_USAGE_DYNAMIC;
vertexBufferDescription.BindFlags = D3D11_BIND_VERTEX_BUFFER;
vertexBufferDescription.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
vertexBufferDescription.MiscFlags = 0;
vertexBufferDescription.StructureByteStride = 0;
ID3D11Buffer *vertexBuffer = NULL;
HRESULT result = mDevice->CreateBuffer(&vertexBufferDescription, NULL, &vertexBuffer);
ASSERT(SUCCEEDED(result));
D3D11_MAPPED_SUBRESOURCE map;
result = mDeviceContext->Map(vertexBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &map);
ASSERT(SUCCEEDED(result));
memcpy(map.pData, vertexAttributes[0].mPointer, size);
mDeviceContext->Unmap(vertexBuffer, 0);
UINT offset = 0;
mDeviceContext->IASetVertexBuffers(0, 1, &vertexBuffer, &stride, &offset);
vertexBuffer->Release();
// TODO: Build the input layout from the (translated) attribute information
D3D11_INPUT_ELEMENT_DESC inputElementDescriptions[1] =
{
{"TEXCOORD", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0}
};
ShaderExecutable *vertexExecutable = programBinary->getVertexExecutable();
ID3D11InputLayout *inputLayout = NULL;
result = mDevice->CreateInputLayout(inputElementDescriptions, 1, vertexExecutable->getFunction(), vertexExecutable->getLength(), &inputLayout);
ASSERT(SUCCEEDED(result));
mDeviceContext->IASetInputLayout(inputLayout);
inputLayout->Release(); // TODO: Build a cache of input layouts
return GL_NO_ERROR;
}
GLenum Renderer11::applyIndexBuffer(const GLvoid *indices, gl::Buffer *elementArrayBuffer, GLsizei count, GLenum mode, GLenum type, gl::TranslatedIndexData *indexInfo)
{
// TODO
UNIMPLEMENTED();
return GL_OUT_OF_MEMORY;
}
void Renderer11::drawArrays(GLenum mode, GLsizei count, GLsizei instances)
{
// TODO
UNIMPLEMENTED();
}
void Renderer11::drawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, gl::Buffer *elementArrayBuffer, const gl::TranslatedIndexData &indexInfo)
{
// TODO
UNIMPLEMENTED();
}
void Renderer11::applyShaders(gl::ProgramBinary *programBinary)
{
// TODO
UNIMPLEMENTED();
}
void Renderer11::clear(const gl::ClearParameters &clearParams, gl::Framebuffer *frameBuffer)
{
if (clearParams.mask & GL_COLOR_BUFFER_BIT)
{
gl::Renderbuffer *renderbufferObject = frameBuffer->getColorbuffer();
if (renderbufferObject)
{
RenderTarget11 *renderTarget = RenderTarget11::makeRenderTarget11(renderbufferObject->getRenderTarget());
if (!renderTarget)
{
ERR("render target pointer unexpectedly null.");
return;
}
ID3D11RenderTargetView *framebufferRTV = renderTarget->getRenderTargetView();
if (!framebufferRTV)
{
ERR("render target view pointer unexpectedly null.");
return;
}
if (mCurScissor.x > 0 || mCurScissor.y > 0 ||
mCurScissor.x + mCurScissor.width < renderTarget->getWidth() ||
mCurScissor.y + mCurScissor.height < renderTarget->getHeight())
{
// TODO: clearing of subregion of render target
UNIMPLEMENTED();
}
bool alphaUnmasked = (gl::GetAlphaSize(mRenderTargetDesc.format) == 0) || clearParams.colorMaskAlpha;
const bool needMaskedColorClear = (clearParams.mask & GL_COLOR_BUFFER_BIT) &&
!(clearParams.colorMaskRed && clearParams.colorMaskGreen &&
clearParams.colorMaskBlue && alphaUnmasked);
if (needMaskedColorClear)
{
// TODO: masked color clearing
UNIMPLEMENTED();
}
else
{
const float clearValues[4] = { clearParams.colorClearValue.red,
clearParams.colorClearValue.green,
clearParams.colorClearValue.blue,
clearParams.colorClearValue.alpha };
mDeviceContext->ClearRenderTargetView(framebufferRTV, clearValues);
}
framebufferRTV->Release();
}
}
if (clearParams.mask & GL_DEPTH_BUFFER_BIT || clearParams.mask & GL_STENCIL_BUFFER_BIT)
{
gl::Renderbuffer *renderbufferObject = frameBuffer->getDepthOrStencilbuffer();
if (renderbufferObject)
{
RenderTarget11 *renderTarget = RenderTarget11::makeRenderTarget11(renderbufferObject->getRenderTarget());
if (!renderTarget)
{
ERR("render target pointer unexpectedly null.");
return;
}
ID3D11DepthStencilView *framebufferDSV = renderTarget->getDepthStencilView();
if (!framebufferDSV)
{
ERR("depth stencil view pointer unexpectedly null.");
return;
}
if (mCurScissor.x > 0 || mCurScissor.y > 0 ||
mCurScissor.x + mCurScissor.width < renderTarget->getWidth() ||
mCurScissor.y + mCurScissor.height < renderTarget->getHeight())
{
// TODO: clearing of subregion of depth stencil view
UNIMPLEMENTED();
}
unsigned int stencilUnmasked = 0x0;
if ((clearParams.mask & GL_STENCIL_BUFFER_BIT) && frameBuffer->hasStencil())
{
unsigned int stencilSize = gl::GetStencilSize(frameBuffer->getStencilbuffer()->getActualFormat());
stencilUnmasked = (0x1 << stencilSize) - 1;
}
const bool needMaskedStencilClear = (clearParams.mask & GL_STENCIL_BUFFER_BIT) &&
(clearParams.stencilWriteMask & stencilUnmasked) != stencilUnmasked;
if (needMaskedStencilClear)
{
// TODO: masked clearing of depth stencil
UNIMPLEMENTED();
}
else
{
UINT clearFlags = 0;
if (clearParams.mask & GL_DEPTH_BUFFER_BIT)
{
clearFlags |= D3D11_CLEAR_DEPTH;
}
if (clearParams.mask & GL_STENCIL_BUFFER_BIT)
{
clearFlags |= D3D11_CLEAR_STENCIL;
}
float depthClear = clearParams.depthClearValue;
UINT8 stencilClear = clearParams.stencilClearValue & 0x000000FF;
mDeviceContext->ClearDepthStencilView(framebufferDSV, clearFlags, depthClear, stencilClear);
}
framebufferDSV->Release();
}
}
}
void Renderer11::markAllStateDirty()
{
mDepthStencilInitialized = false;
mRenderTargetDescInitialized = false;
mForceSetBlendState = true;
mForceSetRasterState = true;
mForceSetDepthStencilState = true;
mForceSetScissor = true;
mForceSetViewport = true;
}
void Renderer11::releaseDeviceResources()
{
// TODO
// UNIMPLEMENTED();
mStateCache.clear();
}
void Renderer11::markDeviceLost()
{
mDeviceLost = true;
}
bool Renderer11::isDeviceLost()
{
return mDeviceLost;
}
// set notify to true to broadcast a message to all contexts of the device loss
bool Renderer11::testDeviceLost(bool notify)
{
bool isLost = false;
// TODO
//UNIMPLEMENTED();
if (isLost)
{
// ensure we note the device loss --
// we'll probably get this done again by markDeviceLost
// but best to remember it!
// Note that we don't want to clear the device loss status here
// -- this needs to be done by resetDevice
mDeviceLost = true;
if (notify)
{
mDisplay->notifyDeviceLost();
}
}
return isLost;
}
bool Renderer11::testDeviceResettable()
{
HRESULT status = D3D_OK;
// TODO
UNIMPLEMENTED();
switch (status)
{
case D3DERR_DEVICENOTRESET:
case D3DERR_DEVICEHUNG:
return true;
default:
return false;
}
}
bool Renderer11::resetDevice()
{
releaseDeviceResources();
// TODO
UNIMPLEMENTED();
// reset device defaults
initializeDevice();
mDeviceLost = false;
return true;
}
DWORD Renderer11::getAdapterVendor() const
{
return mAdapterDescription.VendorId;
}
const char *Renderer11::getAdapterDescription() const
{
return mDescription;
}
GUID Renderer11::getAdapterIdentifier() const
{
// TODO
// UNIMPLEMENTED();
GUID foo = {0};
return foo;
}
bool Renderer11::getDXT1TextureSupport()
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getDXT3TextureSupport()
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getDXT5TextureSupport()
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getDepthTextureSupport() const
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getFloat32TextureSupport(bool *filtering, bool *renderable)
{
// TODO
// UNIMPLEMENTED();
*filtering = false;
*renderable = false;
return false;
}
bool Renderer11::getFloat16TextureSupport(bool *filtering, bool *renderable)
{
// TODO
// UNIMPLEMENTED();
*filtering = false;
*renderable = false;
return false;
}
bool Renderer11::getLuminanceTextureSupport()
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getLuminanceAlphaTextureSupport()
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getTextureFilterAnisotropySupport() const
{
// TODO
// UNIMPLEMENTED();
return false;
}
float Renderer11::getTextureMaxAnisotropy() const
{
// TODO
// UNIMPLEMENTED();
return 1.0f;
}
bool Renderer11::getEventQuerySupport()
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getVertexTextureSupport() const
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getNonPower2TextureSupport() const
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getOcclusionQuerySupport() const
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getInstancingSupport() const
{
// TODO
// UNIMPLEMENTED();
return false;
}
bool Renderer11::getShareHandleSupport() const
{
// TODO
// UNIMPLEMENTED();
// PIX doesn't seem to support using share handles, so disable them.
return false && !gl::perfActive();
}
int Renderer11::getMajorShaderModel() const
{
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0: return D3D11_SHADER_MAJOR_VERSION; // 5
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0: return D3D10_SHADER_MAJOR_VERSION; // 4
default: UNREACHABLE(); return 0;
}
}
float Renderer11::getMaxPointSize() const
{
// TODO
// UNIMPLEMENTED();
return 1.0f;
}
int Renderer11::getMaxTextureWidth() const
{
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0: return D3D11_REQ_TEXTURE2D_U_OR_V_DIMENSION; // 16384
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0: return D3D10_REQ_TEXTURE2D_U_OR_V_DIMENSION; // 8192
default: UNREACHABLE(); return 0;
}
}
int Renderer11::getMaxTextureHeight() const
{
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0: return D3D11_REQ_TEXTURE2D_U_OR_V_DIMENSION; // 16384
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0: return D3D10_REQ_TEXTURE2D_U_OR_V_DIMENSION; // 8192
default: UNREACHABLE(); return 0;
}
}
bool Renderer11::get32BitIndexSupport() const
{
switch (mFeatureLevel)
{
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0: return D3D10_REQ_DRAWINDEXED_INDEX_COUNT_2_TO_EXP >= 32; // true
default: UNREACHABLE(); return false;
}
}
int Renderer11::getMinSwapInterval() const
{
return 0;
}
int Renderer11::getMaxSwapInterval() const
{
return 4;
}
int Renderer11::getMaxSupportedSamples() const
{
// TODO
// UNIMPLEMENTED();
return 1;
}
bool Renderer11::copyToRenderTarget(TextureStorage2D *dest, TextureStorage2D *source)
{
// TODO
UNIMPLEMENTED();
return false;
}
bool Renderer11::copyToRenderTarget(TextureStorageCubeMap *dest, TextureStorageCubeMap *source)
{
// TODO
UNIMPLEMENTED();
return false;
}
bool Renderer11::copyImage(gl::Framebuffer *framebuffer, const RECT &sourceRect, GLenum destFormat,
GLint xoffset, GLint yoffset, TextureStorage2D *storage, GLint level)
{
// TODO
UNIMPLEMENTED();
return false;
}
bool Renderer11::copyImage(gl::Framebuffer *framebuffer, const RECT &sourceRect, GLenum destFormat,
GLint xoffset, GLint yoffset, TextureStorageCubeMap *storage, GLenum target, GLint level)
{
// TODO
UNIMPLEMENTED();
return false;
}
RenderTarget *Renderer11::createRenderTarget(SwapChain *swapChain, bool depth)
{
SwapChain11 *swapChain11 = SwapChain11::makeSwapChain11(swapChain);
RenderTarget11 *renderTarget = NULL;
if (depth)
{
renderTarget = new RenderTarget11(this, swapChain11->getDepthStencil(), swapChain11->getWidth(), swapChain11->getHeight());
}
else
{
renderTarget = new RenderTarget11(this, swapChain11->getRenderTarget(), swapChain11->getWidth(), swapChain11->getHeight());
}
return renderTarget;
}
RenderTarget *Renderer11::createRenderTarget(int width, int height, GLenum format, GLsizei samples, bool depth)
{
// TODO
UNIMPLEMENTED();
return NULL;
}
ShaderExecutable *Renderer11::loadExecutable(const void *function, size_t length, GLenum type, void *data)
{
ShaderExecutable11 *executable = NULL;
switch (type)
{
case GL_VERTEX_SHADER:
{
ID3D11VertexShader *vshader = NULL;
HRESULT result = mDevice->CreateVertexShader(function, length, NULL, &vshader);
ASSERT(SUCCEEDED(result));
if (vshader)
{
executable = new ShaderExecutable11(function, length, vshader);
}
}
break;
case GL_FRAGMENT_SHADER:
{
ID3D11PixelShader *pshader = NULL;
HRESULT result = mDevice->CreatePixelShader(function, length, NULL, &pshader);
ASSERT(SUCCEEDED(result));
if (pshader)
{
executable = new ShaderExecutable11(function, length, pshader);
}
}
break;
default:
UNREACHABLE();
break;
}
return executable;
}
ShaderExecutable *Renderer11::compileToExecutable(gl::InfoLog &infoLog, const char *shaderHLSL, GLenum type)
{
const char *profile = NULL;
switch (type)
{
case GL_VERTEX_SHADER:
profile = "vs_4_0";
break;
case GL_FRAGMENT_SHADER:
profile = "ps_4_0";
break;
default:
UNREACHABLE();
return NULL;
}
ID3DBlob *binary = compileToBinary(infoLog, shaderHLSL, profile);
if (!binary)
return NULL;
ShaderExecutable *executable = loadExecutable((DWORD *)binary->GetBufferPointer(), binary->GetBufferSize(), type, NULL);
binary->Release();
return executable;
}
// Compiles the HLSL code of the attached shaders into executable binaries
ID3DBlob *Renderer11::compileToBinary(gl::InfoLog &infoLog, const char *hlsl, const char *profile)
{
if (!hlsl)
{
return NULL;
}
HRESULT result = S_OK;
UINT flags = 0;
std::string sourceText;
if (gl::perfActive())
{
flags |= D3DCOMPILE_DEBUG;
#ifdef NDEBUG
flags |= ANGLE_COMPILE_OPTIMIZATION_LEVEL;
#else
flags |= D3DCOMPILE_SKIP_OPTIMIZATION;
#endif
std::string sourcePath = getTempPath();
sourceText = std::string("#line 2 \"") + sourcePath + std::string("\"\n\n") + std::string(hlsl);
writeFile(sourcePath.c_str(), sourceText.c_str(), sourceText.size());
}
else
{
flags |= ANGLE_COMPILE_OPTIMIZATION_LEVEL;
sourceText = hlsl;
}
// Sometimes D3DCompile will fail with the default compilation flags for complicated shaders when it would otherwise pass with alternative options.
// Try the default flags first and if compilation fails, try some alternatives.
const static UINT extraFlags[] =
{
0,
// D3DCOMPILE_AVOID_FLOW_CONTROL,
// D3DCOMPILE_PREFER_FLOW_CONTROL
};
const static char * const extraFlagNames[] =
{
"default",
"avoid flow control",
"prefer flow control"
};
for (int i = 0; i < sizeof(extraFlags) / sizeof(UINT); ++i)
{
ID3DBlob *errorMessage = NULL;
ID3DBlob *binary = NULL;
result = mD3DCompileFunc(hlsl, strlen(hlsl), gl::g_fakepath, NULL, NULL,
"main", profile, flags | extraFlags[i], 0, &binary, &errorMessage);
if (errorMessage)
{
const char *message = (const char*)errorMessage->GetBufferPointer();
infoLog.appendSanitized(message);
TRACE("\n%s", hlsl);
TRACE("\n%s", message);
errorMessage->Release();
errorMessage = NULL;
}
if (SUCCEEDED(result))
{
return binary;
}
else
{
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
return error(GL_OUT_OF_MEMORY, (ID3DBlob*) NULL);
}
infoLog.append("Warning: D3D shader compilation failed with ");
infoLog.append(extraFlagNames[i]);
infoLog.append(" flags.");
if (i + 1 < sizeof(extraFlagNames) / sizeof(char*))
{
infoLog.append(" Retrying with ");
infoLog.append(extraFlagNames[i + 1]);
infoLog.append(".\n");
}
}
}
return NULL;
}
bool Renderer11::blitRect(gl::Framebuffer *readTarget, gl::Rectangle *readRect, gl::Framebuffer *drawTarget, gl::Rectangle *drawRect,
bool blitRenderTarget, bool blitDepthStencil)
{
// TODO
UNIMPLEMENTED();
return false;
}
void Renderer11::readPixels(gl::Framebuffer *framebuffer, GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type,
GLsizei outputPitch, bool packReverseRowOrder, GLint packAlignment, void* pixels)
{
// TODO
UNIMPLEMENTED();
return;
}
}