blob: e29b449d83e164b950c23955cc32ab305632801a [file] [log] [blame]
//
// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Program.cpp: Implements the gl::Program class. Implements GL program objects
// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
#include "libGLESv2/BinaryStream.h"
#include "libGLESv2/ProgramBinary.h"
#include "common/debug.h"
#include "common/version.h"
#include "libGLESv2/main.h"
#include "libGLESv2/Shader.h"
#include <string>
#undef near
#undef far
namespace gl
{
std::string str(int i)
{
char buffer[20];
snprintf(buffer, sizeof(buffer), "%d", i);
return buffer;
}
UniformLocation::UniformLocation(const std::string &name, unsigned int element, unsigned int index)
: name(name), element(element), index(index)
{
}
unsigned int ProgramBinary::mCurrentSerial = 1;
ProgramBinary::ProgramBinary(rx::Renderer *renderer) : mRenderer(renderer), RefCountObject(0), mSerial(issueSerial())
{
mPixelExecutable = NULL;
mVertexExecutable = NULL;
mValidated = false;
for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
{
mSemanticIndex[index] = -1;
}
for (int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++)
{
mSamplersPS[index].active = false;
}
for (int index = 0; index < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF; index++)
{
mSamplersVS[index].active = false;
}
mUsedVertexSamplerRange = 0;
mUsedPixelSamplerRange = 0;
}
ProgramBinary::~ProgramBinary()
{
delete mPixelExecutable;
delete mVertexExecutable;
while (!mUniforms.empty())
{
delete mUniforms.back();
mUniforms.pop_back();
}
}
unsigned int ProgramBinary::getSerial() const
{
return mSerial;
}
unsigned int ProgramBinary::issueSerial()
{
return mCurrentSerial++;
}
rx::ShaderExecutable *ProgramBinary::getPixelExecutable()
{
return mPixelExecutable;
}
rx::ShaderExecutable *ProgramBinary::getVertexExecutable()
{
return mVertexExecutable;
}
GLuint ProgramBinary::getAttributeLocation(const char *name)
{
if (name)
{
for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
{
if (mLinkedAttribute[index].name == std::string(name))
{
return index;
}
}
}
return -1;
}
int ProgramBinary::getSemanticIndex(int attributeIndex)
{
ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS);
return mSemanticIndex[attributeIndex];
}
// Returns one more than the highest sampler index used.
GLint ProgramBinary::getUsedSamplerRange(SamplerType type)
{
switch (type)
{
case SAMPLER_PIXEL:
return mUsedPixelSamplerRange;
case SAMPLER_VERTEX:
return mUsedVertexSamplerRange;
default:
UNREACHABLE();
return 0;
}
}
bool ProgramBinary::usesPointSize() const
{
return mUsesPointSize;
}
// Returns the index of the texture image unit (0-19) corresponding to a Direct3D 9 sampler
// index (0-15 for the pixel shader and 0-3 for the vertex shader).
GLint ProgramBinary::getSamplerMapping(SamplerType type, unsigned int samplerIndex)
{
GLint logicalTextureUnit = -1;
switch (type)
{
case SAMPLER_PIXEL:
ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0]));
if (mSamplersPS[samplerIndex].active)
{
logicalTextureUnit = mSamplersPS[samplerIndex].logicalTextureUnit;
}
break;
case SAMPLER_VERTEX:
ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0]));
if (mSamplersVS[samplerIndex].active)
{
logicalTextureUnit = mSamplersVS[samplerIndex].logicalTextureUnit;
}
break;
default: UNREACHABLE();
}
if (logicalTextureUnit >= 0 && logicalTextureUnit < (GLint)getContext()->getMaximumCombinedTextureImageUnits())
{
return logicalTextureUnit;
}
return -1;
}
// Returns the texture type for a given Direct3D 9 sampler type and
// index (0-15 for the pixel shader and 0-3 for the vertex shader).
TextureType ProgramBinary::getSamplerTextureType(SamplerType type, unsigned int samplerIndex)
{
switch (type)
{
case SAMPLER_PIXEL:
ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0]));
ASSERT(mSamplersPS[samplerIndex].active);
return mSamplersPS[samplerIndex].textureType;
case SAMPLER_VERTEX:
ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0]));
ASSERT(mSamplersVS[samplerIndex].active);
return mSamplersVS[samplerIndex].textureType;
default: UNREACHABLE();
}
return TEXTURE_2D;
}
GLint ProgramBinary::getUniformLocation(std::string name)
{
unsigned int subscript = 0;
// Strip any trailing array operator and retrieve the subscript
size_t open = name.find_last_of('[');
size_t close = name.find_last_of(']');
if (open != std::string::npos && close == name.length() - 1)
{
subscript = atoi(name.substr(open + 1).c_str());
name.erase(open);
}
unsigned int numUniforms = mUniformIndex.size();
for (unsigned int location = 0; location < numUniforms; location++)
{
if (mUniformIndex[location].name == name &&
mUniformIndex[location].element == subscript)
{
return location;
}
}
return -1;
}
bool ProgramBinary::setUniform1fv(GLint location, GLsizei count, const GLfloat* v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_FLOAT)
{
int elementCount = targetUniform->elementCount();
if (elementCount == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
for (int i = 0; i < count; i++)
{
target[0] = v[0];
target[1] = 0;
target[2] = 0;
target[3] = 0;
target += 4;
v += 1;
}
}
else if (targetUniform->type == GL_BOOL)
{
int elementCount = targetUniform->elementCount();
if (elementCount == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element;
for (int i = 0; i < count; ++i)
{
if (v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
}
else
{
return false;
}
return true;
}
bool ProgramBinary::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_FLOAT_VEC2)
{
int elementCount = targetUniform->elementCount();
if (elementCount == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
for (int i = 0; i < count; i++)
{
target[0] = v[0];
target[1] = v[1];
target[2] = 0;
target[3] = 0;
target += 4;
v += 2;
}
}
else if (targetUniform->type == GL_BOOL_VEC2)
{
int elementCount = targetUniform->elementCount();
if (elementCount == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 2;
for (int i = 0; i < count * 2; ++i)
{
if (v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
}
else
{
return false;
}
return true;
}
bool ProgramBinary::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_FLOAT_VEC3)
{
int elementCount = targetUniform->elementCount();
if (elementCount == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
for (int i = 0; i < count; i++)
{
target[0] = v[0];
target[1] = v[1];
target[2] = v[2];
target[3] = 0;
target += 4;
v += 3;
}
}
else if (targetUniform->type == GL_BOOL_VEC3)
{
int elementCount = targetUniform->elementCount();
if (elementCount == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 3;
for (int i = 0; i < count * 3; ++i)
{
if (v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
}
else
{
return false;
}
return true;
}
bool ProgramBinary::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_FLOAT_VEC4)
{
int elementCount = targetUniform->elementCount();
if (elementCount == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 4,
v, 4 * sizeof(GLfloat) * count);
}
else if (targetUniform->type == GL_BOOL_VEC4)
{
int elementCount = targetUniform->elementCount();
if (elementCount == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 4;
for (int i = 0; i < count * 4; ++i)
{
if (v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
}
else
{
return false;
}
return true;
}
template<typename T, int targetWidth, int targetHeight, int srcWidth, int srcHeight>
void transposeMatrix(T *target, const GLfloat *value)
{
int copyWidth = std::min(targetWidth, srcWidth);
int copyHeight = std::min(targetHeight, srcHeight);
for (int x = 0; x < copyWidth; x++)
{
for (int y = 0; y < copyHeight; y++)
{
target[x * targetWidth + y] = (T)value[y * srcWidth + x];
}
}
// clear unfilled right side
for (int y = 0; y < copyHeight; y++)
{
for (int x = srcWidth; x < targetWidth; x++)
{
target[y * targetWidth + x] = (T)0;
}
}
// clear unfilled bottom.
for (int y = srcHeight; y < targetHeight; y++)
{
for (int x = 0; x < targetWidth; x++)
{
target[y * targetWidth + x] = (T)0;
}
}
}
bool ProgramBinary::setUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type != GL_FLOAT_MAT2)
{
return false;
}
int elementCount = targetUniform->elementCount();
if (elementCount == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8;
for (int i = 0; i < count; i++)
{
transposeMatrix<GLfloat,4,2,2,2>(target, value);
target += 8;
value += 4;
}
return true;
}
bool ProgramBinary::setUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type != GL_FLOAT_MAT3)
{
return false;
}
int elementCount = targetUniform->elementCount();
if (elementCount == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
GLfloat *target = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12;
for (int i = 0; i < count; i++)
{
transposeMatrix<GLfloat,4,3,3,3>(target, value);
target += 12;
value += 9;
}
return true;
}
bool ProgramBinary::setUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type != GL_FLOAT_MAT4)
{
return false;
}
int elementCount = targetUniform->elementCount();
if (elementCount == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
GLfloat *target = (GLfloat*)(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 16);
for (int i = 0; i < count; i++)
{
transposeMatrix<GLfloat,4,4,4,4>(target, value);
target += 16;
value += 16;
}
return true;
}
bool ProgramBinary::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_INT ||
targetUniform->type == GL_SAMPLER_2D ||
targetUniform->type == GL_SAMPLER_CUBE)
{
int elementCount = targetUniform->elementCount();
if (elementCount == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint),
v, sizeof(GLint) * count);
}
else if (targetUniform->type == GL_BOOL)
{
int elementCount = targetUniform->elementCount();
if (elementCount == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element;
for (int i = 0; i < count; ++i)
{
if (v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
}
else
{
return false;
}
return true;
}
bool ProgramBinary::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_INT_VEC2)
{
int elementCount = targetUniform->elementCount();
if (elementCount == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 2,
v, 2 * sizeof(GLint) * count);
}
else if (targetUniform->type == GL_BOOL_VEC2)
{
int elementCount = targetUniform->elementCount();
if (elementCount == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 2;
for (int i = 0; i < count * 2; ++i)
{
if (v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
}
else
{
return false;
}
return true;
}
bool ProgramBinary::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_INT_VEC3)
{
int elementCount = targetUniform->elementCount();
if (elementCount == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 3,
v, 3 * sizeof(GLint) * count);
}
else if (targetUniform->type == GL_BOOL_VEC3)
{
int elementCount = targetUniform->elementCount();
if (elementCount == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 3;
for (int i = 0; i < count * 3; ++i)
{
if (v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
}
else
{
return false;
}
return true;
}
bool ProgramBinary::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_INT_VEC4)
{
int elementCount = targetUniform->elementCount();
if (elementCount == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 4,
v, 4 * sizeof(GLint) * count);
}
else if (targetUniform->type == GL_BOOL_VEC4)
{
int elementCount = targetUniform->elementCount();
if (elementCount == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * 4;
for (int i = 0; i < count * 4; ++i)
{
if (v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
}
else
{
return false;
}
return true;
}
bool ProgramBinary::getUniformfv(GLint location, GLsizei *bufSize, GLfloat *params)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
// sized queries -- ensure the provided buffer is large enough
if (bufSize)
{
int requiredBytes = UniformExternalSize(targetUniform->type);
if (*bufSize < requiredBytes)
{
return false;
}
}
switch (targetUniform->type)
{
case GL_FLOAT_MAT2:
transposeMatrix<GLfloat,2,2,4,2>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8);
break;
case GL_FLOAT_MAT3:
transposeMatrix<GLfloat,3,3,4,3>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12);
break;
case GL_FLOAT_MAT4:
transposeMatrix<GLfloat,4,4,4,4>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16);
break;
default:
{
unsigned int count = UniformExternalComponentCount(targetUniform->type);
unsigned int internalCount = UniformInternalComponentCount(targetUniform->type);
switch (UniformComponentType(targetUniform->type))
{
case GL_BOOL:
{
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * internalCount;
for (unsigned int i = 0; i < count; ++i)
{
params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f;
}
}
break;
case GL_FLOAT:
memcpy(params, targetUniform->data + mUniformIndex[location].element * internalCount * sizeof(GLfloat),
count * sizeof(GLfloat));
break;
case GL_INT:
{
GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * internalCount;
for (unsigned int i = 0; i < count; ++i)
{
params[i] = (float)intParams[i];
}
}
break;
default: UNREACHABLE();
}
}
}
return true;
}
bool ProgramBinary::getUniformiv(GLint location, GLsizei *bufSize, GLint *params)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
// sized queries -- ensure the provided buffer is large enough
if (bufSize)
{
int requiredBytes = UniformExternalSize(targetUniform->type);
if (*bufSize < requiredBytes)
{
return false;
}
}
switch (targetUniform->type)
{
case GL_FLOAT_MAT2:
{
transposeMatrix<GLint,2,2,4,2>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 8);
}
break;
case GL_FLOAT_MAT3:
{
transposeMatrix<GLint,3,3,4,3>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 12);
}
break;
case GL_FLOAT_MAT4:
{
transposeMatrix<GLint,4,4,4,4>(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 16);
}
break;
default:
{
unsigned int count = UniformExternalComponentCount(targetUniform->type);
unsigned int internalCount = UniformInternalComponentCount(targetUniform->type);
switch (UniformComponentType(targetUniform->type))
{
case GL_BOOL:
{
GLboolean *boolParams = targetUniform->data + mUniformIndex[location].element * internalCount;
for (unsigned int i = 0; i < count; ++i)
{
params[i] = (GLint)boolParams[i];
}
}
break;
case GL_FLOAT:
{
GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * internalCount;
for (unsigned int i = 0; i < count; ++i)
{
params[i] = (GLint)floatParams[i];
}
}
break;
case GL_INT:
memcpy(params, targetUniform->data + mUniformIndex[location].element * internalCount * sizeof(GLint),
count * sizeof(GLint));
break;
default: UNREACHABLE();
}
}
}
return true;
}
void ProgramBinary::dirtyAllUniforms()
{
unsigned int numUniforms = mUniforms.size();
for (unsigned int index = 0; index < numUniforms; index++)
{
mUniforms[index]->dirty = true;
}
}
// Applies all the uniforms set for this program object to the renderer
void ProgramBinary::applyUniforms()
{
// Retrieve sampler uniform values
for (std::vector<Uniform*>::iterator ub = mUniforms.begin(), ue = mUniforms.end(); ub != ue; ++ub)
{
Uniform *targetUniform = *ub;
if (targetUniform->dirty)
{
if (targetUniform->type == GL_SAMPLER_2D ||
targetUniform->type == GL_SAMPLER_CUBE)
{
int count = targetUniform->elementCount();
GLint *v = (GLint*)targetUniform->data;
if (targetUniform->ps.registerCount)
{
ASSERT(targetUniform->ps.registerIndex >= 0);
unsigned int firstIndex = targetUniform->ps.registerIndex;
for (int i = 0; i < count; i++)
{
unsigned int samplerIndex = firstIndex + i;
if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
{
ASSERT(mSamplersPS[samplerIndex].active);
mSamplersPS[samplerIndex].logicalTextureUnit = v[i];
}
}
}
if (targetUniform->vs.registerCount)
{
ASSERT(targetUniform->vs.registerIndex >= 0);
unsigned int firstIndex = targetUniform->vs.registerIndex;
for (int i = 0; i < count; i++)
{
unsigned int samplerIndex = firstIndex + i;
if (samplerIndex < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF)
{
ASSERT(mSamplersVS[samplerIndex].active);
mSamplersVS[samplerIndex].logicalTextureUnit = v[i];
}
}
}
}
}
}
mRenderer->applyUniforms(&mUniforms, mVertexConstants, mPixelConstants);
}
// Packs varyings into generic varying registers, using the algorithm from [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111
// Returns the number of used varying registers, or -1 if unsuccesful
int ProgramBinary::packVaryings(InfoLog &infoLog, const Varying *packing[][4], FragmentShader *fragmentShader)
{
Context *context = getContext();
const int maxVaryingVectors = context->getMaximumVaryingVectors();
for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++)
{
int n = VariableRowCount(varying->type) * varying->size;
int m = VariableColumnCount(varying->type);
bool success = false;
if (m == 2 || m == 3 || m == 4)
{
for (int r = 0; r <= maxVaryingVectors - n && !success; r++)
{
bool available = true;
for (int y = 0; y < n && available; y++)
{
for (int x = 0; x < m && available; x++)
{
if (packing[r + y][x])
{
available = false;
}
}
}
if (available)
{
varying->reg = r;
varying->col = 0;
for (int y = 0; y < n; y++)
{
for (int x = 0; x < m; x++)
{
packing[r + y][x] = &*varying;
}
}
success = true;
}
}
if (!success && m == 2)
{
for (int r = maxVaryingVectors - n; r >= 0 && !success; r--)
{
bool available = true;
for (int y = 0; y < n && available; y++)
{
for (int x = 2; x < 4 && available; x++)
{
if (packing[r + y][x])
{
available = false;
}
}
}
if (available)
{
varying->reg = r;
varying->col = 2;
for (int y = 0; y < n; y++)
{
for (int x = 2; x < 4; x++)
{
packing[r + y][x] = &*varying;
}
}
success = true;
}
}
}
}
else if (m == 1)
{
int space[4] = {0};
for (int y = 0; y < maxVaryingVectors; y++)
{
for (int x = 0; x < 4; x++)
{
space[x] += packing[y][x] ? 0 : 1;
}
}
int column = 0;
for (int x = 0; x < 4; x++)
{
if (space[x] >= n && space[x] < space[column])
{
column = x;
}
}
if (space[column] >= n)
{
for (int r = 0; r < maxVaryingVectors; r++)
{
if (!packing[r][column])
{
varying->reg = r;
for (int y = r; y < r + n; y++)
{
packing[y][column] = &*varying;
}
break;
}
}
varying->col = column;
success = true;
}
}
else UNREACHABLE();
if (!success)
{
infoLog.append("Could not pack varying %s", varying->name.c_str());
return -1;
}
}
// Return the number of used registers
int registers = 0;
for (int r = 0; r < maxVaryingVectors; r++)
{
if (packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3])
{
registers++;
}
}
return registers;
}
bool ProgramBinary::linkVaryings(InfoLog &infoLog, std::string& pixelHLSL, std::string& vertexHLSL, FragmentShader *fragmentShader, VertexShader *vertexShader)
{
if (pixelHLSL.empty() || vertexHLSL.empty())
{
return false;
}
// Reset the varying register assignments
for (VaryingList::iterator fragVar = fragmentShader->mVaryings.begin(); fragVar != fragmentShader->mVaryings.end(); fragVar++)
{
fragVar->reg = -1;
fragVar->col = -1;
}
for (VaryingList::iterator vtxVar = vertexShader->mVaryings.begin(); vtxVar != vertexShader->mVaryings.end(); vtxVar++)
{
vtxVar->reg = -1;
vtxVar->col = -1;
}
// Map the varyings to the register file
const Varying *packing[MAX_VARYING_VECTORS_SM3][4] = {NULL};
int registers = packVaryings(infoLog, packing, fragmentShader);
if (registers < 0)
{
return false;
}
// Write the HLSL input/output declarations
const bool sm3 = (mRenderer->getMajorShaderModel() >= 3);
const bool sm4 = (mRenderer->getMajorShaderModel() >= 4);
Context *context = getContext();
const int maxVaryingVectors = context->getMaximumVaryingVectors();
if (registers == maxVaryingVectors && fragmentShader->mUsesFragCoord)
{
infoLog.append("No varying registers left to support gl_FragCoord");
return false;
}
for (VaryingList::iterator input = fragmentShader->mVaryings.begin(); input != fragmentShader->mVaryings.end(); input++)
{
bool matched = false;
for (VaryingList::iterator output = vertexShader->mVaryings.begin(); output != vertexShader->mVaryings.end(); output++)
{
if (output->name == input->name)
{
if (output->type != input->type || output->size != input->size)
{
infoLog.append("Type of vertex varying %s does not match that of the fragment varying", output->name.c_str());
return false;
}
output->reg = input->reg;
output->col = input->col;
matched = true;
break;
}
}
if (!matched)
{
infoLog.append("Fragment varying %s does not match any vertex varying", input->name.c_str());
return false;
}
}
mUsesPointSize = vertexShader->mUsesPointSize;
std::string varyingSemantic = (mUsesPointSize && sm3) ? "COLOR" : "TEXCOORD";
std::string targetSemantic = sm4 ? "SV_Target" : "COLOR";
std::string positionSemantic = sm4 ? "SV_POSITION" : "POSITION";
vertexHLSL += "struct VS_INPUT\n"
"{\n";
int semanticIndex = 0;
for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
{
switch (attribute->type)
{
case GL_FLOAT: vertexHLSL += " float "; break;
case GL_FLOAT_VEC2: vertexHLSL += " float2 "; break;
case GL_FLOAT_VEC3: vertexHLSL += " float3 "; break;
case GL_FLOAT_VEC4: vertexHLSL += " float4 "; break;
case GL_FLOAT_MAT2: vertexHLSL += " float2x2 "; break;
case GL_FLOAT_MAT3: vertexHLSL += " float3x3 "; break;
case GL_FLOAT_MAT4: vertexHLSL += " float4x4 "; break;
default: UNREACHABLE();
}
vertexHLSL += decorateAttribute(attribute->name) + " : TEXCOORD" + str(semanticIndex) + ";\n";
semanticIndex += VariableRowCount(attribute->type);
}
vertexHLSL += "};\n"
"\n"
"struct VS_OUTPUT\n"
"{\n";
for (int r = 0; r < registers; r++)
{
int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1));
vertexHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n";
}
if (fragmentShader->mUsesFragCoord)
{
vertexHLSL += " float4 gl_FragCoord : " + varyingSemantic + str(registers) + ";\n";
}
if (vertexShader->mUsesPointSize && sm3)
{
vertexHLSL += " float gl_PointSize : PSIZE;\n";
}
vertexHLSL += " float4 gl_Position : " + positionSemantic + ";\n"
"};\n"
"\n"
"VS_OUTPUT main(VS_INPUT input)\n"
"{\n";
for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
{
vertexHLSL += " " + decorateAttribute(attribute->name) + " = ";
if (VariableRowCount(attribute->type) > 1) // Matrix
{
vertexHLSL += "transpose";
}
vertexHLSL += "(input." + decorateAttribute(attribute->name) + ");\n";
}
vertexHLSL += "\n"
" gl_main();\n"
"\n"
" VS_OUTPUT output;\n"
" output.gl_Position.x = gl_Position.x - dx_HalfPixelSize.x * gl_Position.w;\n"
" output.gl_Position.y = -(gl_Position.y + dx_HalfPixelSize.y * gl_Position.w);\n"
" output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n"
" output.gl_Position.w = gl_Position.w;\n";
if (vertexShader->mUsesPointSize && sm3)
{
vertexHLSL += " output.gl_PointSize = gl_PointSize;\n";
}
if (fragmentShader->mUsesFragCoord)
{
vertexHLSL += " output.gl_FragCoord = gl_Position;\n";
}
for (VaryingList::iterator varying = vertexShader->mVaryings.begin(); varying != vertexShader->mVaryings.end(); varying++)
{
if (varying->reg >= 0)
{
for (int i = 0; i < varying->size; i++)
{
int rows = VariableRowCount(varying->type);
for (int j = 0; j < rows; j++)
{
int r = varying->reg + i * rows + j;
vertexHLSL += " output.v" + str(r);
bool sharedRegister = false; // Register used by multiple varyings
for (int x = 0; x < 4; x++)
{
if (packing[r][x] && packing[r][x] != packing[r][0])
{
sharedRegister = true;
break;
}
}
if(sharedRegister)
{
vertexHLSL += ".";
for (int x = 0; x < 4; x++)
{
if (packing[r][x] == &*varying)
{
switch(x)
{
case 0: vertexHLSL += "x"; break;
case 1: vertexHLSL += "y"; break;
case 2: vertexHLSL += "z"; break;
case 3: vertexHLSL += "w"; break;
}
}
}
}
vertexHLSL += " = " + varying->name;
if (varying->array)
{
vertexHLSL += "[" + str(i) + "]";
}
if (rows > 1)
{
vertexHLSL += "[" + str(j) + "]";
}
vertexHLSL += ";\n";
}
}
}
}
vertexHLSL += "\n"
" return output;\n"
"}\n";
pixelHLSL += "struct PS_INPUT\n"
"{\n";
for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++)
{
if (varying->reg >= 0)
{
for (int i = 0; i < varying->size; i++)
{
int rows = VariableRowCount(varying->type);
for (int j = 0; j < rows; j++)
{
std::string n = str(varying->reg + i * rows + j);
pixelHLSL += " float" + str(VariableColumnCount(varying->type)) + " v" + n + " : " + varyingSemantic + n + ";\n";
}
}
}
else UNREACHABLE();
}
if (fragmentShader->mUsesFragCoord)
{
pixelHLSL += " float4 gl_FragCoord : " + varyingSemantic + str(registers) + ";\n";
if (sm3) {
pixelHLSL += " float2 dx_VPos : VPOS;\n";
}
}
if (fragmentShader->mUsesPointCoord && sm3)
{
pixelHLSL += " float2 gl_PointCoord : TEXCOORD0;\n";
}
if (fragmentShader->mUsesFrontFacing)
{
pixelHLSL += " float vFace : VFACE;\n";
}
pixelHLSL += "};\n"
"\n"
"struct PS_OUTPUT\n"
"{\n"
" float4 gl_Color[1] : " + targetSemantic + ";\n"
"};\n"
"\n"
"PS_OUTPUT main(PS_INPUT input)\n"
"{\n";
if (fragmentShader->mUsesFragCoord)
{
pixelHLSL += " float rhw = 1.0 / input.gl_FragCoord.w;\n";
if (sm3)
{
pixelHLSL += " gl_FragCoord.x = input.dx_VPos.x + 0.5;\n"
" gl_FragCoord.y = input.dx_VPos.y + 0.5;\n";
}
else
{
// dx_Coord contains the viewport width/2, height/2, center.x and center.y. See Context::applyRenderTarget()
pixelHLSL += " gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * dx_Coord.x + dx_Coord.z;\n"
" gl_FragCoord.y = (input.gl_FragCoord.y * rhw) * dx_Coord.y + dx_Coord.w;\n";
}
pixelHLSL += " gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_DepthFront.x + dx_DepthFront.y;\n"
" gl_FragCoord.w = rhw;\n";
}
if (fragmentShader->mUsesPointCoord && sm3)
{
pixelHLSL += " gl_PointCoord.x = input.gl_PointCoord.x;\n";
pixelHLSL += " gl_PointCoord.y = 1.0 - input.gl_PointCoord.y;\n";
}
if (fragmentShader->mUsesFrontFacing)
{
pixelHLSL += " gl_FrontFacing = (input.vFace * dx_DepthFront.z >= 0.0);\n";
}
for (VaryingList::iterator varying = fragmentShader->mVaryings.begin(); varying != fragmentShader->mVaryings.end(); varying++)
{
if (varying->reg >= 0)
{
for (int i = 0; i < varying->size; i++)
{
int rows = VariableRowCount(varying->type);
for (int j = 0; j < rows; j++)
{
std::string n = str(varying->reg + i * rows + j);
pixelHLSL += " " + varying->name;
if (varying->array)
{
pixelHLSL += "[" + str(i) + "]";
}
if (rows > 1)
{
pixelHLSL += "[" + str(j) + "]";
}
switch (VariableColumnCount(varying->type))
{
case 1: pixelHLSL += " = input.v" + n + ".x;\n"; break;
case 2: pixelHLSL += " = input.v" + n + ".xy;\n"; break;
case 3: pixelHLSL += " = input.v" + n + ".xyz;\n"; break;
case 4: pixelHLSL += " = input.v" + n + ";\n"; break;
default: UNREACHABLE();
}
}
}
}
else UNREACHABLE();
}
pixelHLSL += "\n"
" gl_main();\n"
"\n"
" PS_OUTPUT output;\n"
" output.gl_Color[0] = gl_Color[0];\n"
"\n"
" return output;\n"
"}\n";
return true;
}
bool ProgramBinary::load(InfoLog &infoLog, const void *binary, GLsizei length)
{
BinaryInputStream stream(binary, length);
int format = 0;
stream.read(&format);
if (format != GL_PROGRAM_BINARY_ANGLE)
{
infoLog.append("Invalid program binary format.");
return false;
}
int version = 0;
stream.read(&version);
if (version != VERSION_DWORD)
{
infoLog.append("Invalid program binary version.");
return false;
}
for (int i = 0; i < MAX_VERTEX_ATTRIBS; ++i)
{
stream.read(&mLinkedAttribute[i].type);
std::string name;
stream.read(&name);
mLinkedAttribute[i].name = name;
stream.read(&mSemanticIndex[i]);
}
for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i)
{
stream.read(&mSamplersPS[i].active);
stream.read(&mSamplersPS[i].logicalTextureUnit);
int textureType;
stream.read(&textureType);
mSamplersPS[i].textureType = (TextureType) textureType;
}
for (unsigned int i = 0; i < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF; ++i)
{
stream.read(&mSamplersVS[i].active);
stream.read(&mSamplersVS[i].logicalTextureUnit);
int textureType;
stream.read(&textureType);
mSamplersVS[i].textureType = (TextureType) textureType;
}
stream.read(&mUsedVertexSamplerRange);
stream.read(&mUsedPixelSamplerRange);
stream.read(&mUsesPointSize);
unsigned int size;
stream.read(&size);
if (stream.error())
{
infoLog.append("Invalid program binary.");
return false;
}
mUniforms.resize(size);
for (unsigned int i = 0; i < size; ++i)
{
GLenum type;
std::string name;
unsigned int arraySize;
stream.read(&type);
stream.read(&name);
stream.read(&arraySize);
mUniforms[i] = new Uniform(type, name, arraySize);
stream.read(&mUniforms[i]->ps.registerIndex);
stream.read(&mUniforms[i]->ps.registerCount);
stream.read(&mUniforms[i]->vs.registerIndex);
stream.read(&mUniforms[i]->vs.registerCount);
}
stream.read(&size);
if (stream.error())
{
infoLog.append("Invalid program binary.");
return false;
}
mUniformIndex.resize(size);
for (unsigned int i = 0; i < size; ++i)
{
stream.read(&mUniformIndex[i].name);
stream.read(&mUniformIndex[i].element);
stream.read(&mUniformIndex[i].index);
}
unsigned int pixelShaderSize;
stream.read(&pixelShaderSize);
unsigned int vertexShaderSize;
stream.read(&vertexShaderSize);
const char *ptr = (const char*) binary + stream.offset();
const GUID *binaryIdentifier = (const GUID *) ptr;
ptr += sizeof(GUID);
GUID identifier = mRenderer->getAdapterIdentifier();
if (memcmp(&identifier, binaryIdentifier, sizeof(GUID)) != 0)
{
infoLog.append("Invalid program binary.");
return false;
}
const char *pixelShaderFunction = ptr;
ptr += pixelShaderSize;
const char *vertexShaderFunction = ptr;
ptr += vertexShaderSize;
mPixelExecutable = mRenderer->loadExecutable(reinterpret_cast<const DWORD*>(pixelShaderFunction),
pixelShaderSize, GL_FRAGMENT_SHADER);
if (!mPixelExecutable)
{
infoLog.append("Could not create pixel shader.");
return false;
}
mVertexExecutable = mRenderer->loadExecutable(reinterpret_cast<const DWORD*>(vertexShaderFunction),
vertexShaderSize, GL_VERTEX_SHADER);
if (!mVertexExecutable)
{
infoLog.append("Could not create vertex shader.");
delete mPixelExecutable;
mPixelExecutable = NULL;
return false;
}
return true;
}
bool ProgramBinary::save(void* binary, GLsizei bufSize, GLsizei *length)
{
BinaryOutputStream stream;
stream.write(GL_PROGRAM_BINARY_ANGLE);
stream.write(VERSION_DWORD);
for (unsigned int i = 0; i < MAX_VERTEX_ATTRIBS; ++i)
{
stream.write(mLinkedAttribute[i].type);
stream.write(mLinkedAttribute[i].name);
stream.write(mSemanticIndex[i]);
}
for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i)
{
stream.write(mSamplersPS[i].active);
stream.write(mSamplersPS[i].logicalTextureUnit);
stream.write((int) mSamplersPS[i].textureType);
}
for (unsigned int i = 0; i < MAX_VERTEX_TEXTURE_IMAGE_UNITS_VTF; ++i)
{
stream.write(mSamplersVS[i].active);
stream.write(mSamplersVS[i].logicalTextureUnit);
stream.write((int) mSamplersVS[i].textureType);
}
stream.write(mUsedVertexSamplerRange);
stream.write(mUsedPixelSamplerRange);
stream.write(mUsesPointSize);
stream.write(mUniforms.size());
for (unsigned int i = 0; i < mUniforms.size(); ++i)
{
stream.write(mUniforms[i]->type);
stream.write(mUniforms[i]->name);
stream.write(mUniforms[i]->arraySize);
stream.write(mUniforms[i]->ps.registerIndex);
stream.write(mUniforms[i]->ps.registerCount);
stream.write(mUniforms[i]->vs.registerIndex);
stream.write(mUniforms[i]->vs.registerCount);
}
stream.write(mUniformIndex.size());
for (unsigned int i = 0; i < mUniformIndex.size(); ++i)
{
stream.write(mUniformIndex[i].name);
stream.write(mUniformIndex[i].element);
stream.write(mUniformIndex[i].index);
}
UINT pixelShaderSize = mPixelExecutable->getLength();
stream.write(pixelShaderSize);
UINT vertexShaderSize = mVertexExecutable->getLength();
stream.write(vertexShaderSize);
GUID identifier = mRenderer->getAdapterIdentifier();
GLsizei streamLength = stream.length();
const void *streamData = stream.data();
GLsizei totalLength = streamLength + sizeof(GUID) + pixelShaderSize + vertexShaderSize;
if (totalLength > bufSize)
{
if (length)
{
*length = 0;
}
return false;
}
if (binary)
{
char *ptr = (char*) binary;
memcpy(ptr, streamData, streamLength);
ptr += streamLength;
memcpy(ptr, &identifier, sizeof(GUID));
ptr += sizeof(GUID);
memcpy(ptr, mPixelExecutable->getFunction(), pixelShaderSize);
ptr += pixelShaderSize;
memcpy(ptr, mVertexExecutable->getFunction(), vertexShaderSize);
ptr += vertexShaderSize;
ASSERT(ptr - totalLength == binary);
}
if (length)
{
*length = totalLength;
}
return true;
}
GLint ProgramBinary::getLength()
{
GLint length;
if (save(NULL, INT_MAX, &length))
{
return length;
}
else
{
return 0;
}
}
bool ProgramBinary::link(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader)
{
if (!fragmentShader || !fragmentShader->isCompiled())
{
return false;
}
if (!vertexShader || !vertexShader->isCompiled())
{
return false;
}
std::string pixelHLSL = fragmentShader->getHLSL();
std::string vertexHLSL = vertexShader->getHLSL();
if (!linkVaryings(infoLog, pixelHLSL, vertexHLSL, fragmentShader, vertexShader))
{
return false;
}
bool success = true;
mVertexExecutable = mRenderer->compileToExecutable(infoLog, vertexHLSL.c_str(), GL_VERTEX_SHADER);
mPixelExecutable = mRenderer->compileToExecutable(infoLog, pixelHLSL.c_str(), GL_FRAGMENT_SHADER);
if (!mVertexExecutable || !mPixelExecutable)
{
infoLog.append("Failed to create D3D shaders.");
success = false;
delete mVertexExecutable;
mVertexExecutable = NULL;
delete mPixelExecutable;
mPixelExecutable = NULL;
}
if (!linkAttributes(infoLog, attributeBindings, fragmentShader, vertexShader))
{
success = false;
}
if (!linkUniforms(infoLog, vertexShader->getUniforms(), fragmentShader->getUniforms()))
{
success = false;
}
Context *context = getContext();
context->markDxUniformsDirty();
return success;
}
// Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices
bool ProgramBinary::linkAttributes(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader)
{
unsigned int usedLocations = 0;
// Link attributes that have a binding location
for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
{
int location = attributeBindings.getAttributeBinding(attribute->name);
if (location != -1) // Set by glBindAttribLocation
{
if (!mLinkedAttribute[location].name.empty())
{
// Multiple active attributes bound to the same location; not an error
}
mLinkedAttribute[location] = *attribute;
int rows = VariableRowCount(attribute->type);
if (rows + location > MAX_VERTEX_ATTRIBS)
{
infoLog.append("Active attribute (%s) at location %d is too big to fit", attribute->name.c_str(), location);
return false;
}
for (int i = 0; i < rows; i++)
{
usedLocations |= 1 << (location + i);
}
}
}
// Link attributes that don't have a binding location
for (AttributeArray::iterator attribute = vertexShader->mAttributes.begin(); attribute != vertexShader->mAttributes.end(); attribute++)
{
int location = attributeBindings.getAttributeBinding(attribute->name);
if (location == -1) // Not set by glBindAttribLocation
{
int rows = VariableRowCount(attribute->type);
int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS);
if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS)
{
infoLog.append("Too many active attributes (%s)", attribute->name.c_str());
return false; // Fail to link
}
mLinkedAttribute[availableIndex] = *attribute;
}
}
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; )
{
int index = vertexShader->getSemanticIndex(mLinkedAttribute[attributeIndex].name);
int rows = std::max(VariableRowCount(mLinkedAttribute[attributeIndex].type), 1);
for (int r = 0; r < rows; r++)
{
mSemanticIndex[attributeIndex++] = index++;
}
}
return true;
}
bool ProgramBinary::linkUniforms(InfoLog &infoLog, const sh::ActiveUniforms &vertexUniforms, const sh::ActiveUniforms &fragmentUniforms)
{
for (sh::ActiveUniforms::const_iterator uniform = vertexUniforms.begin(); uniform != vertexUniforms.end(); uniform++)
{
if (!defineUniform(GL_VERTEX_SHADER, *uniform, infoLog))
{
return false;
}
}
for (sh::ActiveUniforms::const_iterator uniform = fragmentUniforms.begin(); uniform != fragmentUniforms.end(); uniform++)
{
if (!defineUniform(GL_FRAGMENT_SHADER, *uniform, infoLog))
{
return false;
}
}
return true;
}
bool ProgramBinary::defineUniform(GLenum shader, const sh::Uniform &constant, InfoLog &infoLog)
{
if (constant.type == GL_SAMPLER_2D ||
constant.type == GL_SAMPLER_CUBE)
{
unsigned int samplerIndex = constant.registerIndex;
do
{
if (shader == GL_VERTEX_SHADER)
{
if (samplerIndex < getContext()->getMaximumVertexTextureImageUnits())
{
mSamplersVS[samplerIndex].active = true;
mSamplersVS[samplerIndex].textureType = (constant.type == GL_SAMPLER_CUBE) ? TEXTURE_CUBE : TEXTURE_2D;
mSamplersVS[samplerIndex].logicalTextureUnit = 0;
mUsedVertexSamplerRange = std::max(samplerIndex + 1, mUsedVertexSamplerRange);
}
else
{
infoLog.append("Vertex shader sampler count exceeds MAX_VERTEX_TEXTURE_IMAGE_UNITS (%d).", getContext()->getMaximumVertexTextureImageUnits());
return false;
}
}
else if (shader == GL_FRAGMENT_SHADER)
{
if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
{
mSamplersPS[samplerIndex].active = true;
mSamplersPS[samplerIndex].textureType = (constant.type == GL_SAMPLER_CUBE) ? TEXTURE_CUBE : TEXTURE_2D;
mSamplersPS[samplerIndex].logicalTextureUnit = 0;
mUsedPixelSamplerRange = std::max(samplerIndex + 1, mUsedPixelSamplerRange);
}
else
{
infoLog.append("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).", MAX_TEXTURE_IMAGE_UNITS);
return false;
}
}
else UNREACHABLE();
samplerIndex++;
}
while (samplerIndex < constant.registerIndex + constant.arraySize);
}
Uniform *uniform = NULL;
GLint location = getUniformLocation(constant.name);
if (location >= 0) // Previously defined, types must match
{
uniform = mUniforms[mUniformIndex[location].index];
if (uniform->type != constant.type)
{
return false;
}
}
else
{
uniform = new Uniform(constant.type, constant.name, constant.arraySize);
}
if (!uniform)
{
return false;
}
if (shader == GL_FRAGMENT_SHADER)
{
uniform->ps.registerIndex = constant.registerIndex;
uniform->ps.registerCount = uniform->registerCount();
}
else if (shader == GL_VERTEX_SHADER)
{
uniform->vs.registerIndex = constant.registerIndex;
uniform->vs.registerCount = uniform->registerCount();
}
else UNREACHABLE();
if (location >= 0)
{
return uniform->type == constant.type;
}
mUniforms.push_back(uniform);
unsigned int uniformIndex = mUniforms.size() - 1;
for (unsigned int i = 0; i < uniform->elementCount(); i++)
{
mUniformIndex.push_back(UniformLocation(constant.name, i, uniformIndex));
}
return true;
}
// This method needs to match OutputHLSL::decorate
std::string ProgramBinary::decorateAttribute(const std::string &name)
{
if (name.compare(0, 3, "gl_") != 0 && name.compare(0, 3, "dx_") != 0)
{
return "_" + name;
}
return name;
}
bool ProgramBinary::isValidated() const
{
return mValidated;
}
void ProgramBinary::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name)
{
// Skip over inactive attributes
unsigned int activeAttribute = 0;
unsigned int attribute;
for (attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
{
if (mLinkedAttribute[attribute].name.empty())
{
continue;
}
if (activeAttribute == index)
{
break;
}
activeAttribute++;
}
if (bufsize > 0)
{
const char *string = mLinkedAttribute[attribute].name.c_str();
strncpy(name, string, bufsize);
name[bufsize - 1] = '\0';
if (length)
{
*length = strlen(name);
}
}
*size = 1; // Always a single 'type' instance
*type = mLinkedAttribute[attribute].type;
}
GLint ProgramBinary::getActiveAttributeCount()
{
int count = 0;
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
if (!mLinkedAttribute[attributeIndex].name.empty())
{
count++;
}
}
return count;
}
GLint ProgramBinary::getActiveAttributeMaxLength()
{
int maxLength = 0;
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
if (!mLinkedAttribute[attributeIndex].name.empty())
{
maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength);
}
}
return maxLength;
}
void ProgramBinary::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name)
{
ASSERT(index < mUniforms.size()); // index must be smaller than getActiveUniformCount()
if (bufsize > 0)
{
std::string string = mUniforms[index]->name;
if (mUniforms[index]->isArray())
{
string += "[0]";
}
strncpy(name, string.c_str(), bufsize);
name[bufsize - 1] = '\0';
if (length)
{
*length = strlen(name);
}
}
*size = mUniforms[index]->elementCount();
*type = mUniforms[index]->type;
}
GLint ProgramBinary::getActiveUniformCount()
{
return mUniforms.size();
}
GLint ProgramBinary::getActiveUniformMaxLength()
{
int maxLength = 0;
unsigned int numUniforms = mUniforms.size();
for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++)
{
if (!mUniforms[uniformIndex]->name.empty())
{
int length = (int)(mUniforms[uniformIndex]->name.length() + 1);
if (mUniforms[uniformIndex]->isArray())
{
length += 3; // Counting in "[0]".
}
maxLength = std::max(length, maxLength);
}
}
return maxLength;
}
void ProgramBinary::validate(InfoLog &infoLog)
{
applyUniforms();
if (!validateSamplers(&infoLog))
{
mValidated = false;
}
else
{
mValidated = true;
}
}
bool ProgramBinary::validateSamplers(InfoLog *infoLog)
{
// if any two active samplers in a program are of different types, but refer to the same
// texture image unit, and this is the current program, then ValidateProgram will fail, and
// DrawArrays and DrawElements will issue the INVALID_OPERATION error.
const unsigned int maxCombinedTextureImageUnits = getContext()->getMaximumCombinedTextureImageUnits();
TextureType textureUnitType[MAX_COMBINED_TEXTURE_IMAGE_UNITS_VTF];
for (unsigned int i = 0; i < MAX_COMBINED_TEXTURE_IMAGE_UNITS_VTF; ++i)
{
textureUnitType[i] = TEXTURE_UNKNOWN;
}
for (unsigned int i = 0; i < mUsedPixelSamplerRange; ++i)
{
if (mSamplersPS[i].active)
{
unsigned int unit = mSamplersPS[i].logicalTextureUnit;
if (unit >= maxCombinedTextureImageUnits)
{
if (infoLog)
{
infoLog->append("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits);
}
return false;
}
if (textureUnitType[unit] != TEXTURE_UNKNOWN)
{
if (mSamplersPS[i].textureType != textureUnitType[unit])
{
if (infoLog)
{
infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
}
return false;
}
}
else
{
textureUnitType[unit] = mSamplersPS[i].textureType;
}
}
}
for (unsigned int i = 0; i < mUsedVertexSamplerRange; ++i)
{
if (mSamplersVS[i].active)
{
unsigned int unit = mSamplersVS[i].logicalTextureUnit;
if (unit >= maxCombinedTextureImageUnits)
{
if (infoLog)
{
infoLog->append("Sampler uniform (%d) exceeds MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits);
}
return false;
}
if (textureUnitType[unit] != TEXTURE_UNKNOWN)
{
if (mSamplersVS[i].textureType != textureUnitType[unit])
{
if (infoLog)
{
infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
}
return false;
}
}
else
{
textureUnitType[unit] = mSamplersVS[i].textureType;
}
}
}
return true;
}
void ProgramBinary::applyDxDepthRange(float near, float far, float diff)
{
mVertexConstants.depthRange[0] = near;
mVertexConstants.depthRange[1] = far;
mVertexConstants.depthRange[2] = diff;
mPixelConstants.depthRange[0] = near;
mPixelConstants.depthRange[1] = far;
mPixelConstants.depthRange[2] = diff;
}
void ProgramBinary::applyDxDepthFront(float range, float start, float frontCCW)
{
mPixelConstants.depthFront[0] = range;
mPixelConstants.depthFront[1] = start;
mPixelConstants.depthFront[2] = frontCCW;
}
void ProgramBinary::applyDxCoord(float halfWidth, float halfHeight, float x0, float y0)
{
mPixelConstants.coord[0] = halfWidth;
mPixelConstants.coord[1] = halfHeight;
mPixelConstants.coord[2] = x0;
mPixelConstants.coord[3] = y0;
}
void ProgramBinary::applyDxHalfPixelSize(float width, float height)
{
mVertexConstants.halfPixelSize[0] = width;
mVertexConstants.halfPixelSize[1] = height;
}
ProgramBinary::Sampler::Sampler() : active(false), logicalTextureUnit(0), textureType(TEXTURE_2D)
{
}
}