blob: d857967ba40500ad0de17e45e67191bb2e16f21c [file] [log] [blame]
//
// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Texture.cpp: Implements the gl::Texture class and its derived classes
// Texture2D and TextureCubeMap. Implements GL texture objects and related
// functionality. [OpenGL ES 2.0.24] section 3.7 page 63.
#include "Texture.h"
#include <algorithm>
#include "main.h"
#include "mathutil.h"
#include "debug.h"
namespace gl
{
Texture::Texture() : Colorbuffer(0)
{
mMinFilter = GL_NEAREST_MIPMAP_LINEAR;
mMagFilter = GL_LINEAR;
mWrapS = GL_REPEAT;
mWrapT = GL_REPEAT;
}
Texture::~Texture()
{
}
// Returns true on successful filter state update (valid enum parameter)
bool Texture::setMinFilter(GLenum filter)
{
switch (filter)
{
case GL_NEAREST:
case GL_LINEAR:
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_LINEAR:
mMinFilter = filter;
return true;
default:
return false;
}
}
// Returns true on successful filter state update (valid enum parameter)
bool Texture::setMagFilter(GLenum filter)
{
switch (filter)
{
case GL_NEAREST:
case GL_LINEAR:
mMagFilter = filter;
return true;
default:
return false;
}
}
// Returns true on successful wrap state update (valid enum parameter)
bool Texture::setWrapS(GLenum wrap)
{
switch (wrap)
{
case GL_REPEAT:
case GL_CLAMP_TO_EDGE:
case GL_MIRRORED_REPEAT:
mWrapS = wrap;
return true;
default:
return false;
}
}
// Returns true on successful wrap state update (valid enum parameter)
bool Texture::setWrapT(GLenum wrap)
{
switch (wrap)
{
case GL_REPEAT:
case GL_CLAMP_TO_EDGE:
case GL_MIRRORED_REPEAT:
mWrapT = wrap;
return true;
default:
return false;
}
}
GLenum Texture::getMinFilter()
{
return mMinFilter;
}
GLenum Texture::getMagFilter()
{
return mMagFilter;
}
GLenum Texture::getWrapS()
{
return mWrapS;
}
GLenum Texture::getWrapT()
{
return mWrapT;
}
// Copies an Image into an already locked Direct3D 9 surface, performing format conversions as necessary
void Texture::copyImage(D3DLOCKED_RECT &lock, D3DFORMAT format, Image &image)
{
if (lock.pBits && image.pixels)
{
for (int y = 0; y < image.height; y++)
{
unsigned char *source = (unsigned char*)image.pixels + y * image.width * pixelSize(image);
unsigned short *source16 = (unsigned short*)source;
unsigned char *dest = (unsigned char*)lock.pBits + y * lock.Pitch;
for (int x = 0; x < image.width; x++)
{
unsigned char r;
unsigned char g;
unsigned char b;
unsigned char a;
switch (image.format)
{
case GL_ALPHA:
UNIMPLEMENTED();
break;
case GL_LUMINANCE:
UNIMPLEMENTED();
break;
case GL_LUMINANCE_ALPHA:
UNIMPLEMENTED();
break;
case GL_RGB:
switch (image.type)
{
case GL_UNSIGNED_BYTE: UNIMPLEMENTED(); break;
case GL_UNSIGNED_SHORT_5_6_5:
{
unsigned short rgba = source16[x];
a = 0xFF;
b = ((rgba & 0x001F) << 3) | ((rgba & 0x001F) >> 2);
g = ((rgba & 0x07E0) >> 3) | ((rgba & 0x07E0) >> 9);
r = ((rgba & 0xF800) >> 8) | ((rgba & 0xF800) >> 13);
}
break;
default: UNREACHABLE();
}
break;
case GL_RGBA:
switch (image.type)
{
case GL_UNSIGNED_BYTE:
r = source[x * 4 + 0];
g = source[x * 4 + 1];
b = source[x * 4 + 2];
a = source[x * 4 + 3];
break;
case GL_UNSIGNED_SHORT_4_4_4_4:
{
unsigned short rgba = source16[x];
a = ((rgba & 0x000F) << 4) | ((rgba & 0x000F) >> 0);
b = ((rgba & 0x00F0) << 0) | ((rgba & 0x00F0) >> 4);
g = ((rgba & 0x0F00) >> 4) | ((rgba & 0x0F00) >> 8);
r = ((rgba & 0xF000) >> 8) | ((rgba & 0xF000) >> 12);
}
break;
case GL_UNSIGNED_SHORT_5_5_5_1: UNIMPLEMENTED(); break;
default: UNREACHABLE();
}
break;
default: UNREACHABLE();
}
switch (format)
{
case D3DFMT_A8R8G8B8:
dest[4 * x + 0] = b;
dest[4 * x + 1] = g;
dest[4 * x + 2] = r;
dest[4 * x + 3] = a;
break;
default: UNREACHABLE();
}
}
}
}
}
// Selects an internal Direct3D 9 format for storing an Image
D3DFORMAT Texture::selectFormat(const Image &image)
{
switch (image.format)
{
case GL_ALPHA:
UNIMPLEMENTED();
break;
case GL_LUMINANCE:
UNIMPLEMENTED();
break;
case GL_LUMINANCE_ALPHA:
UNIMPLEMENTED();
break;
case GL_RGB:
switch (image.type)
{
case GL_UNSIGNED_BYTE: UNIMPLEMENTED();
case GL_UNSIGNED_SHORT_5_6_5: return D3DFMT_A8R8G8B8;
default: UNREACHABLE();
}
break;
case GL_RGBA:
switch (image.type)
{
case GL_UNSIGNED_BYTE: return D3DFMT_A8R8G8B8;
case GL_UNSIGNED_SHORT_4_4_4_4: return D3DFMT_A8R8G8B8;
case GL_UNSIGNED_SHORT_5_5_5_1: UNIMPLEMENTED();
default: UNREACHABLE();
}
break;
default: UNREACHABLE();
}
return D3DFMT_UNKNOWN;
}
// Returns the size, in bytes, of a single texel in an Image
int Texture::pixelSize(const Image &image)
{
switch (image.type)
{
case GL_UNSIGNED_BYTE:
switch (image.format)
{
case GL_ALPHA: return sizeof(unsigned char);
case GL_LUMINANCE: return sizeof(unsigned char);
case GL_LUMINANCE_ALPHA: return sizeof(unsigned char) * 2;
case GL_RGB: return sizeof(unsigned char) * 3;
case GL_RGBA: return sizeof(unsigned char) * 4;
default: UNREACHABLE();
}
break;
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_5_6_5:
return sizeof(unsigned short);
default: UNREACHABLE();
}
return 0;
}
Texture2D::Texture2D()
{
for (int level = 0; level < MAX_TEXTURE_LEVELS; level++)
{
mImageArray[level].pixels = NULL;
}
mTexture = NULL;
}
Texture2D::~Texture2D()
{
for (int level = 0; level < MAX_TEXTURE_LEVELS; level++)
{
delete[] mImageArray[level].pixels;
}
if (mTexture)
{
mTexture->Release();
mTexture = NULL;
}
}
GLenum Texture2D::getTarget() const
{
return GL_TEXTURE_2D;
}
void Texture2D::setImage(GLint level, GLenum internalFormat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels)
{
if (level < 0 || level >= MAX_TEXTURE_LEVELS)
{
return;
}
mImageArray[level].internalFormat = internalFormat;
mImageArray[level].width = width;
mImageArray[level].height = height;
mImageArray[level].format = format;
mImageArray[level].type = type;
delete[] mImageArray[level].pixels;
mImageArray[level].pixels = NULL;
int imageSize = pixelSize(mImageArray[level]) * width * height;
mImageArray[level].pixels = new unsigned char[imageSize];
if (pixels)
{
memcpy(mImageArray[level].pixels, pixels, imageSize);
}
if (level == 0)
{
mWidth = width;
mHeight = height;
}
}
// Tests for GL texture object completeness. [OpenGL ES 2.0.24] section 3.7.10 page 81.
bool Texture2D::isComplete()
{
if (mWidth <= 0 || mHeight <= 0)
{
return false;
}
bool mipmapping;
switch (mMagFilter)
{
case GL_NEAREST:
case GL_LINEAR:
mipmapping = false;
break;
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_LINEAR:
mipmapping = true;
break;
default: UNREACHABLE();
}
if (mipmapping)
{
int q = log2(std::max(mWidth, mHeight));
for (int level = 1; level <= q; level++)
{
if (mImageArray[level].format != mImageArray[0].format)
{
return false;
}
if (mImageArray[level].internalFormat != mImageArray[0].internalFormat)
{
return false;
}
if (mImageArray[level].type != mImageArray[0].type)
{
return false;
}
if (mImageArray[level].width != (mImageArray[level - 1].width + 1) / 2)
{
return false;
}
if (mImageArray[level].height != (mImageArray[level - 1].height + 1) / 2)
{
return false;
}
}
}
return true;
}
// Constructs a Direct3D 9 texture resource from the texture images, or returns an existing one
IDirect3DBaseTexture9 *Texture2D::getTexture()
{
if (!isComplete())
{
return NULL;
}
if (!mTexture) // FIXME: Recreate when changed (same for getRenderTarget)
{
IDirect3DDevice9 *device = getDevice();
D3DFORMAT format = selectFormat(mImageArray[0]);
HRESULT result = device->CreateTexture(mWidth, mHeight, 0, D3DUSAGE_RENDERTARGET, format, D3DPOOL_DEFAULT, &mTexture, NULL);
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
error(GL_OUT_OF_MEMORY, 0);
}
ASSERT(SUCCEEDED(result));
IDirect3DTexture9 *lockableTexture;
result = device->CreateTexture(mWidth, mHeight, 0, D3DUSAGE_DYNAMIC, format, D3DPOOL_SYSTEMMEM, &lockableTexture, NULL);
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
error(GL_OUT_OF_MEMORY,(IDirect3DBaseTexture9*)NULL);
}
ASSERT(SUCCEEDED(result));
if (mTexture) // FIXME: Handle failure
{
int levelCount = mTexture->GetLevelCount();
for (int level = 0; level < levelCount; level++)
{
D3DLOCKED_RECT lock = {0};
lockableTexture->LockRect(level, &lock, NULL, 0);
copyImage(lock, format, mImageArray[level]);
lockableTexture->UnlockRect(level);
}
device->UpdateTexture(lockableTexture, mTexture);
lockableTexture->Release();
}
}
return mTexture;
}
// Returns the top-level texture surface as a render target
IDirect3DSurface9 *Texture2D::getRenderTarget()
{
if (!mRenderTarget && getTexture())
{
mTexture->GetSurfaceLevel(0, &mRenderTarget);
}
return mRenderTarget;
}
TextureCubeMap::TextureCubeMap()
{
for (int face = 0; face < 6; face++)
{
for (int level = 0; level < MAX_TEXTURE_LEVELS; level++)
{
mImageArray[face][level].pixels = NULL;
}
}
mTexture = NULL;
}
TextureCubeMap::~TextureCubeMap()
{
for (int face = 0; face < 6; face++)
{
for (int level = 0; level < MAX_TEXTURE_LEVELS; level++)
{
delete[] mImageArray[face][level].pixels;
}
}
if (mTexture)
{
mTexture->Release();
mTexture = NULL;
}
}
GLenum TextureCubeMap::getTarget() const
{
return GL_TEXTURE_CUBE_MAP;
}
void TextureCubeMap::setImagePosX(GLint level, GLenum internalFormat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels)
{
setImage(0, level, internalFormat, width, height, format, type, pixels);
}
void TextureCubeMap::setImageNegX(GLint level, GLenum internalFormat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels)
{
setImage(1, level, internalFormat, width, height, format, type, pixels);
}
void TextureCubeMap::setImagePosY(GLint level, GLenum internalFormat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels)
{
setImage(2, level, internalFormat, width, height, format, type, pixels);
}
void TextureCubeMap::setImageNegY(GLint level, GLenum internalFormat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels)
{
setImage(3, level, internalFormat, width, height, format, type, pixels);
}
void TextureCubeMap::setImagePosZ(GLint level, GLenum internalFormat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels)
{
setImage(4, level, internalFormat, width, height, format, type, pixels);
}
void TextureCubeMap::setImageNegZ(GLint level, GLenum internalFormat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels)
{
setImage(5, level, internalFormat, width, height, format, type, pixels);
}
// Tests for GL texture object completeness. [OpenGL ES 2.0.24] section 3.7.10 page 81.
bool TextureCubeMap::isComplete()
{
if (mWidth <= 0 || mHeight <= 0 || mWidth != mHeight)
{
return false;
}
bool mipmapping;
switch (mMagFilter)
{
case GL_NEAREST:
case GL_LINEAR:
mipmapping = false;
break;
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_LINEAR:
mipmapping = true;
break;
default: UNREACHABLE();
}
for (int face = 0; face < 6; face++)
{
if (mImageArray[face][0].width != mWidth || mImageArray[face][0].height != mHeight)
{
return false;
}
}
if (mipmapping)
{
int q = log2(mWidth);
for (int face = 0; face < 6; face++)
{
for (int level = 1; level <= q; level++)
{
if (mImageArray[face][level].format != mImageArray[0][0].format)
{
return false;
}
if (mImageArray[face][level].internalFormat != mImageArray[0][0].internalFormat)
{
return false;
}
if (mImageArray[face][level].type != mImageArray[0][0].type)
{
return false;
}
if (mImageArray[face][level].width != (mImageArray[0][level - 1].width + 1) / 2)
{
return false;
}
if (mImageArray[face][level].height != (mImageArray[0][level - 1].height + 1) / 2)
{
return false;
}
}
}
}
return true;
}
// Constructs a Direct3D 9 texture resource from the texture images, or returns an existing one
IDirect3DBaseTexture9 *TextureCubeMap::getTexture()
{
if (!isComplete())
{
return NULL;
}
if (!mTexture) // FIXME: Recreate when changed (same for getRenderTarget)
{
IDirect3DDevice9 *device = getDevice();
D3DFORMAT format = selectFormat(mImageArray[0][0]);
HRESULT result = device->CreateCubeTexture(mWidth, 0, D3DUSAGE_RENDERTARGET, format, D3DPOOL_DEFAULT, &mTexture, NULL);
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
error(GL_OUT_OF_MEMORY, (IDirect3DBaseTexture9*)NULL);
}
ASSERT(SUCCEEDED(result));
IDirect3DCubeTexture9 *lockableTexture;
result = device->CreateCubeTexture(mWidth, 0, D3DUSAGE_DYNAMIC, format, D3DPOOL_SYSTEMMEM, &lockableTexture, NULL);
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
return error(GL_OUT_OF_MEMORY, (IDirect3DBaseTexture9*)NULL);
}
ASSERT(SUCCEEDED(result));
if (mTexture)
{
for (int face = 0; face < 6; face++)
{
for (int level = 0; level < MAX_TEXTURE_LEVELS; level++)
{
D3DLOCKED_RECT lock = {0};
lockableTexture->LockRect((D3DCUBEMAP_FACES)face, level, &lock, NULL, 0);
copyImage(lock, format, mImageArray[face][level]);
lockableTexture->UnlockRect((D3DCUBEMAP_FACES)face, level);
}
}
device->UpdateTexture(lockableTexture, mTexture);
lockableTexture->Release();
}
}
return mTexture;
}
void TextureCubeMap::setImage(int face, GLint level, GLenum internalFormat, GLsizei width, GLsizei height, GLenum format, GLenum type, const void *pixels)
{
if (level < 0 || level >= MAX_TEXTURE_LEVELS)
{
return;
}
mImageArray[face][level].internalFormat = internalFormat;
mImageArray[face][level].width = width;
mImageArray[face][level].height = height;
mImageArray[face][level].format = format;
mImageArray[face][level].type = type;
delete[] mImageArray[face][level].pixels;
mImageArray[face][level].pixels = NULL;
int imageSize = pixelSize(mImageArray[face][level]) * width * height;
mImageArray[face][level].pixels = new unsigned char[imageSize];
if (pixels)
{
memcpy(mImageArray[face][level].pixels, pixels, imageSize);
}
if (face == 0 && level == 0)
{
mWidth = width;
mHeight = height;
}
}
}