blob: 5cc2c1415898e944877949c9949ea5fd598ffeca [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/OutputHLSL.h"
#include "common/angleutils.h"
#include "common/utilities.h"
#include "common/blocklayout.h"
#include "compiler/translator/compilerdebug.h"
#include "compiler/translator/InfoSink.h"
#include "compiler/translator/DetectDiscontinuity.h"
#include "compiler/translator/SearchSymbol.h"
#include "compiler/translator/UnfoldShortCircuit.h"
#include "compiler/translator/FlagStd140Structs.h"
#include "compiler/translator/NodeSearch.h"
#include "compiler/translator/RewriteElseBlocks.h"
#include <algorithm>
#include <cfloat>
#include <stdio.h>
namespace sh
{
TString OutputHLSL::TextureFunction::name() const
{
TString name = "gl_texture";
if (IsSampler2D(sampler))
{
name += "2D";
}
else if (IsSampler3D(sampler))
{
name += "3D";
}
else if (IsSamplerCube(sampler))
{
name += "Cube";
}
else UNREACHABLE();
if (proj)
{
name += "Proj";
}
if (offset)
{
name += "Offset";
}
switch(method)
{
case IMPLICIT: break;
case BIAS: break; // Extra parameter makes the signature unique
case LOD: name += "Lod"; break;
case LOD0: name += "Lod0"; break;
case LOD0BIAS: name += "Lod0"; break; // Extra parameter makes the signature unique
case SIZE: name += "Size"; break;
case FETCH: name += "Fetch"; break;
case GRAD: name += "Grad"; break;
default: UNREACHABLE();
}
return name + "(";
}
const char *RegisterPrefix(const TType &type)
{
if (IsSampler(type.getBasicType()))
{
return "s";
}
else
{
return "c";
}
}
bool OutputHLSL::TextureFunction::operator<(const TextureFunction &rhs) const
{
if (sampler < rhs.sampler) return true;
if (sampler > rhs.sampler) return false;
if (coords < rhs.coords) return true;
if (coords > rhs.coords) return false;
if (!proj && rhs.proj) return true;
if (proj && !rhs.proj) return false;
if (!offset && rhs.offset) return true;
if (offset && !rhs.offset) return false;
if (method < rhs.method) return true;
if (method > rhs.method) return false;
return false;
}
OutputHLSL::OutputHLSL(TParseContext &context, const ShBuiltInResources& resources, ShShaderOutput outputType)
: TIntermTraverser(true, true, true), mContext(context), mOutputType(outputType)
{
mUnfoldShortCircuit = new UnfoldShortCircuit(context, this);
mInsideFunction = false;
mUsesFragColor = false;
mUsesFragData = false;
mUsesDepthRange = false;
mUsesFragCoord = false;
mUsesPointCoord = false;
mUsesFrontFacing = false;
mUsesPointSize = false;
mUsesFragDepth = false;
mUsesXor = false;
mUsesMod1 = false;
mUsesMod2v = false;
mUsesMod2f = false;
mUsesMod3v = false;
mUsesMod3f = false;
mUsesMod4v = false;
mUsesMod4f = false;
mUsesFaceforward1 = false;
mUsesFaceforward2 = false;
mUsesFaceforward3 = false;
mUsesFaceforward4 = false;
mUsesAtan2_1 = false;
mUsesAtan2_2 = false;
mUsesAtan2_3 = false;
mUsesAtan2_4 = false;
mUsesDiscardRewriting = false;
mUsesNestedBreak = false;
mNumRenderTargets = resources.EXT_draw_buffers ? resources.MaxDrawBuffers : 1;
mUniqueIndex = 0;
mContainsLoopDiscontinuity = false;
mOutputLod0Function = false;
mInsideDiscontinuousLoop = false;
mNestedLoopDepth = 0;
mExcessiveLoopIndex = NULL;
if (mOutputType == SH_HLSL9_OUTPUT)
{
if (mContext.shaderType == SH_FRAGMENT_SHADER)
{
mUniformRegister = 3; // Reserve registers for dx_DepthRange, dx_ViewCoords and dx_DepthFront
}
else
{
mUniformRegister = 2; // Reserve registers for dx_DepthRange and dx_ViewAdjust
}
}
else
{
mUniformRegister = 0;
}
mSamplerRegister = 0;
mInterfaceBlockRegister = 2; // Reserve registers for the default uniform block and driver constants
mPaddingCounter = 0;
}
OutputHLSL::~OutputHLSL()
{
delete mUnfoldShortCircuit;
}
void OutputHLSL::output()
{
mContainsLoopDiscontinuity = mContext.shaderType == SH_FRAGMENT_SHADER && containsLoopDiscontinuity(mContext.treeRoot);
const std::vector<TIntermTyped*> &flaggedStructs = FlagStd140ValueStructs(mContext.treeRoot);
makeFlaggedStructMaps(flaggedStructs);
// Work around D3D9 bug that would manifest in vertex shaders with selection blocks which
// use a vertex attribute as a condition, and some related computation in the else block.
if (mOutputType == SH_HLSL9_OUTPUT && mContext.shaderType == SH_VERTEX_SHADER)
{
RewriteElseBlocks(mContext.treeRoot);
}
mContext.treeRoot->traverse(this); // Output the body first to determine what has to go in the header
header();
mContext.infoSink().obj << mHeader.c_str();
mContext.infoSink().obj << mBody.c_str();
}
void OutputHLSL::makeFlaggedStructMaps(const std::vector<TIntermTyped *> &flaggedStructs)
{
for (unsigned int structIndex = 0; structIndex < flaggedStructs.size(); structIndex++)
{
TIntermTyped *flaggedNode = flaggedStructs[structIndex];
// This will mark the necessary block elements as referenced
flaggedNode->traverse(this);
TString structName(mBody.c_str());
mBody.erase();
mFlaggedStructOriginalNames[flaggedNode] = structName;
for (size_t pos = structName.find('.'); pos != std::string::npos; pos = structName.find('.'))
{
structName.erase(pos, 1);
}
mFlaggedStructMappedNames[flaggedNode] = "map" + structName;
}
}
TInfoSinkBase &OutputHLSL::getBodyStream()
{
return mBody;
}
const std::vector<gl::Uniform> &OutputHLSL::getUniforms()
{
return mActiveUniforms;
}
const std::vector<gl::InterfaceBlock> &OutputHLSL::getInterfaceBlocks() const
{
return mActiveInterfaceBlocks;
}
const std::vector<gl::Attribute> &OutputHLSL::getOutputVariables() const
{
return mActiveOutputVariables;
}
const std::vector<gl::Attribute> &OutputHLSL::getAttributes() const
{
return mActiveAttributes;
}
const std::vector<gl::Varying> &OutputHLSL::getVaryings() const
{
return mActiveVaryings;
}
int OutputHLSL::vectorSize(const TType &type) const
{
int elementSize = type.isMatrix() ? type.getCols() : 1;
int arraySize = type.isArray() ? type.getArraySize() : 1;
return elementSize * arraySize;
}
TString OutputHLSL::interfaceBlockFieldString(const TInterfaceBlock &interfaceBlock, const TField &field)
{
if (interfaceBlock.hasInstanceName())
{
return interfaceBlock.name() + "." + field.name();
}
else
{
return field.name();
}
}
TString OutputHLSL::decoratePrivate(const TString &privateText)
{
return "dx_" + privateText;
}
TString OutputHLSL::interfaceBlockStructNameString(const TInterfaceBlock &interfaceBlock)
{
return decoratePrivate(interfaceBlock.name()) + "_type";
}
TString OutputHLSL::interfaceBlockInstanceString(const TInterfaceBlock& interfaceBlock, unsigned int arrayIndex)
{
if (!interfaceBlock.hasInstanceName())
{
return "";
}
else if (interfaceBlock.isArray())
{
return decoratePrivate(interfaceBlock.instanceName()) + "_" + str(arrayIndex);
}
else
{
return decorate(interfaceBlock.instanceName());
}
}
TString OutputHLSL::interfaceBlockFieldTypeString(const TField &field, TLayoutBlockStorage blockStorage)
{
const TType &fieldType = *field.type();
const TLayoutMatrixPacking matrixPacking = fieldType.getLayoutQualifier().matrixPacking;
ASSERT(matrixPacking != EmpUnspecified);
if (fieldType.isMatrix())
{
// Use HLSL row-major packing for GLSL column-major matrices
const TString &matrixPackString = (matrixPacking == EmpRowMajor ? "column_major" : "row_major");
return matrixPackString + " " + typeString(fieldType);
}
else if (fieldType.getStruct())
{
// Use HLSL row-major packing for GLSL column-major matrices
return structureTypeName(*fieldType.getStruct(), matrixPacking == EmpColumnMajor, blockStorage == EbsStd140);
}
else
{
return typeString(fieldType);
}
}
TString OutputHLSL::interfaceBlockFieldString(const TInterfaceBlock &interfaceBlock, TLayoutBlockStorage blockStorage)
{
TString hlsl;
int elementIndex = 0;
for (unsigned int typeIndex = 0; typeIndex < interfaceBlock.fields().size(); typeIndex++)
{
const TField &field = *interfaceBlock.fields()[typeIndex];
const TType &fieldType = *field.type();
if (blockStorage == EbsStd140)
{
// 2 and 3 component vector types in some cases need pre-padding
hlsl += std140PrePaddingString(fieldType, &elementIndex);
}
hlsl += " " + interfaceBlockFieldTypeString(field, blockStorage) +
" " + decorate(field.name()) + arrayString(fieldType) + ";\n";
// must pad out after matrices and arrays, where HLSL usually allows itself room to pack stuff
if (blockStorage == EbsStd140)
{
const bool useHLSLRowMajorPacking = (fieldType.getLayoutQualifier().matrixPacking == EmpColumnMajor);
hlsl += std140PostPaddingString(fieldType, useHLSLRowMajorPacking);
}
}
return hlsl;
}
TString OutputHLSL::interfaceBlockStructString(const TInterfaceBlock &interfaceBlock)
{
const TLayoutBlockStorage blockStorage = interfaceBlock.blockStorage();
return "struct " + interfaceBlockStructNameString(interfaceBlock) + "\n"
"{\n" +
interfaceBlockFieldString(interfaceBlock, blockStorage) +
"};\n\n";
}
TString OutputHLSL::interfaceBlockString(const TInterfaceBlock &interfaceBlock, unsigned int registerIndex, unsigned int arrayIndex)
{
const TString &arrayIndexString = (arrayIndex != GL_INVALID_INDEX ? decorate(str(arrayIndex)) : "");
const TString &blockName = interfaceBlock.name() + arrayIndexString;
TString hlsl;
hlsl += "cbuffer " + blockName + " : register(b" + str(registerIndex) + ")\n"
"{\n";
if (interfaceBlock.hasInstanceName())
{
hlsl += " " + interfaceBlockStructNameString(interfaceBlock) + " " + interfaceBlockInstanceString(interfaceBlock, arrayIndex) + ";\n";
}
else
{
const TLayoutBlockStorage blockStorage = interfaceBlock.blockStorage();
hlsl += interfaceBlockFieldString(interfaceBlock, blockStorage);
}
hlsl += "};\n\n";
return hlsl;
}
TString OutputHLSL::std140PrePaddingString(const TType &type, int *elementIndex)
{
if (type.getBasicType() == EbtStruct || type.isMatrix() || type.isArray())
{
// no padding needed, HLSL will align the field to a new register
*elementIndex = 0;
return "";
}
const GLenum glType = glVariableType(type);
const int numComponents = gl::UniformComponentCount(glType);
if (numComponents >= 4)
{
// no padding needed, HLSL will align the field to a new register
*elementIndex = 0;
return "";
}
if (*elementIndex + numComponents > 4)
{
// no padding needed, HLSL will align the field to a new register
*elementIndex = numComponents;
return "";
}
TString padding;
const int alignment = numComponents == 3 ? 4 : numComponents;
const int paddingOffset = (*elementIndex % alignment);
if (paddingOffset != 0)
{
// padding is neccessary
for (int paddingIndex = paddingOffset; paddingIndex < alignment; paddingIndex++)
{
padding += " float pad_" + str(mPaddingCounter++) + ";\n";
}
*elementIndex += (alignment - paddingOffset);
}
*elementIndex += numComponents;
*elementIndex %= 4;
return padding;
}
TString OutputHLSL::std140PostPaddingString(const TType &type, bool useHLSLRowMajorPacking)
{
if (!type.isMatrix() && !type.isArray() && type.getBasicType() != EbtStruct)
{
return "";
}
int numComponents = 0;
if (type.isMatrix())
{
// This method can also be called from structureString, which does not use layout qualifiers.
// Thus, use the method parameter for determining the matrix packing.
//
// Note HLSL row major packing corresponds to GL API column-major, and vice-versa, since we
// wish to always transpose GL matrices to play well with HLSL's matrix array indexing.
//
const bool isRowMajorMatrix = !useHLSLRowMajorPacking;
const GLenum glType = glVariableType(type);
numComponents = gl::MatrixComponentCount(glType, isRowMajorMatrix);
}
else if (type.getStruct())
{
const TString &structName = structureTypeName(*type.getStruct(), useHLSLRowMajorPacking, true);
numComponents = mStd140StructElementIndexes[structName];
if (numComponents == 0)
{
return "";
}
}
else
{
const GLenum glType = glVariableType(type);
numComponents = gl::UniformComponentCount(glType);
}
TString padding;
for (int paddingOffset = numComponents; paddingOffset < 4; paddingOffset++)
{
padding += " float pad_" + str(mPaddingCounter++) + ";\n";
}
return padding;
}
// Use the same layout for packed and shared
void setBlockLayout(gl::InterfaceBlock *interfaceBlock, gl::BlockLayoutType newLayout)
{
interfaceBlock->layout = newLayout;
interfaceBlock->blockInfo.clear();
switch (newLayout)
{
case gl::BLOCKLAYOUT_SHARED:
case gl::BLOCKLAYOUT_PACKED:
{
gl::HLSLBlockEncoder hlslEncoder(&interfaceBlock->blockInfo, gl::HLSLBlockEncoder::ENCODE_PACKED);
hlslEncoder.encodeInterfaceBlockFields(interfaceBlock->fields);
interfaceBlock->dataSize = hlslEncoder.getBlockSize();
}
break;
case gl::BLOCKLAYOUT_STANDARD:
{
gl::Std140BlockEncoder stdEncoder(&interfaceBlock->blockInfo);
stdEncoder.encodeInterfaceBlockFields(interfaceBlock->fields);
interfaceBlock->dataSize = stdEncoder.getBlockSize();
}
break;
default:
UNREACHABLE();
break;
}
}
gl::BlockLayoutType convertBlockLayoutType(TLayoutBlockStorage blockStorage)
{
switch (blockStorage)
{
case EbsPacked: return gl::BLOCKLAYOUT_PACKED;
case EbsShared: return gl::BLOCKLAYOUT_SHARED;
case EbsStd140: return gl::BLOCKLAYOUT_STANDARD;
default: UNREACHABLE(); return gl::BLOCKLAYOUT_SHARED;
}
}
TString OutputHLSL::structInitializerString(int indent, const TStructure &structure, const TString &rhsStructName)
{
TString init;
TString preIndentString;
TString fullIndentString;
for (int spaces = 0; spaces < (indent * 4); spaces++)
{
preIndentString += ' ';
}
for (int spaces = 0; spaces < ((indent+1) * 4); spaces++)
{
fullIndentString += ' ';
}
init += preIndentString + "{\n";
const TFieldList &fields = structure.fields();
for (unsigned int fieldIndex = 0; fieldIndex < fields.size(); fieldIndex++)
{
const TField &field = *fields[fieldIndex];
const TString &fieldName = rhsStructName + "." + decorate(field.name());
const TType &fieldType = *field.type();
if (fieldType.getStruct())
{
init += structInitializerString(indent + 1, *fieldType.getStruct(), fieldName);
}
else
{
init += fullIndentString + fieldName + ",\n";
}
}
init += preIndentString + "}" + (indent == 0 ? ";" : ",") + "\n";
return init;
}
void OutputHLSL::header()
{
TInfoSinkBase &out = mHeader;
TString uniforms;
TString interfaceBlocks;
TString varyings;
TString attributes;
TString flaggedStructs;
for (ReferencedSymbols::const_iterator uniformIt = mReferencedUniforms.begin(); uniformIt != mReferencedUniforms.end(); uniformIt++)
{
const TIntermSymbol &uniform = *uniformIt->second;
const TType &type = uniform.getType();
const TString &name = uniform.getSymbol();
int registerIndex = declareUniformAndAssignRegister(type, name);
if (mOutputType == SH_HLSL11_OUTPUT && IsSampler(type.getBasicType())) // Also declare the texture
{
uniforms += "uniform " + samplerString(type) + " sampler_" + decorateUniform(name, type) + arrayString(type) +
" : register(s" + str(registerIndex) + ");\n";
uniforms += "uniform " + textureString(type) + " texture_" + decorateUniform(name, type) + arrayString(type) +
" : register(t" + str(registerIndex) + ");\n";
}
else
{
const TStructure *structure = type.getStruct();
// If this is a nameless struct, we need to use its full definition, rather than its (empty) name.
// TypeString() will invoke defineNameless in this case, but layout qualifiers, if relevant, will not
// be taken into account.
const TString &typeName = ((structure && !structure->name().empty()) ?
structureTypeName(*structure, false, false) : typeString(type));
const TString &registerString = TString("register(") + RegisterPrefix(type) + str(registerIndex) + ")";
uniforms += "uniform " + typeName + " " + decorateUniform(name, type) + arrayString(type) + " : " + registerString + ";\n";
}
}
for (ReferencedSymbols::const_iterator interfaceBlockIt = mReferencedInterfaceBlocks.begin(); interfaceBlockIt != mReferencedInterfaceBlocks.end(); interfaceBlockIt++)
{
const TType &nodeType = interfaceBlockIt->second->getType();
const TInterfaceBlock &interfaceBlock = *nodeType.getInterfaceBlock();
const TFieldList &fieldList = interfaceBlock.fields();
unsigned int arraySize = static_cast<unsigned int>(interfaceBlock.arraySize());
gl::InterfaceBlock activeBlock(interfaceBlock.name().c_str(), arraySize, mInterfaceBlockRegister);
for (unsigned int typeIndex = 0; typeIndex < fieldList.size(); typeIndex++)
{
const TField &field = *fieldList[typeIndex];
const TString &fullUniformName = interfaceBlockFieldString(interfaceBlock, field);
declareInterfaceBlockField(*field.type(), fullUniformName, activeBlock.fields);
}
mInterfaceBlockRegister += std::max(1u, arraySize);
gl::BlockLayoutType blockLayoutType = convertBlockLayoutType(interfaceBlock.blockStorage());
setBlockLayout(&activeBlock, blockLayoutType);
if (interfaceBlock.matrixPacking() == EmpRowMajor)
{
activeBlock.isRowMajorLayout = true;
}
mActiveInterfaceBlocks.push_back(activeBlock);
if (interfaceBlock.hasInstanceName())
{
interfaceBlocks += interfaceBlockStructString(interfaceBlock);
}
if (arraySize > 0)
{
for (unsigned int arrayIndex = 0; arrayIndex < arraySize; arrayIndex++)
{
interfaceBlocks += interfaceBlockString(interfaceBlock, activeBlock.registerIndex + arrayIndex, arrayIndex);
}
}
else
{
interfaceBlocks += interfaceBlockString(interfaceBlock, activeBlock.registerIndex, GL_INVALID_INDEX);
}
}
for (std::map<TIntermTyped*, TString>::const_iterator flaggedStructIt = mFlaggedStructMappedNames.begin(); flaggedStructIt != mFlaggedStructMappedNames.end(); flaggedStructIt++)
{
TIntermTyped *structNode = flaggedStructIt->first;
const TString &mappedName = flaggedStructIt->second;
const TStructure &structure = *structNode->getType().getStruct();
const TString &originalName = mFlaggedStructOriginalNames[structNode];
flaggedStructs += "static " + decorate(structure.name()) + " " + mappedName + " =\n";
flaggedStructs += structInitializerString(0, structure, originalName);
flaggedStructs += "\n";
}
for (ReferencedSymbols::const_iterator varying = mReferencedVaryings.begin(); varying != mReferencedVaryings.end(); varying++)
{
const TType &type = varying->second->getType();
const TString &name = varying->second->getSymbol();
// Program linking depends on this exact format
varyings += "static " + interpolationString(type.getQualifier()) + " " + typeString(type) + " " +
decorate(name) + arrayString(type) + " = " + initializer(type) + ";\n";
declareVaryingToList(type, type.getQualifier(), name, mActiveVaryings);
}
for (ReferencedSymbols::const_iterator attribute = mReferencedAttributes.begin(); attribute != mReferencedAttributes.end(); attribute++)
{
const TType &type = attribute->second->getType();
const TString &name = attribute->second->getSymbol();
attributes += "static " + typeString(type) + " " + decorate(name) + arrayString(type) + " = " + initializer(type) + ";\n";
gl::Attribute attributeVar(glVariableType(type), glVariablePrecision(type), name.c_str(),
(unsigned int)type.getArraySize(), type.getLayoutQualifier().location);
mActiveAttributes.push_back(attributeVar);
}
for (StructDeclarations::iterator structDeclaration = mStructDeclarations.begin(); structDeclaration != mStructDeclarations.end(); structDeclaration++)
{
out << *structDeclaration;
}
for (Constructors::iterator constructor = mConstructors.begin(); constructor != mConstructors.end(); constructor++)
{
out << *constructor;
}
if (mUsesDiscardRewriting)
{
out << "#define ANGLE_USES_DISCARD_REWRITING" << "\n";
}
if (mUsesNestedBreak)
{
out << "#define ANGLE_USES_NESTED_BREAK" << "\n";
}
if (mContext.shaderType == SH_FRAGMENT_SHADER)
{
TExtensionBehavior::const_iterator iter = mContext.extensionBehavior().find("GL_EXT_draw_buffers");
const bool usingMRTExtension = (iter != mContext.extensionBehavior().end() && (iter->second == EBhEnable || iter->second == EBhRequire));
out << "// Varyings\n";
out << varyings;
out << "\n";
if (mContext.getShaderVersion() >= 300)
{
for (ReferencedSymbols::const_iterator outputVariableIt = mReferencedOutputVariables.begin(); outputVariableIt != mReferencedOutputVariables.end(); outputVariableIt++)
{
const TString &variableName = outputVariableIt->first;
const TType &variableType = outputVariableIt->second->getType();
const TLayoutQualifier &layoutQualifier = variableType.getLayoutQualifier();
out << "static " + typeString(variableType) + " out_" + variableName + arrayString(variableType) +
" = " + initializer(variableType) + ";\n";
gl::Attribute outputVar(glVariableType(variableType), glVariablePrecision(variableType), variableName.c_str(),
(unsigned int)variableType.getArraySize(), layoutQualifier.location);
mActiveOutputVariables.push_back(outputVar);
}
}
else
{
const unsigned int numColorValues = usingMRTExtension ? mNumRenderTargets : 1;
out << "static float4 gl_Color[" << numColorValues << "] =\n"
"{\n";
for (unsigned int i = 0; i < numColorValues; i++)
{
out << " float4(0, 0, 0, 0)";
if (i + 1 != numColorValues)
{
out << ",";
}
out << "\n";
}
out << "};\n";
}
if (mUsesFragDepth)
{
out << "static float gl_Depth = 0.0;\n";
}
if (mUsesFragCoord)
{
out << "static float4 gl_FragCoord = float4(0, 0, 0, 0);\n";
}
if (mUsesPointCoord)
{
out << "static float2 gl_PointCoord = float2(0.5, 0.5);\n";
}
if (mUsesFrontFacing)
{
out << "static bool gl_FrontFacing = false;\n";
}
out << "\n";
if (mUsesDepthRange)
{
out << "struct gl_DepthRangeParameters\n"
"{\n"
" float near;\n"
" float far;\n"
" float diff;\n"
"};\n"
"\n";
}
if (mOutputType == SH_HLSL11_OUTPUT)
{
out << "cbuffer DriverConstants : register(b1)\n"
"{\n";
if (mUsesDepthRange)
{
out << " float3 dx_DepthRange : packoffset(c0);\n";
}
if (mUsesFragCoord)
{
out << " float4 dx_ViewCoords : packoffset(c1);\n";
}
if (mUsesFragCoord || mUsesFrontFacing)
{
out << " float3 dx_DepthFront : packoffset(c2);\n";
}
out << "};\n";
}
else
{
if (mUsesDepthRange)
{
out << "uniform float3 dx_DepthRange : register(c0);";
}
if (mUsesFragCoord)
{
out << "uniform float4 dx_ViewCoords : register(c1);\n";
}
if (mUsesFragCoord || mUsesFrontFacing)
{
out << "uniform float3 dx_DepthFront : register(c2);\n";
}
}
out << "\n";
if (mUsesDepthRange)
{
out << "static gl_DepthRangeParameters gl_DepthRange = {dx_DepthRange.x, dx_DepthRange.y, dx_DepthRange.z};\n"
"\n";
}
out << uniforms;
out << "\n";
if (!interfaceBlocks.empty())
{
out << interfaceBlocks;
out << "\n";
if (!flaggedStructs.empty())
{
out << "// Std140 Structures accessed by value\n";
out << "\n";
out << flaggedStructs;
out << "\n";
}
}
if (usingMRTExtension && mNumRenderTargets > 1)
{
out << "#define GL_USES_MRT\n";
}
if (mUsesFragColor)
{
out << "#define GL_USES_FRAG_COLOR\n";
}
if (mUsesFragData)
{
out << "#define GL_USES_FRAG_DATA\n";
}
}
else // Vertex shader
{
out << "// Attributes\n";
out << attributes;
out << "\n"
"static float4 gl_Position = float4(0, 0, 0, 0);\n";
if (mUsesPointSize)
{
out << "static float gl_PointSize = float(1);\n";
}
out << "\n"
"// Varyings\n";
out << varyings;
out << "\n";
if (mUsesDepthRange)
{
out << "struct gl_DepthRangeParameters\n"
"{\n"
" float near;\n"
" float far;\n"
" float diff;\n"
"};\n"
"\n";
}
if (mOutputType == SH_HLSL11_OUTPUT)
{
if (mUsesDepthRange)
{
out << "cbuffer DriverConstants : register(b1)\n"
"{\n"
" float3 dx_DepthRange : packoffset(c0);\n"
"};\n"
"\n";
}
}
else
{
if (mUsesDepthRange)
{
out << "uniform float3 dx_DepthRange : register(c0);\n";
}
out << "uniform float4 dx_ViewAdjust : register(c1);\n"
"\n";
}
if (mUsesDepthRange)
{
out << "static gl_DepthRangeParameters gl_DepthRange = {dx_DepthRange.x, dx_DepthRange.y, dx_DepthRange.z};\n"
"\n";
}
out << uniforms;
out << "\n";
if (!interfaceBlocks.empty())
{
out << interfaceBlocks;
out << "\n";
if (!flaggedStructs.empty())
{
out << "// Std140 Structures accessed by value\n";
out << "\n";
out << flaggedStructs;
out << "\n";
}
}
}
for (TextureFunctionSet::const_iterator textureFunction = mUsesTexture.begin(); textureFunction != mUsesTexture.end(); textureFunction++)
{
// Return type
if (textureFunction->method == TextureFunction::SIZE)
{
switch(textureFunction->sampler)
{
case EbtSampler2D: out << "int2 "; break;
case EbtSampler3D: out << "int3 "; break;
case EbtSamplerCube: out << "int2 "; break;
case EbtSampler2DArray: out << "int3 "; break;
case EbtISampler2D: out << "int2 "; break;
case EbtISampler3D: out << "int3 "; break;
case EbtISamplerCube: out << "int2 "; break;
case EbtISampler2DArray: out << "int3 "; break;
case EbtUSampler2D: out << "int2 "; break;
case EbtUSampler3D: out << "int3 "; break;
case EbtUSamplerCube: out << "int2 "; break;
case EbtUSampler2DArray: out << "int3 "; break;
case EbtSampler2DShadow: out << "int2 "; break;
case EbtSamplerCubeShadow: out << "int2 "; break;
case EbtSampler2DArrayShadow: out << "int3 "; break;
default: UNREACHABLE();
}
}
else // Sampling function
{
switch(textureFunction->sampler)
{
case EbtSampler2D: out << "float4 "; break;
case EbtSampler3D: out << "float4 "; break;
case EbtSamplerCube: out << "float4 "; break;
case EbtSampler2DArray: out << "float4 "; break;
case EbtISampler2D: out << "int4 "; break;
case EbtISampler3D: out << "int4 "; break;
case EbtISamplerCube: out << "int4 "; break;
case EbtISampler2DArray: out << "int4 "; break;
case EbtUSampler2D: out << "uint4 "; break;
case EbtUSampler3D: out << "uint4 "; break;
case EbtUSamplerCube: out << "uint4 "; break;
case EbtUSampler2DArray: out << "uint4 "; break;
case EbtSampler2DShadow: out << "float "; break;
case EbtSamplerCubeShadow: out << "float "; break;
case EbtSampler2DArrayShadow: out << "float "; break;
default: UNREACHABLE();
}
}
// Function name
out << textureFunction->name();
// Argument list
int hlslCoords = 4;
if (mOutputType == SH_HLSL9_OUTPUT)
{
switch(textureFunction->sampler)
{
case EbtSampler2D: out << "sampler2D s"; hlslCoords = 2; break;
case EbtSamplerCube: out << "samplerCUBE s"; hlslCoords = 3; break;
default: UNREACHABLE();
}
switch(textureFunction->method)
{
case TextureFunction::IMPLICIT: break;
case TextureFunction::BIAS: hlslCoords = 4; break;
case TextureFunction::LOD: hlslCoords = 4; break;
case TextureFunction::LOD0: hlslCoords = 4; break;
case TextureFunction::LOD0BIAS: hlslCoords = 4; break;
default: UNREACHABLE();
}
}
else if (mOutputType == SH_HLSL11_OUTPUT)
{
switch(textureFunction->sampler)
{
case EbtSampler2D: out << "Texture2D x, SamplerState s"; hlslCoords = 2; break;
case EbtSampler3D: out << "Texture3D x, SamplerState s"; hlslCoords = 3; break;
case EbtSamplerCube: out << "TextureCube x, SamplerState s"; hlslCoords = 3; break;
case EbtSampler2DArray: out << "Texture2DArray x, SamplerState s"; hlslCoords = 3; break;
case EbtISampler2D: out << "Texture2D<int4> x, SamplerState s"; hlslCoords = 2; break;
case EbtISampler3D: out << "Texture3D<int4> x, SamplerState s"; hlslCoords = 3; break;
case EbtISamplerCube: out << "Texture2DArray<int4> x, SamplerState s"; hlslCoords = 3; break;
case EbtISampler2DArray: out << "Texture2DArray<int4> x, SamplerState s"; hlslCoords = 3; break;
case EbtUSampler2D: out << "Texture2D<uint4> x, SamplerState s"; hlslCoords = 2; break;
case EbtUSampler3D: out << "Texture3D<uint4> x, SamplerState s"; hlslCoords = 3; break;
case EbtUSamplerCube: out << "Texture2DArray<uint4> x, SamplerState s"; hlslCoords = 3; break;
case EbtUSampler2DArray: out << "Texture2DArray<uint4> x, SamplerState s"; hlslCoords = 3; break;
case EbtSampler2DShadow: out << "Texture2D x, SamplerComparisonState s"; hlslCoords = 2; break;
case EbtSamplerCubeShadow: out << "TextureCube x, SamplerComparisonState s"; hlslCoords = 3; break;
case EbtSampler2DArrayShadow: out << "Texture2DArray x, SamplerComparisonState s"; hlslCoords = 3; break;
default: UNREACHABLE();
}
}
else UNREACHABLE();
if (textureFunction->method == TextureFunction::FETCH) // Integer coordinates
{
switch(textureFunction->coords)
{
case 2: out << ", int2 t"; break;
case 3: out << ", int3 t"; break;
default: UNREACHABLE();
}
}
else // Floating-point coordinates (except textureSize)
{
switch(textureFunction->coords)
{
case 1: out << ", int lod"; break; // textureSize()
case 2: out << ", float2 t"; break;
case 3: out << ", float3 t"; break;
case 4: out << ", float4 t"; break;
default: UNREACHABLE();
}
}
if (textureFunction->method == TextureFunction::GRAD)
{
switch(textureFunction->sampler)
{
case EbtSampler2D:
case EbtISampler2D:
case EbtUSampler2D:
case EbtSampler2DArray:
case EbtISampler2DArray:
case EbtUSampler2DArray:
case EbtSampler2DShadow:
case EbtSampler2DArrayShadow:
out << ", float2 ddx, float2 ddy";
break;
case EbtSampler3D:
case EbtISampler3D:
case EbtUSampler3D:
case EbtSamplerCube:
case EbtISamplerCube:
case EbtUSamplerCube:
case EbtSamplerCubeShadow:
out << ", float3 ddx, float3 ddy";
break;
default: UNREACHABLE();
}
}
switch(textureFunction->method)
{
case TextureFunction::IMPLICIT: break;
case TextureFunction::BIAS: break; // Comes after the offset parameter
case TextureFunction::LOD: out << ", float lod"; break;
case TextureFunction::LOD0: break;
case TextureFunction::LOD0BIAS: break; // Comes after the offset parameter
case TextureFunction::SIZE: break;
case TextureFunction::FETCH: out << ", int mip"; break;
case TextureFunction::GRAD: break;
default: UNREACHABLE();
}
if (textureFunction->offset)
{
switch(textureFunction->sampler)
{
case EbtSampler2D: out << ", int2 offset"; break;
case EbtSampler3D: out << ", int3 offset"; break;
case EbtSampler2DArray: out << ", int2 offset"; break;
case EbtISampler2D: out << ", int2 offset"; break;
case EbtISampler3D: out << ", int3 offset"; break;
case EbtISampler2DArray: out << ", int2 offset"; break;
case EbtUSampler2D: out << ", int2 offset"; break;
case EbtUSampler3D: out << ", int3 offset"; break;
case EbtUSampler2DArray: out << ", int2 offset"; break;
case EbtSampler2DShadow: out << ", int2 offset"; break;
case EbtSampler2DArrayShadow: out << ", int2 offset"; break;
default: UNREACHABLE();
}
}
if (textureFunction->method == TextureFunction::BIAS ||
textureFunction->method == TextureFunction::LOD0BIAS)
{
out << ", float bias";
}
out << ")\n"
"{\n";
if (textureFunction->method == TextureFunction::SIZE)
{
if (IsSampler2D(textureFunction->sampler) || IsSamplerCube(textureFunction->sampler))
{
if (IsSamplerArray(textureFunction->sampler))
{
out << " uint width; uint height; uint layers; uint numberOfLevels;\n"
" x.GetDimensions(lod, width, height, layers, numberOfLevels);\n";
}
else
{
out << " uint width; uint height; uint numberOfLevels;\n"
" x.GetDimensions(lod, width, height, numberOfLevels);\n";
}
}
else if (IsSampler3D(textureFunction->sampler))
{
out << " uint width; uint height; uint depth; uint numberOfLevels;\n"
" x.GetDimensions(lod, width, height, depth, numberOfLevels);\n";
}
else UNREACHABLE();
switch(textureFunction->sampler)
{
case EbtSampler2D: out << " return int2(width, height);"; break;
case EbtSampler3D: out << " return int3(width, height, depth);"; break;
case EbtSamplerCube: out << " return int2(width, height);"; break;
case EbtSampler2DArray: out << " return int3(width, height, layers);"; break;
case EbtISampler2D: out << " return int2(width, height);"; break;
case EbtISampler3D: out << " return int3(width, height, depth);"; break;
case EbtISamplerCube: out << " return int2(width, height);"; break;
case EbtISampler2DArray: out << " return int3(width, height, layers);"; break;
case EbtUSampler2D: out << " return int2(width, height);"; break;
case EbtUSampler3D: out << " return int3(width, height, depth);"; break;
case EbtUSamplerCube: out << " return int2(width, height);"; break;
case EbtUSampler2DArray: out << " return int3(width, height, layers);"; break;
case EbtSampler2DShadow: out << " return int2(width, height);"; break;
case EbtSamplerCubeShadow: out << " return int2(width, height);"; break;
case EbtSampler2DArrayShadow: out << " return int3(width, height, layers);"; break;
default: UNREACHABLE();
}
}
else
{
if (IsIntegerSampler(textureFunction->sampler) && IsSamplerCube(textureFunction->sampler))
{
out << " float width; float height; float layers; float levels;\n";
out << " uint mip = 0;\n";
out << " x.GetDimensions(mip, width, height, layers, levels);\n";
out << " bool xMajor = abs(t.x) > abs(t.y) && abs(t.x) > abs(t.z);\n";
out << " bool yMajor = abs(t.y) > abs(t.z) && abs(t.y) > abs(t.x);\n";
out << " bool zMajor = abs(t.z) > abs(t.x) && abs(t.z) > abs(t.y);\n";
out << " bool negative = (xMajor && t.x < 0.0f) || (yMajor && t.y < 0.0f) || (zMajor && t.z < 0.0f);\n";
// FACE_POSITIVE_X = 000b
// FACE_NEGATIVE_X = 001b
// FACE_POSITIVE_Y = 010b
// FACE_NEGATIVE_Y = 011b
// FACE_POSITIVE_Z = 100b
// FACE_NEGATIVE_Z = 101b
out << " int face = (int)negative + (int)yMajor * 2 + (int)zMajor * 4;\n";
out << " float u = xMajor ? -t.z : (yMajor && t.y < 0.0f ? -t.x : t.x);\n";
out << " float v = yMajor ? t.z : (negative ? t.y : -t.y);\n";
out << " float m = xMajor ? t.x : (yMajor ? t.y : t.z);\n";
out << " t.x = (u * 0.5f / m) + 0.5f;\n";
out << " t.y = (v * 0.5f / m) + 0.5f;\n";
}
else if (IsIntegerSampler(textureFunction->sampler) &&
textureFunction->method != TextureFunction::FETCH)
{
if (IsSampler2D(textureFunction->sampler))
{
if (IsSamplerArray(textureFunction->sampler))
{
out << " float width; float height; float layers; float levels;\n";
if (textureFunction->method == TextureFunction::LOD0)
{
out << " uint mip = 0;\n";
}
else if (textureFunction->method == TextureFunction::LOD0BIAS)
{
out << " uint mip = bias;\n";
}
else
{
if (textureFunction->method == TextureFunction::IMPLICIT ||
textureFunction->method == TextureFunction::BIAS)
{
out << " x.GetDimensions(0, width, height, layers, levels);\n"
" float2 tSized = float2(t.x * width, t.y * height);\n"
" float dx = length(ddx(tSized));\n"
" float dy = length(ddy(tSized));\n"
" float lod = log2(max(dx, dy));\n";
if (textureFunction->method == TextureFunction::BIAS)
{
out << " lod += bias;\n";
}
}
else if (textureFunction->method == TextureFunction::GRAD)
{
out << " x.GetDimensions(0, width, height, layers, levels);\n"
" float lod = log2(max(length(ddx), length(ddy)));\n";
}
out << " uint mip = uint(min(max(round(lod), 0), levels - 1));\n";
}
out << " x.GetDimensions(mip, width, height, layers, levels);\n";
}
else
{
out << " float width; float height; float levels;\n";
if (textureFunction->method == TextureFunction::LOD0)
{
out << " uint mip = 0;\n";
}
else if (textureFunction->method == TextureFunction::LOD0BIAS)
{
out << " uint mip = bias;\n";
}
else
{
if (textureFunction->method == TextureFunction::IMPLICIT ||
textureFunction->method == TextureFunction::BIAS)
{
out << " x.GetDimensions(0, width, height, levels);\n"
" float2 tSized = float2(t.x * width, t.y * height);\n"
" float dx = length(ddx(tSized));\n"
" float dy = length(ddy(tSized));\n"
" float lod = log2(max(dx, dy));\n";
if (textureFunction->method == TextureFunction::BIAS)
{
out << " lod += bias;\n";
}
}
else if (textureFunction->method == TextureFunction::LOD)
{
out << " x.GetDimensions(0, width, height, levels);\n";
}
else if (textureFunction->method == TextureFunction::GRAD)
{
out << " x.GetDimensions(0, width, height, levels);\n"
" float lod = log2(max(length(ddx), length(ddy)));\n";
}
out << " uint mip = uint(min(max(round(lod), 0), levels - 1));\n";
}
out << " x.GetDimensions(mip, width, height, levels);\n";
}
}
else if (IsSampler3D(textureFunction->sampler))
{
out << " float width; float height; float depth; float levels;\n";
if (textureFunction->method == TextureFunction::LOD0)
{
out << " uint mip = 0;\n";
}
else if (textureFunction->method == TextureFunction::LOD0BIAS)
{
out << " uint mip = bias;\n";
}
else
{
if (textureFunction->method == TextureFunction::IMPLICIT ||
textureFunction->method == TextureFunction::BIAS)
{
out << " x.GetDimensions(0, width, height, depth, levels);\n"
" float3 tSized = float3(t.x * width, t.y * height, t.z * depth);\n"
" float dx = length(ddx(tSized));\n"
" float dy = length(ddy(tSized));\n"
" float lod = log2(max(dx, dy));\n";
if (textureFunction->method == TextureFunction::BIAS)
{
out << " lod += bias;\n";
}
}
else if (textureFunction->method == TextureFunction::GRAD)
{
out << " x.GetDimensions(0, width, height, depth, levels);\n"
" float lod = log2(max(length(ddx), length(ddy)));\n";
}
out << " uint mip = uint(min(max(round(lod), 0), levels - 1));\n";
}
out << " x.GetDimensions(mip, width, height, depth, levels);\n";
}
else UNREACHABLE();
}
out << " return ";
// HLSL intrinsic
if (mOutputType == SH_HLSL9_OUTPUT)
{
switch(textureFunction->sampler)
{
case EbtSampler2D: out << "tex2D"; break;
case EbtSamplerCube: out << "texCUBE"; break;
default: UNREACHABLE();
}
switch(textureFunction->method)
{
case TextureFunction::IMPLICIT: out << "(s, "; break;
case TextureFunction::BIAS: out << "bias(s, "; break;
case TextureFunction::LOD: out << "lod(s, "; break;
case TextureFunction::LOD0: out << "lod(s, "; break;
case TextureFunction::LOD0BIAS: out << "lod(s, "; break;
default: UNREACHABLE();
}
}
else if (mOutputType == SH_HLSL11_OUTPUT)
{
if (textureFunction->method == TextureFunction::GRAD)
{
if (IsIntegerSampler(textureFunction->sampler))
{
out << "x.Load(";
}
else if (IsShadowSampler(textureFunction->sampler))
{
out << "x.SampleCmpLevelZero(s, ";
}
else
{
out << "x.SampleGrad(s, ";
}
}
else if (IsIntegerSampler(textureFunction->sampler) ||
textureFunction->method == TextureFunction::FETCH)
{
out << "x.Load(";
}
else if (IsShadowSampler(textureFunction->sampler))
{
out << "x.SampleCmp(s, ";
}
else
{
switch(textureFunction->method)
{
case TextureFunction::IMPLICIT: out << "x.Sample(s, "; break;
case TextureFunction::BIAS: out << "x.SampleBias(s, "; break;
case TextureFunction::LOD: out << "x.SampleLevel(s, "; break;
case TextureFunction::LOD0: out << "x.SampleLevel(s, "; break;
case TextureFunction::LOD0BIAS: out << "x.SampleLevel(s, "; break;
default: UNREACHABLE();
}
}
}
else UNREACHABLE();
// Integer sampling requires integer addresses
TString addressx = "";
TString addressy = "";
TString addressz = "";
TString close = "";
if (IsIntegerSampler(textureFunction->sampler) ||
textureFunction->method == TextureFunction::FETCH)
{
switch(hlslCoords)
{
case 2: out << "int3("; break;
case 3: out << "int4("; break;
default: UNREACHABLE();
}
// Convert from normalized floating-point to integer
if (textureFunction->method != TextureFunction::FETCH)
{
addressx = "int(floor(width * frac((";
addressy = "int(floor(height * frac((";
if (IsSamplerArray(textureFunction->sampler))
{
addressz = "int(max(0, min(layers - 1, floor(0.5 + ";
}
else if (IsSamplerCube(textureFunction->sampler))
{
addressz = "((((";
}
else
{
addressz = "int(floor(depth * frac((";
}
close = "))))";
}
}
else
{
switch(hlslCoords)
{
case 2: out << "float2("; break;
case 3: out << "float3("; break;
case 4: out << "float4("; break;
default: UNREACHABLE();
}
}
TString proj = ""; // Only used for projected textures
if (textureFunction->proj)
{
switch(textureFunction->coords)
{
case 3: proj = " / t.z"; break;
case 4: proj = " / t.w"; break;
default: UNREACHABLE();
}
}
out << addressx + ("t.x" + proj) + close + ", " + addressy + ("t.y" + proj) + close;
if (mOutputType == SH_HLSL9_OUTPUT)
{
if (hlslCoords >= 3)
{
if (textureFunction->coords < 3)
{
out << ", 0";
}
else
{
out << ", t.z" + proj;
}
}
if (hlslCoords == 4)
{
switch(textureFunction->method)
{
case TextureFunction::BIAS: out << ", bias"; break;
case TextureFunction::LOD: out << ", lod"; break;
case TextureFunction::LOD0: out << ", 0"; break;
case TextureFunction::LOD0BIAS: out << ", bias"; break;
default: UNREACHABLE();
}
}
out << "));\n";
}
else if (mOutputType == SH_HLSL11_OUTPUT)
{
if (hlslCoords >= 3)
{
if (IsIntegerSampler(textureFunction->sampler) && IsSamplerCube(textureFunction->sampler))
{
out << ", face";
}
else
{
out << ", " + addressz + ("t.z" + proj) + close;
}
}
if (textureFunction->method == TextureFunction::GRAD)
{
if (IsIntegerSampler(textureFunction->sampler))
{
out << ", mip)";
}
else if (IsShadowSampler(textureFunction->sampler))
{
// Compare value
switch(textureFunction->coords)
{
case 3: out << "), t.z"; break;
case 4: out << "), t.w"; break;
default: UNREACHABLE();
}
}
else
{
out << "), ddx, ddy";
}
}
else if (IsIntegerSampler(textureFunction->sampler) ||
textureFunction->method == TextureFunction::FETCH)
{
out << ", mip)";
}
else if (IsShadowSampler(textureFunction->sampler))
{
// Compare value
switch(textureFunction->coords)
{
case 3: out << "), t.z"; break;
case 4: out << "), t.w"; break;
default: UNREACHABLE();
}
}
else
{
switch(textureFunction->method)
{
case TextureFunction::IMPLICIT: out << ")"; break;
case TextureFunction::BIAS: out << "), bias"; break;
case TextureFunction::LOD: out << "), lod"; break;
case TextureFunction::LOD0: out << "), 0"; break;
case TextureFunction::LOD0BIAS: out << "), bias"; break;
default: UNREACHABLE();
}
}
if (textureFunction->offset)
{
out << ", offset";
}
out << ");";
}
else UNREACHABLE();
}
out << "\n"
"}\n"
"\n";
}
if (mUsesFragCoord)
{
out << "#define GL_USES_FRAG_COORD\n";
}
if (mUsesPointCoord)
{
out << "#define GL_USES_POINT_COORD\n";
}
if (mUsesFrontFacing)
{
out << "#define GL_USES_FRONT_FACING\n";
}
if (mUsesPointSize)
{
out << "#define GL_USES_POINT_SIZE\n";
}
if (mUsesFragDepth)
{
out << "#define GL_USES_FRAG_DEPTH\n";
}
if (mUsesDepthRange)
{
out << "#define GL_USES_DEPTH_RANGE\n";
}
if (mUsesXor)
{
out << "bool xor(bool p, bool q)\n"
"{\n"
" return (p || q) && !(p && q);\n"
"}\n"
"\n";
}
if (mUsesMod1)
{
out << "float mod(float x, float y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n";
}
if (mUsesMod2v)
{
out << "float2 mod(float2 x, float2 y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n";
}
if (mUsesMod2f)
{
out << "float2 mod(float2 x, float y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n";
}
if (mUsesMod3v)
{
out << "float3 mod(float3 x, float3 y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n";
}
if (mUsesMod3f)
{
out << "float3 mod(float3 x, float y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n";
}
if (mUsesMod4v)
{
out << "float4 mod(float4 x, float4 y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n";
}
if (mUsesMod4f)
{
out << "float4 mod(float4 x, float y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n";
}
if (mUsesFaceforward1)
{
out << "float faceforward(float N, float I, float Nref)\n"
"{\n"
" if(dot(Nref, I) >= 0)\n"
" {\n"
" return -N;\n"
" }\n"
" else\n"
" {\n"
" return N;\n"
" }\n"
"}\n"
"\n";
}
if (mUsesFaceforward2)
{
out << "float2 faceforward(float2 N, float2 I, float2 Nref)\n"
"{\n"
" if(dot(Nref, I) >= 0)\n"
" {\n"
" return -N;\n"
" }\n"
" else\n"
" {\n"
" return N;\n"
" }\n"
"}\n"
"\n";
}
if (mUsesFaceforward3)
{
out << "float3 faceforward(float3 N, float3 I, float3 Nref)\n"
"{\n"
" if(dot(Nref, I) >= 0)\n"
" {\n"
" return -N;\n"
" }\n"
" else\n"
" {\n"
" return N;\n"
" }\n"
"}\n"
"\n";
}
if (mUsesFaceforward4)
{
out << "float4 faceforward(float4 N, float4 I, float4 Nref)\n"
"{\n"
" if(dot(Nref, I) >= 0)\n"
" {\n"
" return -N;\n"
" }\n"
" else\n"
" {\n"
" return N;\n"
" }\n"
"}\n"
"\n";
}
if (mUsesAtan2_1)
{
out << "float atanyx(float y, float x)\n"
"{\n"
" if(x == 0 && y == 0) x = 1;\n" // Avoid producing a NaN
" return atan2(y, x);\n"
"}\n";
}
if (mUsesAtan2_2)
{
out << "float2 atanyx(float2 y, float2 x)\n"
"{\n"
" if(x[0] == 0 && y[0] == 0) x[0] = 1;\n"
" if(x[1] == 0 && y[1] == 0) x[1] = 1;\n"
" return float2(atan2(y[0], x[0]), atan2(y[1], x[1]));\n"
"}\n";
}
if (mUsesAtan2_3)
{
out << "float3 atanyx(float3 y, float3 x)\n"
"{\n"
" if(x[0] == 0 && y[0] == 0) x[0] = 1;\n"
" if(x[1] == 0 && y[1] == 0) x[1] = 1;\n"
" if(x[2] == 0 && y[2] == 0) x[2] = 1;\n"
" return float3(atan2(y[0], x[0]), atan2(y[1], x[1]), atan2(y[2], x[2]));\n"
"}\n";
}
if (mUsesAtan2_4)
{
out << "float4 atanyx(float4 y, float4 x)\n"
"{\n"
" if(x[0] == 0 && y[0] == 0) x[0] = 1;\n"
" if(x[1] == 0 && y[1] == 0) x[1] = 1;\n"
" if(x[2] == 0 && y[2] == 0) x[2] = 1;\n"
" if(x[3] == 0 && y[3] == 0) x[3] = 1;\n"
" return float4(atan2(y[0], x[0]), atan2(y[1], x[1]), atan2(y[2], x[2]), atan2(y[3], x[3]));\n"
"}\n";
}
}
void OutputHLSL::visitSymbol(TIntermSymbol *node)
{
TInfoSinkBase &out = mBody;
// Handle accessing std140 structs by value
if (mFlaggedStructMappedNames.count(node) > 0)
{
out << mFlaggedStructMappedNames[node];
return;
}
TString name = node->getSymbol();
if (name == "gl_DepthRange")
{
mUsesDepthRange = true;
out << name;
}
else
{
TQualifier qualifier = node->getQualifier();
if (qualifier == EvqUniform)
{
const TType& nodeType = node->getType();
const TInterfaceBlock* interfaceBlock = nodeType.getInterfaceBlock();
if (interfaceBlock)
{
mReferencedInterfaceBlocks[interfaceBlock->name()] = node;
}
else
{
mReferencedUniforms[name] = node;
}
out << decorateUniform(name, nodeType);
}
else if (qualifier == EvqAttribute || qualifier == EvqVertexIn)
{
mReferencedAttributes[name] = node;
out << decorate(name);
}
else if (isVarying(qualifier))
{
mReferencedVaryings[name] = node;
out << decorate(name);
}
else if (qualifier == EvqFragmentOut)
{
mReferencedOutputVariables[name] = node;
out << "out_" << name;
}
else if (qualifier == EvqFragColor)
{
out << "gl_Color[0]";
mUsesFragColor = true;
}
else if (qualifier == EvqFragData)
{
out << "gl_Color";
mUsesFragData = true;
}
else if (qualifier == EvqFragCoord)
{
mUsesFragCoord = true;
out << name;
}
else if (qualifier == EvqPointCoord)
{
mUsesPointCoord = true;
out << name;
}
else if (qualifier == EvqFrontFacing)
{
mUsesFrontFacing = true;
out << name;
}
else if (qualifier == EvqPointSize)
{
mUsesPointSize = true;
out << name;
}
else if (name == "gl_FragDepthEXT")
{
mUsesFragDepth = true;
out << "gl_Depth";
}
else if (qualifier == EvqInternal)
{
out << name;
}
else
{
out << decorate(name);
}
}
}
void OutputHLSL::visitRaw(TIntermRaw *node)
{
mBody << node->getRawText();
}
bool OutputHLSL::visitBinary(Visit visit, TIntermBinary *node)
{
TInfoSinkBase &out = mBody;
// Handle accessing std140 structs by value
if (mFlaggedStructMappedNames.count(node) > 0)
{
out << mFlaggedStructMappedNames[node];
return false;
}
switch (node->getOp())
{
case EOpAssign: outputTriplet(visit, "(", " = ", ")"); break;
case EOpInitialize:
if (visit == PreVisit)
{
// GLSL allows to write things like "float x = x;" where a new variable x is defined
// and the value of an existing variable x is assigned. HLSL uses C semantics (the
// new variable is created before the assignment is evaluated), so we need to convert
// this to "float t = x, x = t;".
TIntermSymbol *symbolNode = node->getLeft()->getAsSymbolNode();
TIntermTyped *expression = node->getRight();
sh::SearchSymbol searchSymbol(symbolNode->getSymbol());
expression->traverse(&searchSymbol);
bool sameSymbol = searchSymbol.foundMatch();
if (sameSymbol)
{
// Type already printed
out << "t" + str(mUniqueIndex) + " = ";
expression->traverse(this);
out << ", ";
symbolNode->traverse(this);
out << " = t" + str(mUniqueIndex);
mUniqueIndex++;
return false;
}
}
else if (visit == InVisit)
{
out << " = ";
}
break;
case EOpAddAssign: outputTriplet(visit, "(", " += ", ")"); break;
case EOpSubAssign: outputTriplet(visit, "(", " -= ", ")"); break;
case EOpMulAssign: outputTriplet(visit, "(", " *= ", ")"); break;
case EOpVectorTimesScalarAssign: outputTriplet(visit, "(", " *= ", ")"); break;
case EOpMatrixTimesScalarAssign: outputTriplet(visit, "(", " *= ", ")"); break;
case EOpVectorTimesMatrixAssign:
if (visit == PreVisit)
{
out << "(";
}
else if (visit == InVisit)
{
out << " = mul(";
node->getLeft()->traverse(this);
out << ", transpose(";
}
else
{
out << ")))";
}
break;
case EOpMatrixTimesMatrixAssign:
if (visit == PreVisit)
{
out << "(";
}
else if (visit == InVisit)
{
out << " = mul(";
node->getLeft()->traverse(this);
out << ", ";
}
else
{
out << "))";
}
break;
case EOpDivAssign: outputTriplet(visit, "(", " /= ", ")"); break;
case EOpIndexDirect:
{
const TType& leftType = node->getLeft()->getType();
if (leftType.isInterfaceBlock())
{
if (visit == PreVisit)
{
TInterfaceBlock* interfaceBlock = leftType.getInterfaceBlock();
const int arrayIndex = node->getRight()->getAsConstantUnion()->getIConst(0);
mReferencedInterfaceBlocks[interfaceBlock->instanceName()] = node->getLeft()->getAsSymbolNode();
out << interfaceBlockInstanceString(*interfaceBlock, arrayIndex);
return false;
}
}
else
{
outputTriplet(visit, "", "[", "]");
}
}
break;
case EOpIndexIndirect:
// We do not currently support indirect references to interface blocks
ASSERT(node->getLeft()->getBasicType() != EbtInterfaceBlock);
outputTriplet(visit, "", "[", "]");
break;
case EOpIndexDirectStruct:
if (visit == InVisit)
{
const TStructure* structure = node->getLeft()->getType().getStruct();
const TIntermConstantUnion* index = node->getRight()->getAsConstantUnion();
const TField* field = structure->fields()[index->getIConst(0)];
out << "." + decorateField(field->name(), *structure);
return false;
}
break;
case EOpIndexDirectInterfaceBlock:
if (visit == InVisit)
{
const TInterfaceBlock* interfaceBlock = node->getLeft()->getType().getInterfaceBlock();
const TIntermConstantUnion* index = node->getRight()->getAsConstantUnion();
const TField* field = interfaceBlock->fields()[index->getIConst(0)];
out << "." + decorate(field->name());
return false;
}
break;
case EOpVectorSwizzle:
if (visit == InVisit)
{
out << ".";
TIntermAggregate *swizzle = node->getRight()->getAsAggregate();
if (swizzle)
{
TIntermSequence &sequence = swizzle->getSequence();
for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); sit++)
{
TIntermConstantUnion *element = (*sit)->getAsConstantUnion();
if (element)
{
int i = element->getIConst(0);
switch (i)
{
case 0: out << "x"; break;
case 1: out << "y"; break;
case 2: out << "z"; break;
case 3: out << "w"; break;
default: UNREACHABLE();
}
}
else UNREACHABLE();
}
}
else UNREACHABLE();
return false; // Fully processed
}
break;
case EOpAdd: outputTriplet(visit, "(", " + ", ")"); break;
case EOpSub: outputTriplet(visit, "(", " - ", ")"); break;
case EOpMul: outputTriplet(visit, "(", " * ", ")"); break;
case EOpDiv: outputTriplet(visit, "(", " / ", ")"); break;
case EOpEqual:
case EOpNotEqual:
if (node->getLeft()->isScalar())
{
if (node->getOp() == EOpEqual)
{
outputTriplet(visit, "(", " == ", ")");
}
else
{
outputTriplet(visit, "(", " != ", ")");
}
}
else if (node->getLeft()->getBasicType() == EbtStruct)
{
if (node->getOp() == EOpEqual)
{
out << "(";
}
else
{
out << "!(";
}
const TStructure &structure = *node->getLeft()->getType().getStruct();
const TFieldList &fields = structure.fields();
for (size_t i = 0; i < fields.size(); i++)
{
const TField *field = fields[i];
node->getLeft()->traverse(this);
out << "." + decorateField(field->name(), structure) + " == ";
node->getRight()->traverse(this);
out << "." + decorateField(field->name(), structure);
if (i < fields.size() - 1)
{
out << " && ";
}
}
out << ")";
return false;
}
else
{
ASSERT(node->getLeft()->isMatrix() || node->getLeft()->isVector());
if (node->getOp() == EOpEqual)
{
outputTriplet(visit, "all(", " == ", ")");
}
else
{
outputTriplet(visit, "!all(", " == ", ")");
}
}
break;
case EOpLessThan: outputTriplet(visit, "(", " < ", ")"); break;
case EOpGreaterThan: outputTriplet(visit, "(", " > ", ")"); break;
case EOpLessThanEqual: outputTriplet(visit, "(", " <= ", ")"); break;
case EOpGreaterThanEqual: outputTriplet(visit, "(", " >= ", ")"); break;
case EOpVectorTimesScalar: outputTriplet(visit, "(", " * ", ")"); break;
case EOpMatrixTimesScalar: outputTriplet(visit, "(", " * ", ")"); break;
case EOpVectorTimesMatrix: outputTriplet(visit, "mul(", ", transpose(", "))"); break;
case EOpMatrixTimesVector: outputTriplet(visit, "mul(transpose(", "), ", ")"); break;
case EOpMatrixTimesMatrix: outputTriplet(visit, "transpose(mul(transpose(", "), transpose(", ")))"); break;
case EOpLogicalOr:
if (node->getRight()->hasSideEffects())
{
out << "s" << mUnfoldShortCircuit->getNextTemporaryIndex();
return false;
}
else
{
outputTriplet(visit, "(", " || ", ")");
return true;
}
case EOpLogicalXor:
mUsesXor = true;
outputTriplet(visit, "xor(", ", ", ")");
break;
case EOpLogicalAnd:
if (node->getRight()->hasSideEffects())
{
out << "s" << mUnfoldShortCircuit->getNextTemporaryIndex();
return false;
}
else
{
outputTriplet(visit, "(", " && ", ")");
return true;
}
default: UNREACHABLE();
}
return true;
}
bool OutputHLSL::visitUnary(Visit visit, TIntermUnary *node)
{
switch (node->getOp())
{
case EOpNegative: outputTriplet(visit, "(-", "", ")"); break;
case EOpVectorLogicalNot: outputTriplet(visit, "(!", "", ")"); break;
case EOpLogicalNot: outputTriplet(visit, "(!", "", ")"); break;
case EOpPostIncrement: outputTriplet(visit, "(", "", "++)"); break;
case EOpPostDecrement: outputTriplet(visit, "(", "", "--)"); break;
case EOpPreIncrement: outputTriplet(visit, "(++", "", ")"); break;
case EOpPreDecrement: outputTriplet(visit, "(--", "", ")"); break;
case EOpConvIntToBool:
case EOpConvUIntToBool:
case EOpConvFloatToBool:
switch (node->getOperand()->getType().getNominalSize())
{
case 1: outputTriplet(visit, "bool(", "", ")"); break;
case 2: outputTriplet(visit, "bool2(", "", ")"); break;
case 3: outputTriplet(visit, "bool3(", "", ")"); break;
case 4: outputTriplet(visit, "bool4(", "", ")"); break;
default: UNREACHABLE();
}
break;
case EOpConvBoolToFloat:
case EOpConvIntToFloat:
case EOpConvUIntToFloat:
switch (node->getOperand()->getType().getNominalSize())
{
case 1: outputTriplet(visit, "float(", "", ")"); break;
case 2: outputTriplet(visit, "float2(", "", ")"); break;
case 3: outputTriplet(visit, "float3(", "", ")"); break;
case 4: outputTriplet(visit, "float4(", "", ")"); break;
default: UNREACHABLE();
}
break;
case EOpConvFloatToInt:
case EOpConvBoolToInt:
case EOpConvUIntToInt:
switch (node->getOperand()->getType().getNominalSize())
{
case 1: outputTriplet(visit, "int(", "", ")"); break;
case 2: outputTriplet(visit, "int2(", "", ")"); break;
case 3: outputTriplet(visit, "int3(", "", ")"); break;
case 4: outputTriplet(visit, "int4(", "", ")"); break;
default: UNREACHABLE();
}
break;
case EOpConvFloatToUInt:
case EOpConvBoolToUInt:
case EOpConvIntToUInt:
switch (node->getOperand()->getType().getNominalSize())
{
case 1: outputTriplet(visit, "uint(", "", ")"); break;
case 2: outputTriplet(visit, "uint2(", "", ")"); break;
case 3: outputTriplet(visit, "uint3(", "", ")"); break;
case 4: outputTriplet(visit, "uint4(", "", ")"); break;
default: UNREACHABLE();
}
break;
case EOpRadians: outputTriplet(visit, "radians(", "", ")"); break;
case EOpDegrees: outputTriplet(visit, "degrees(", "", ")"); break;
case EOpSin: outputTriplet(visit, "sin(", "", ")"); break;
case EOpCos: outputTriplet(visit, "cos(", "", ")"); break;
case EOpTan: outputTriplet(visit, "tan(", "", ")"); break;
case EOpAsin: outputTriplet(visit, "asin(", "", ")"); break;
case EOpAcos: outputTriplet(visit, "acos(", "", ")"); break;
case EOpAtan: outputTriplet(visit, "atan(", "", ")"); break;
case EOpExp: outputTriplet(visit, "exp(", "", ")"); break;
case EOpLog: outputTriplet(visit, "log(", "", ")"); break;
case EOpExp2: outputTriplet(visit, "exp2(", "", ")"); break;
case EOpLog2: outputTriplet(visit, "log2(", "", ")"); break;
case EOpSqrt: outputTriplet(visit, "sqrt(", "", ")"); break;
case EOpInverseSqrt: outputTriplet(visit, "rsqrt(", "", ")"); break;
case EOpAbs: outputTriplet(visit, "abs(", "", ")"); break;
case EOpSign: outputTriplet(visit, "sign(", "", ")"); break;
case EOpFloor: outputTriplet(visit, "floor(", "", ")"); break;
case EOpCeil: outputTriplet(visit, "ceil(", "", ")"); break;
case EOpFract: outputTriplet(visit, "frac(", "", ")"); break;
case EOpLength: outputTriplet(visit, "length(", "", ")"); break;
case EOpNormalize: outputTriplet(visit, "normalize(", "", ")"); break;
case EOpDFdx:
if(mInsideDiscontinuousLoop || mOutputLod0Function)
{
outputTriplet(visit, "(", "", ", 0.0)");
}
else
{
outputTriplet(visit, "ddx(", "", ")");
}
break;
case EOpDFdy:
if(mInsideDiscontinuousLoop || mOutputLod0Function)
{
outputTriplet(visit, "(", "", ", 0.0)");
}
else
{
outputTriplet(visit, "ddy(", "", ")");
}
break;
case EOpFwidth:
if(mInsideDiscontinuousLoop || mOutputLod0Function)
{
outputTriplet(visit, "(", "", ", 0.0)");
}
else
{
outputTriplet(visit, "fwidth(", "", ")");
}
break;
case EOpAny: outputTriplet(visit, "any(", "", ")"); break;
case EOpAll: outputTriplet(visit, "all(", "", ")"); break;
default: UNREACHABLE();
}
return true;
}
bool OutputHLSL::visitAggregate(Visit visit, TIntermAggregate *node)
{
TInfoSinkBase &out = mBody;
switch (node->getOp())
{
case EOpSequence:
{
if (mInsideFunction)
{
outputLineDirective(node->getLine().first_line);
out << "{\n";
}
for (TIntermSequence::iterator sit = node->getSequence().begin(); sit != node->getSequence().end(); sit++)
{
outputLineDirective((*sit)->getLine().first_line);
traverseStatements(*sit);
out << ";\n";
}
if (mInsideFunction)
{
outputLineDirective(node->getLine().last_line);
out << "}\n";
}
return false;
}
case EOpDeclaration:
if (visit == PreVisit)
{
TIntermSequence &sequence = node->getSequence();
TIntermTyped *variable = sequence[0]->getAsTyped();
if (variable && (variable->getQualifier() == EvqTemporary || variable->getQualifier() == EvqGlobal))
{
if (variable->getType().getStruct())
{
addConstructor(variable->getType(), structNameString(*variable->getType().getStruct()), NULL);
}
if (!variable->getAsSymbolNode() || variable->getAsSymbolNode()->getSymbol() != "") // Variable declaration
{
if (!mInsideFunction)
{
out << "static ";
}
out << typeString(variable->getType()) + " ";
for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); sit++)
{
TIntermSymbol *symbol = (*sit)->getAsSymbolNode();
if (symbol)
{
symbol->traverse(this);
out << arrayString(symbol->getType());
out << " = " + initializer(symbol->getType());
}
else
{
(*sit)->traverse(this);
}
if (*sit != sequence.back())
{
out << ", ";
}
}
}
else if (variable->getAsSymbolNode() && variable->getAsSymbolNode()->getSymbol() == "") // Type (struct) declaration
{
// Already added to constructor map
}
else UNREACHABLE();
}
else if (variable && isVaryingOut(variable->getQualifier()))
{
for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); sit++)
{
TIntermSymbol *symbol = (*sit)->getAsSymbolNode();
if (symbol)
{
// Vertex (output) varyings which are declared but not written to should still be declared to allow successful linking
mReferencedVaryings[symbol->getSymbol()] = symbol;
}
else
{
(*sit)->traverse(this);
}
}
}
return false;
}
else if (visit == InVisit)
{
out << ", ";
}
break;
case EOpPrototype:
if (visit == PreVisit)
{
out << typeString(node->getType()) << " " << decorate(node->getName()) << (mOutputLod0Function ? "Lod0(" : "(");
TIntermSequence &arguments = node->getSequence();
for (unsigned int i = 0; i < arguments.size(); i++)
{
TIntermSymbol *symbol = arguments[i]->getAsSymbolNode();
if (symbol)
{
out << argumentString(symbol);
if (i < arguments.size() - 1)
{
out << ", ";
}
}
else UNREACHABLE();
}
out << ");\n";
// Also prototype the Lod0 variant if needed
if (mContainsLoopDiscontinuity && !mOutputLod0Function)
{
mOutputLod0Function = true;
node->traverse(this);
mOutputLod0Function = false;
}
return false;
}
break;
case EOpComma: outputTriplet(visit, "(", ", ", ")"); break;
case EOpFunction:
{
TString name = TFunction::unmangleName(node->getName());
out << typeString(node->getType()) << " ";
if (name == "main")
{
out << "gl_main(";
}
else
{
out << decorate(name) << (mOutputLod0Function ? "Lod0(" : "(");
}
TIntermSequence &sequence = node->getSequence();
TIntermSequence &arguments = sequence[0]->getAsAggregate()->getSequence();
for (unsigned int i = 0; i < arguments.size(); i++)
{
TIntermSymbol *symbol = arguments[i]->getAsSymbolNode();
if (symbol)
{
if (symbol->getType().getStruct())
{
addConstructor(symbol->getType(), structNameString(*symbol->getType().getStruct()), NULL);
}
out << argumentString(symbol);
if (i < arguments.size() - 1)
{
out << ", ";
}
}
else UNREACHABLE();
}
out << ")\n"
"{\n";
if (sequence.size() > 1)
{
mInsideFunction = true;
sequence[1]->traverse(this);
mInsideFunction = false;
}
out << "}\n";
if (mContainsLoopDiscontinuity && !mOutputLod0Function)
{
if (name != "main")
{
mOutputLod0Function = true;
node->traverse(this);
mOutputLod0Function = false;
}
}
return false;
}
break;
case EOpFunctionCall:
{
TString name = TFunction::unmangleName(node->getName());
bool lod0 = mInsideDiscontinuousLoop || mOutputLod0Function;
TIntermSequence &arguments = node->getSequence();
if (node->isUserDefined())
{
out << decorate(name) << (lod0 ? "Lod0(" : "(");
}
else
{
TBasicType samplerType = arguments[0]->getAsTyped()->getType().getBasicType();
TextureFunction textureFunction;
textureFunction.sampler = samplerType;
textureFunction.coords = arguments[1]->getAsTyped()->getNominalSize();
textureFunction.method = TextureFunction::IMPLICIT;
textureFunction.proj = false;
textureFunction.offset = false;
if (name == "texture2D" || name == "textureCube" || name == "texture")
{
textureFunction.method = TextureFunction::IMPLICIT;
}
else if (name == "texture2DProj" || name == "textureProj")
{
textureFunction.method = TextureFunction::IMPLICIT;
textureFunction.proj = true;
}
else if (name == "texture2DLod" || name == "textureCubeLod" || name == "textureLod" ||
name == "texture2DLodEXT" || name == "textureCubeLodEXT")
{
textureFunction.method = TextureFunction::LOD;
}
else if (name == "texture2DProjLod" || name == "textureProjLod" || name == "texture2DProjLodEXT")
{
textureFunction.method = TextureFunction::LOD;
textureFunction.proj = true;
}
else if (name == "textureSize")
{
textureFunction.method = TextureFunction::SIZE;
}
else if (name == "textureOffset")
{
textureFunction.method = TextureFunction::IMPLICIT;
textureFunction.offset = true;
}
else if (name == "textureProjOffset")
{
textureFunction.method = TextureFunction::IMPLICIT;
textureFunction.offset = true;
textureFunction.proj = true;
}
else if (name == "textureLodOffset")
{
textureFunction.method = TextureFunction::LOD;
textureFunction.offset = true;
}
else if (name == "textureProjLodOffset")
{
textureFunction.method = TextureFunction::LOD;
textureFunction.proj = true;
textureFunction.offset = true;
}
else if (name == "texelFetch")
{
textureFunction.method = TextureFunction::FETCH;
}
else if (name == "texelFetchOffset")
{
textureFunction.method = TextureFunction::FETCH;
textureFunction.offset = true;
}
else if (name == "textureGrad" || name == "texture2DGradEXT")
{
textureFunction.method = TextureFunction::GRAD;
}
else if (name == "textureGradOffset")
{
textureFunction.method = TextureFunction::GRAD;
textureFunction.offset = true;
}
else if (name == "textureProjGrad" || name == "texture2DProjGradEXT" || name == "textureCubeGradEXT")
{
textureFunction.method = TextureFunction::GRAD;
textureFunction.proj = true;
}
else if (name == "textureProjGradOffset")
{
textureFunction.method = TextureFunction::GRAD;
textureFunction.proj = true;
textureFunction.offset = true;
}
else UNREACHABLE();
if (textureFunction.method == TextureFunction::IMPLICIT) // Could require lod 0 or have a bias argument
{
unsigned int mandatoryArgumentCount = 2; // All functions have sampler and coordinate arguments
if (textureFunction.offset)
{
mandatoryArgumentCount++;
}
bool bias = (arguments.size() > mandatoryArgumentCount); // Bias argument is optional
if (lod0 || mContext.shaderType == SH_VERTEX_SHADER)
{
if (bias)
{
textureFunction.method = TextureFunction::LOD0BIAS;
}
else
{
textureFunction.method = TextureFunction::LOD0;
}
}
else if (bias)
{
textureFunction.method = TextureFunction::BIAS;
}
}
mUsesTexture.insert(textureFunction);
out << textureFunction.name();
}
for (TIntermSequence::iterator arg = arguments.begin(); arg != arguments.end(); arg++)
{
if (mOutputType == SH_HLSL11_OUTPUT && IsSampler((*arg)->getAsTyped()->getBasicType()))
{
out << "texture_";
(*arg)->traverse(this);
out << ", sampler_";
}
(*arg)->traverse(this);
if (arg < arguments.end() - 1)
{
out << ", ";
}
}
out << ")";
return false;
}
break;
case EOpParameters: outputTriplet(visit, "(", ", ", ")\n{\n"); break;
case EOpConstructFloat:
addConstructor(node->getType(), "vec1", &node->getSequence());
outputTriplet(visit, "vec1(", "", ")");
break;
case EOpConstructVec2:
addConstructor(node->getType(), "vec2", &node->getSequence());
outputTriplet(visit, "vec2(", ", ", ")");
break;
case EOpConstructVec3:
addConstructor(node->getType(), "vec3", &node->getSequence());
outputTriplet(visit, "vec3(", ", ", ")");
break;
case EOpConstructVec4:
addConstructor(node->getType(), "vec4", &node->getSequence());
outputTriplet(visit, "vec4(", ", ", ")");
break;
case EOpConstructBool:
addConstructor(node->getType(), "bvec1", &node->getSequence());
outputTriplet(visit, "bvec1(", "", ")");
break;
case EOpConstructBVec2:
addConstructor(node->getType(), "bvec2", &node->getSequence());
outputTriplet(visit, "bvec2(", ", ", ")");
break;
case EOpConstructBVec3:
addConstructor(node->getType(), "bvec3", &node->getSequence());
outputTriplet(visit, "bvec3(", ", ", ")");
break;
case EOpConstructBVec4:
addConstructor(node->getType(), "bvec4", &node->getSequence());
outputTriplet(visit, "bvec4(", ", ", ")");
break;
case EOpConstructInt:
addConstructor(node->getType(), "ivec1", &node->getSequence());
outputTriplet(visit, "ivec1(", "", ")");
break;
case EOpConstructIVec2:
addConstructor(node->getType(), "ivec2", &node->getSequence());
outputTriplet(visit, "ivec2(", ", ", ")");
break;
case EOpConstructIVec3:
addConstructor(node->getType(), "ivec3", &node->getSequence());
outputTriplet(visit, "ivec3(", ", ", ")");
break;
case EOpConstructIVec4:
addConstructor(node->getType(), "ivec4", &node->getSequence());
outputTriplet(visit, "ivec4(", ", ", ")");
break;
case EOpConstructUInt:
addConstructor(node->getType(), "uvec1", &node->getSequence());
outputTriplet(visit, "uvec1(", "", ")");
break;
case EOpConstructUVec2:
addConstructor(node->getType(), "uvec2", &node->getSequence());
outputTriplet(visit, "uvec2(", ", ", ")");
break;
case EOpConstructUVec3:
addConstructor(node->getType(), "uvec3", &node->getSequence());
outputTriplet(visit, "uvec3(", ", ", ")");
break;
case EOpConstructUVec4:
addConstructor(node->getType(), "uvec4", &node->getSequence());
outputTriplet(visit, "uvec4(", ", ", ")");
break;
case EOpConstructMat2:
addConstructor(node->getType(), "mat2", &node->getSequence());
outputTriplet(visit, "mat2(", ", ", ")");
break;
case EOpConstructMat3:
addConstructor(node->getType(), "mat3", &node->getSequence());
outputTriplet(visit, "mat3(", ", ", ")");
break;
case EOpConstructMat4:
addConstructor(node->getType(), "mat4", &node->getSequence());
outputTriplet(visit, "mat4(", ", ", ")");
break;
case EOpConstructStruct:
{
const TString &structName = structNameString(*node->getType().getStruct());
addConstructor(node->getType(), structName, &node->getSequence());
outputTriplet(visit, structName + "_ctor(", ", ", ")");
}
break;
case EOpLessThan: outputTriplet(visit, "(", " < ", ")"); break;
case EOpGreaterThan: outputTriplet(visit, "(", " > ", ")"); break;
case EOpLessThanEqual: outputTriplet(visit, "(", " <= ", ")"); break;
case EOpGreaterThanEqual: outputTriplet(visit, "(", " >= ", ")"); break;
case EOpVectorEqual: outputTriplet(visit, "(", " == ", ")"); break;
case EOpVectorNotEqual: outputTriplet(visit, "(", " != ", ")"); break;
case EOpMod:
{
// We need to look at the number of components in both arguments
const int modValue = node->getSequence()[0]->getAsTyped()->getNominalSize() * 10
+ node->getSequence()[1]->getAsTyped()->getNominalSize();
switch (modValue)
{
case 11: mUsesMod1 = true; break;
case 22: mUsesMod2v = true; break;
case 21: mUsesMod2f = true; break;
case 33: mUsesMod3v = true; break;
case 31: mUsesMod3f = true; break;
case 44: mUsesMod4v = true; break;
case 41: mUsesMod4f = true; break;
default: UNREACHABLE();
}
outputTriplet(visit, "mod(", ", ", ")");
}
break;
case EOpPow: outputTriplet(visit, "pow(", ", ", ")"); break;
case EOpAtan:
ASSERT(node->getSequence().size() == 2); // atan(x) is a unary operator
switch (node->getSequence()[0]->getAsTyped()->getNominalSize())
{
case 1: mUsesAtan2_1 = true; break;
case 2: mUsesAtan2_2 = true; break;
case 3: mUsesAtan2_3 = true; break;
case 4: mUsesAtan2_4 = true; break;
default: UNREACHABLE();
}
outputTriplet(visit, "atanyx(", ", ", ")");
break;
case EOpMin: outputTriplet(visit, "min(", ", ", ")"); break;
case EOpMax: outputTriplet(visit, "max(", ", ", ")"); break;
case EOpClamp: outputTriplet(visit, "clamp(", ", ", ")"); break;
case EOpMix: outputTriplet(visit, "lerp(", ", ", ")"); break;
case EOpStep: outputTriplet(visit, "step(", ", ", ")"); break;
case EOpSmoothStep: outputTriplet(visit, "smoothstep(", ", ", ")"); break;
case EOpDistance: outputTriplet(visit, "distance(", ", ", ")"); break;
case EOpDot: outputTriplet(visit, "dot(", ", ", ")"); break;
case EOpCross: outputTriplet(visit, "cross(", ", ", ")"); break;
case EOpFaceForward:
{
switch (node->getSequence()[0]->getAsTyped()->getNominalSize()) // Number of components in the first argument
{
case 1: mUsesFaceforward1 = true; break;
case 2: mUsesFaceforward2 = true; break;
case 3: mUsesFaceforward3 = true; break;
case 4: mUsesFaceforward4 = true; break;
default: UNREACHABLE();
}
outputTriplet(visit, "faceforward(", ", ", ")");
}
break;
case EOpReflect: outputTriplet(visit, "reflect(", ", ", ")"); break;
case EOpRefract: outputTriplet(visit, "refract(", ", ", ")"); break;
case EOpMul: outputTriplet(visit, "(", " * ", ")"); break;
default: UNREACHABLE();
}
return true;
}
bool OutputHLSL::visitSelection(Visit visit, TIntermSelection *node)
{
TInfoSinkBase &out = mBody;
if (node->usesTernaryOperator())
{
out << "s" << mUnfoldShortCircuit->getNextTemporaryIndex();
}
else // if/else statement
{
mUnfoldShortCircuit->traverse(node->getCondition());
out << "if (";
node->getCondition()->traverse(this);
out << ")\n";
outputLineDirective(node->getLine().first_line);
out << "{\n";
bool discard = false;
if (node->getTrueBlock())
{
traverseStatements(node->getTrueBlock());
// Detect true discard
discard = (discard || FindDiscard::search(node->getTrueBlock()));
}
outputLineDirective(node->getLine().first_line);
out << ";\n}\n";
if (node->getFalseBlock())
{
out << "else\n";
outputLineDirective(node->getFalseBlock()->getLine().first_line);
out << "{\n";
outputLineDirective(node->getFalseBlock()->getLine().first_line);
traverseStatements(node->getFalseBlock());
outputLineDirective(node->getFalseBlock()->getLine().first_line);
out << ";\n}\n";
// Detect false discard
discard = (discard || FindDiscard::search(node->getFalseBlock()));
}
// ANGLE issue 486: Detect problematic conditional discard
if (discard && FindSideEffectRewriting::search(node))
{
mUsesDiscardRewriting = true;
}
}
return false;
}
void OutputHLSL::visitConstantUnion(TIntermConstantUnion *node)
{
writeConstantUnion(node->getType(), node->getUnionArrayPointer());
}
bool OutputHLSL::visitLoop(Visit visit, TIntermLoop *node)
{
mNestedLoopDepth++;
bool wasDiscontinuous = mInsideDiscontinuousLoop;
if (mContainsLoopDiscontinuity && !mInsideDiscontinuousLoop)
{
mInsideDiscontinuousLoop = containsLoopDiscontinuity(node);
}
if (mOutputType == SH_HLSL9_OUTPUT)
{
if (handleExcessiveLoop(node))
{
mInsideDiscontinuousLoop = wasDiscontinuous;
mNestedLoopDepth--;
return false;
}
}
TInfoSinkBase &out = mBody;
if (node->getType() == ELoopDoWhile)
{
out << "{do\n";
outputLineDirective(node->getLine().first_line);
out << "{\n";
}
else
{
out << "{for(";
if (node->getInit())
{
node->getInit()->traverse(this);
}
out << "; ";
if (node->getCondition())
{
node->getCondition()->traverse(this);
}
out << "; ";
if (node->getExpression())
{
node->getExpression()->traverse(this);
}
out << ")\n";
outputLineDirective(node->getLine().first_line);
out << "{\n";
}
if (node->getBody())
{
traverseStatements(node->getBody());
}
outputLineDirective(node->getLine().first_line);
out << ";}\n";
if (node->getType() == ELoopDoWhile)
{
outputLineDirective(node->getCondition()->getLine().first_line);
out << "while(\n";
node->getCondition()->traverse(this);
out << ");";
}
out << "}\n";
mInsideDiscontinuousLoop = wasDiscontinuous;
mNestedLoopDepth--;
return false;
}
bool OutputHLSL::visitBranch(Visit visit, TIntermBranch *node)
{
TInfoSinkBase &out = mBody;
switch (node->getFlowOp())
{
case EOpKill:
outputTriplet(visit, "discard;\n", "", "");
break;
case EOpBreak:
if (visit == PreVisit)
{
if (mNestedLoopDepth > 1)
{
mUsesNestedBreak = true;
}
if (mExcessiveLoopIndex)
{
out << "{Break";
mExcessiveLoopIndex->traverse(this);
out << " = true; break;}\n";
}
else
{
out << "break;\n";
}
}
break;
case EOpContinue: outputTriplet(visit, "continue;\n", "", ""); break;
case EOpReturn:
if (visit == PreVisit)
{
if (node->getExpression())
{
out << "return ";
}
else
{
out << "return;\n";
}
}
else if (visit == PostVisit)
{
if (node->getExpression())
{
out << ";\n";
}
}
break;
default: UNREACHABLE();
}
return true;
}
void OutputHLSL::traverseStatements(TIntermNode *node)
{
if (isSingleStatement(node))
{
mUnfoldShortCircuit->traverse(node);
}
node->traverse(this);
}
bool OutputHLSL::isSingleStatement(TIntermNode *node)
{
TIntermAggregate *aggregate = node->getAsAggregate();
if (aggregate)
{
if (aggregate->getOp() == EOpSequence)
{
return false;
}
else
{
for (TIntermSequence::iterator sit = aggregate->getSequence().begin(); sit != aggregate->getSequence().end(); sit++)
{
if (!isSingleStatement(*sit))
{
return false;
}
}
return true;
}
}
return true;
}
// Handle loops with more than 254 iterations (unsupported by D3D9) by splitting them
// (The D3D documentation says 255 iterations, but the compiler complains at anything more than 254).
bool OutputHLSL::handleExcessiveLoop(TIntermLoop *node)
{
const int MAX_LOOP_ITERATIONS = 254;
TInfoSinkBase &out = mBody;
// Parse loops of the form:
// for(int index = initial; index [comparator] limit; index += increment)
TIntermSymbol *index = NULL;
TOperator comparator = EOpNull;
int initial = 0;
int limit = 0;
int increment = 0;
// Parse index name and intial value
if (node->getInit())
{
TIntermAggregate *init = node->getInit()->getAsAggregate();
if (init)
{
TIntermSequence &sequence = init->getSequence();
TIntermTyped *variable = sequence[0]->getAsTyped();
if (variable && variable->getQualifier() == EvqTemporary)
{
TIntermBinary *assign = variable->getAsBinaryNode();
if (assign->getOp() == EOpInitialize)
{
TIntermSymbol *symbol = assign->getLeft()->getAsSymbolNode();
TIntermConstantUnion *constant = assign->getRight()->getAsConstantUnion();
if (symbol && constant)
{
if (constant->getBasicType() == EbtInt && constant->isScalar())
{
index = symbol;
initial = constant->getIConst(0);
}
}
}
}
}
}
// Parse comparator and limit value
if (index != NULL && node->getCondition())
{
TIntermBinary *test = node->getCondition()->getAsBinaryNode();
if (test && test->getLeft()->getAsSymbolNode()->getId() == index->getId())
{
TIntermConstantUnion *constant = test->getRight()->getAsConstantUnion();
if (constant)
{
if (constant->getBasicType() == EbtInt && constant->isScalar())
{
comparator = test->getOp();
limit = constant->getIConst(0);
}
}
}
}
// Parse increment
if (index != NULL && comparator != EOpNull && node->getExpression())
{
TIntermBinary *binaryTerminal = node->getExpression()->getAsBinaryNode();
TIntermUnary *unaryTerminal = node->getExpression()->getAsUnaryNode();
if (binaryTerminal)
{
TOperator op = binaryTerminal->getOp();
TIntermConstantUnion *constant = binaryTerminal->getRight()->getAsConstantUnion();
if (constant)
{
if (constant->getBasicType() == EbtInt && constant->isScalar())
{
int value = constant->getIConst(0);
switch (op)
{
case EOpAddAssign: increment = value; break;
case EOpSubAssign: increment = -value; break;
default: UNIMPLEMENTED();
}
}
}
}
else if (unaryTerminal)
{
TOperator op = unaryTerminal->getOp();
switch (op)
{
case EOpPostIncrement: increment = 1; break;
case EOpPostDecrement: increment = -1; break;
case EOpPreIncrement: increment = 1; break;
case EOpPreDecrement: increment = -1; break;
default: UNIMPLEMENTED();
}
}
}
if (index != NULL && comparator != EOpNull && increment != 0)
{
if (comparator == EOpLessThanEqual)
{
comparator = EOpLessThan;
limit += 1;
}
if (comparator == EOpLessThan)
{
int iterations = (limit - initial) / increment;
if (iterations <= MAX_LOOP_ITERATIONS)
{
return false; // Not an excessive loop
}
TIntermSymbol *restoreIndex = mExcessiveLoopIndex;
mExcessiveLoopIndex = index;
out << "{int ";
index->traverse(this);
out << ";\n"
"bool Break";
index->traverse(this);
out << " = false;\n";
bool firstLoopFragment = true;
while (iterations > 0)
{
int clampedLimit = initial + increment * std::min(MAX_LOOP_ITERATIONS, iterations);
if (!firstLoopFragment)
{
out << "if (!Break";
index->traverse(this);
out << ") {\n";
}
if (iterations <= MAX_LOOP_ITERATIONS) // Last loop fragment
{
mExcessiveLoopIndex = NULL; // Stops setting the Break flag
}
// for(int index = initial; index < clampedLimit; index += increment)
out << "for(";
index->traverse(this);
out << " = ";
out << initial;
out << "; ";
index->traverse(this);
out << " < ";
out << clampedLimit;
out << "; ";
index->traverse(this);
out << " += ";
out << increment;
out << ")\n";
outputLineDirective(node->getLine().first_line);
out << "{\n";
if (node->getBody())
{
node->getBody()->traverse(this);
}
outputLineDirective(node->getLine().first_line);
out << ";}\n";
if (!firstLoopFragment)
{
out << "}\n";
}
firstLoopFragment = false;
initial += MAX_LOOP_ITERATIONS * increment;
iterations -= MAX_LOOP_ITERATIONS;
}
out << "}";
mExcessiveLoopIndex = restoreIndex;
return true;
}
else UNIMPLEMENTED();
}
return false; // Not handled as an excessive loop
}
void OutputHLSL::outputTriplet(Visit visit, const TString &preString, const TString &inString, const TString &postString)
{
TInfoSinkBase &out = mBody;
if (visit == PreVisit)
{
out << preString;
}
else if (visit == InVisit)
{
out << inString;
}
else if (visit == PostVisit)
{
out << postString;
}
}
void OutputHLSL::outputLineDirective(int line)
{
if ((mContext.compileOptions & SH_LINE_DIRECTIVES) && (line > 0))
{
mBody << "\n";
mBody << "#line " << line;
if (mContext.sourcePath)
{
mBody << " \"" << mContext.sourcePath << "\"";
}
mBody << "\n";
}
}
TString OutputHLSL::argumentString(const TIntermSymbol *symbol)
{
TQualifier qualifier = symbol->getQualifier();
const TType &type = symbol->getType();
TString name = symbol->getSymbol();
if (name.empty()) // HLSL demands named arguments, also for prototypes
{
name = "x" + str(mUniqueIndex++);
}
else
{
name = decorate(name);
}
if (mOutputType == SH_HLSL11_OUTPUT && IsSampler(type.getBasicType()))
{
return qualifierString(qualifier) + " " + textureString(type) + " texture_" + name + arrayString(type) + ", " +
qualifierString(qualifier) + " " + samplerString(type) + " sampler_" + name + arrayString(type);
}
return qualifierString(qualifier) + " " + typeString(type) + " " + name + arrayString(type);
}
TString OutputHLSL::interpolationString(TQualifier qualifier)
{
switch(qualifier)
{
case EvqVaryingIn: return "";
case EvqFragmentIn: return "";
case EvqInvariantVaryingIn: return "";
case EvqSmoothIn: return "linear";
case EvqFlatIn: return "nointerpolation";
case EvqCentroidIn: return "centroid";
case EvqVaryingOut: return "";
case EvqVertexOut: return "";
case EvqInvariantVaryingOut: return "";
case EvqSmoothOut: return "linear";
case EvqFlatOut: return "nointerpolation";
case EvqCentroidOut: return "centroid";
default: UNREACHABLE();
}
return "";
}
TString OutputHLSL::qualifierString(TQualifier qualifier)
{
switch(qualifier)
{
case EvqIn: return "in";
case EvqOut: return "inout"; // 'out' results in an HLSL error if not all fields are written, for GLSL it's undefined
case EvqInOut: return "inout";
case EvqConstReadOnly: return "const";
default: UNREACHABLE();
}
return "";
}
TString OutputHLSL::typeString(const TType &type)
{
const TStructure* structure = type.getStruct();
if (structure)
{
const TString& typeName = structure->name();
if (typeName != "")
{
return structNameString(*type.getStruct());
}
else // Nameless structure, define in place
{
return structureString(*structure, false, false);
}
}
else if (type.isMatrix())
{
int cols = type.getCols();
int rows = type.getRows();
return "float" + str(cols) + "x" + str(rows);
}
else
{
switch (type.getBasicType())
{
case EbtFloat:
switch (type.getNominalSize())
{
case 1: return "float";
case 2: return "float2";
case 3: return "float3";
case 4: return "float4";
}
case EbtInt:
switch (type.getNominalSize())
{
case 1: return "int";
case 2: return "int2";
case 3: return "int3";
case 4: return "int4";
}
case EbtUInt:
switch (type.getNominalSize())
{
case 1: return "uint";
case 2: return "uint2";
case 3: return "uint3";
case 4: return "uint4";
}
case EbtBool:
switch (type.getNominalSize())
{
case 1: return "bool";
case 2: return "bool2";
case 3: return "bool3";
case 4: return "bool4";
}
case EbtVoid:
return "void";
case EbtSampler2D:
case EbtISampler2D:
case EbtUSampler2D:
case EbtSampler2DArray:
case EbtISampler2DArray:
case EbtUSampler2DArray:
return "sampler2D";
case EbtSamplerCube:
case EbtISamplerCube:
case EbtUSamplerCube:
return "samplerCUBE";
case EbtSamplerExternalOES:
return "sampler2D";
default:
break;
}
}
UNREACHABLE();
return "<unknown type>";
}
TString OutputHLSL::textureString(const TType &type)
{
switch (type.getBasicType())
{
case EbtSampler2D: return "Texture2D";
case EbtSamplerCube: return "TextureCube";
case EbtSamplerExternalOES: return "Texture2D";
case EbtSampler2DArray: return "Texture2DArray";
case EbtSampler3D: return "Texture3D";
case EbtISampler2D: return "Texture2D<int4>";
case EbtISampler3D: return "Texture3D<int4>";
case EbtISamplerCube: return "Texture2DArray<int4>";
case EbtISampler2DArray: return "Texture2DArray<int4>";
case EbtUSampler2D: return "Texture2D<uint4>";
case EbtUSampler3D: return "Texture3D<uint4>";
case EbtUSamplerCube: return "Texture2DArray<uint4>";
case EbtUSampler2DArray: return "Texture2DArray<uint4>";
case EbtSampler2DShadow: return "Texture2D";
case EbtSamplerCubeShadow: return "TextureCube";
case EbtSampler2DArrayShadow: return "Texture2DArray";
default: UNREACHABLE();
}
return "<unknown texture type>";
}
TString OutputHLSL::samplerString(const TType &type)
{
if (IsShadowSampler(type.getBasicType()))
{
return "SamplerComparisonState";
}
else
{
return "SamplerState";
}
}
TString OutputHLSL::arrayString(const TType &type)
{
if (!type.isArray())
{
return "";
}
return "[" + str(type.getArraySize()) + "]";
}
TString OutputHLSL::initializer(const TType &type)
{
TString string;
size_t size = type.getObjectSize();
for (size_t component = 0; component < size; component++)
{
string += "0";
if (component + 1 < size)
{
string += ", ";
}
}
return "{" + string + "}";
}
TString OutputHLSL::structureString(const TStructure &structure, bool useHLSLRowMajorPacking, bool useStd140Packing)
{
const TFieldList &fields = structure.fields();
const bool isNameless = (structure.name() == "");
const TString &structName = structureTypeName(structure, useHLSLRowMajorPacking, useStd140Packing);
const TString declareString = (isNameless ? "struct" : "struct " + structName);
TString string;
string += declareString + "\n"
"{\n";
int elementIndex = 0;
for (unsigned int i = 0; i < fields.size(); i++)
{
const TField &field = *fields[i];
const TType &fieldType = *field.type();
const TStructure *fieldStruct = fieldType.getStruct();
const TString &fieldTypeString = fieldStruct ? structureTypeName(*fieldStruct, useHLSLRowMajorPacking, useStd140Packing) : typeString(fieldType);
if (useStd140Packing)
{
string += std140PrePaddingString(*field.type(), &elementIndex);
}
string += " " + fieldTypeString + " " + decorateField(field.name(), structure) + arrayString(fieldType) + ";\n";
if (useStd140Packing)
{
string += std140PostPaddingString(*field.type(), useHLSLRowMajorPacking);
}
}
// Nameless structs do not finish with a semicolon and newline, to leave room for an instance variable
string += (isNameless ? "} " : "};\n");
// Add remaining element index to the global map, for use with nested structs in standard layouts
if (useStd140Packing)
{
mStd140StructElementIndexes[structName] = elementIndex;
}
return string;
}
TString OutputHLSL::structureTypeName(const TStructure &structure, bool useHLSLRowMajorPacking, bool useStd140Packing)
{
if (structure.name() == "")
{
return "";
}
TString prefix = "";
// Structs packed with row-major matrices in HLSL are prefixed with "rm"
// GLSL column-major maps to HLSL row-major, and the converse is true
if (useStd140Packing)
{
prefix += "std";
}
if (useHLSLRowMajorPacking)
{
if (prefix != "") prefix += "_";
prefix += "rm";
}
return prefix + structNameString(structure);
}
void OutputHLSL::addConstructor(const TType &type, const TString &name, const TIntermSequence *parameters)
{
if (name == "")
{
return; // Nameless structures don't have constructors
}
if (type.getStruct() && mStructNames.find(name) != mStructNames.end())
{
return; // Already added
}
TType ctorType = type;
ctorType.clearArrayness();
ctorType.setPrecision(EbpHigh);
ctorType.setQualifier(EvqTemporary);
typedef std::vector<TType> ParameterArray;
ParameterArray ctorParameters;
const TStructure* structure = type.getStruct();
if (structure)
{
mStructNames.insert(name);
const TString &structString = structureString(*structure, false, false);
if (std::find(mStructDeclarations.begin(), mStructDeclarations.end(), structString) == mStructDeclarations.end())
{
// Add row-major packed struct for interface blocks
TString rowMajorString = "#pragma pack_matrix(row_major)\n" +
structureString(*structure, true, false) +
"#pragma pack_matrix(column_major)\n";
TString std140String = structureString(*structure, false, true);
TString std140RowMajorString = "#pragma pack_matrix(row_major)\n" +
structureString(*structure, true, true) +
"#pragma pack_matrix(column_major)\n";
mStructDeclarations.push_back(structString);
mStructDeclarations.push_back(rowMajorString);
mStructDeclarations.push_back(std140String);
mStructDeclarations.push_back(std140RowMajorString);
}
const TFieldList &fields = structure->fields();
for (unsigned int i = 0; i < fields.size(); i++)
{
ctorParameters.push_back(*fields[i]->type());
}
}
else if (parameters)
{
for (TIntermSequence::const_iterator parameter = parameters->begin(); parameter != parameters->end(); parameter++)
{
ctorParameters.push_back((*parameter)->getAsTyped()->getType());
}
}
else UNREACHABLE();
TString constructor;
if (ctorType.getStruct())
{
constructor += name + " " + name + "_ctor(";
}
else // Built-in type
{
constructor += typeString(ctorType) + " " + name + "(";
}
for (unsigned int parameter = 0; parameter < ctorParameters.size(); parameter++)
{
const TType &type = ctorParameters[parameter];
constructor += typeString(type) + " x" + str(parameter) + arrayString(type);
if (parameter < ctorParameters.size() - 1)
{
constructor += ", ";
}
}
constructor += ")\n"
"{\n";
if (ctorType.getStruct())
{
constructor += " " + name + " structure = {";
}
else
{
constructor += " return " + typeString(ctorType) + "(";
}
if (ctorType.isMatrix() && ctorParameters.size() == 1)
{
int rows = ctorType.getRows();
int cols = ctorType.getCols();
const TType &parameter = ctorParameters[0];
if (parameter.isScalar())
{
for (int row = 0; row < rows; row++)
{
for (int col = 0; col < cols; col++)
{
constructor += TString((row == col) ? "x0" : "0.0");
if (row < rows - 1 || col < cols - 1)
{
constructor += ", ";
}
}
}
}
else if (parameter.isMatrix())
{
for (int row = 0; row < rows; row++)
{
for (int col = 0; col < cols; col++)
{
if (row < parameter.getRows() && col < parameter.getCols())
{
constructor += TString("x0") + "[" + str(row) + "]" + "[" + str(col) + "]";
}
else
{
constructor += TString((row == col) ? "1.0" : "0.0");
}
if (row < rows - 1 || col < cols - 1)
{
constructor += ", ";
}
}
}
}
else UNREACHABLE();
}
else
{
size_t remainingComponents = ctorType.getObjectSize();
size_t parameterIndex = 0;
while (remainingComponents > 0)
{
const TType &parameter = ctorParameters[parameterIndex];
const size_t parameterSize = parameter.getObjectSize();
bool moreParameters = parameterIndex + 1 < ctorParameters.size();
constructor += "x" + str(parameterIndex);
if (parameter.isScalar())
{
remainingComponents -= parameter.getObjectSize();
}
else if (parameter.isVector())
{
if (remainingComponents == parameterSize || moreParameters)
{
ASSERT(parameterSize <= remainingComponents);
remainingComponents -= parameterSize;
}
else if (remainingComponents < static_cast<size_t>(parameter.getNominalSize()))
{
switch (remainingComponents)
{
case 1: constructor += ".x"; break;
case 2: constructor += ".xy"; break;
case 3: constructor += ".xyz"; break;
case 4: constructor += ".xyzw"; break;
default: UNREACHABLE();
}
remainingComponents = 0;
}
else UNREACHABLE();
}
else if (parameter.isMatrix() || parameter.getStruct())
{
ASSERT(remainingComponents == parameterSize || moreParameters);
ASSERT(parameterSize <= remainingComponents);
remainingComponents -= parameterSize;
}
else UNREACHABLE();
if (moreParameters)
{
parameterIndex++;
}
if (remainingComponents)
{
constructor += ", ";
}
}
}
if (ctorType.getStruct())
{
constructor += "};\n"
" return structure;\n"
"}\n";
}
else
{
constructor += ");\n"
"}\n";
}
mConstructors.insert(constructor);
}
const ConstantUnion *OutputHLSL::writeConstantUnion(const TType &type, const ConstantUnion *constUnion)
{
TInfoSinkBase &out = mBody;
const TStructure* structure = type.getStruct();
if (structure)
{
out << structNameString(*structure) + "_ctor(";
const TFieldList& fields = structure->fields();
for (size_t i = 0; i < fields.size(); i++)
{
const TType *fieldType = fields[i]->type();
constUnion = writeConstantUnion(*fieldType, constUnion);
if (i != fields.size() - 1)
{
out << ", ";
}
}
out << ")";
}
else
{
size_t size = type.getObjectSize();
bool writeType = size > 1;
if (writeType)
{
out << typeString(type) << "(";
}
for (size_t i = 0; i < size; i++, constUnion++)
{
switch (constUnion->getType())
{
case EbtFloat: out << std::min(FLT_MAX, std::max(-FLT_MAX, constUnion->getFConst())); break;
case EbtInt: out << constUnion->getIConst(); break;
case EbtUInt: out << constUnion->getUConst(); break;
case EbtBool: out << constUnion->getBConst(); break;
default: UNREACHABLE();
}
if (i != size - 1)
{
out << ", ";
}
}
if (writeType)
{
out << ")";
}
}
return constUnion;
}
TString OutputHLSL::structNameString(const TStructure &structure)
{
if (structure.name().empty())
{
return "";
}
return "ss_" + str(structure.uniqueId()) + structure.name();
}
TString OutputHLSL::decorate(const TString &string)
{
if (string.compare(0, 3, "gl_") != 0 && string.compare(0, 3, "dx_") != 0)
{
return "_" + string;
}
return string;
}
TString OutputHLSL::decorateUniform(const TString &string, const TType &type)
{
if (type.getBasicType() == EbtSamplerExternalOES)
{
return "ex_" + string;
}
return decorate(string);
}
TString OutputHLSL::decorateField(const TString &string, const TStructure &structure)
{
if (structure.name().compare(0, 3, "gl_") != 0)
{
return decorate(string);
}
return string;
}
void OutputHLSL::declareInterfaceBlockField(const TType &type, const TString &name, std::vector<gl::InterfaceBlockField>& output)
{
const TStructure *structure = type.getStruct();
if (!structure)
{
const bool isRowMajorMatrix = (type.isMatrix() && type.getLayoutQualifier().matrixPacking == EmpRowMajor);
gl::InterfaceBlockField field(glVariableType(type), glVariablePrecision(type), name.c_str(),
(unsigned int)type.getArraySize(), isRowMajorMatrix);
output.push_back(field);
}
else
{
gl::InterfaceBlockField structField(GL_STRUCT_ANGLEX, GL_NONE, name.c_str(), (unsigned int)type.getArraySize(), false);
const TFieldList &fields = structure->fields();
for (size_t fieldIndex = 0; fieldIndex < fields.size(); fieldIndex++)
{
TField *field = fields[fieldIndex];
TType *fieldType = field->type();
// make sure to copy matrix packing information
fieldType->setLayoutQualifier(type.getLayoutQualifier());
declareInterfaceBlockField(*fieldType, field->name(), structField.fields);
}
output.push_back(structField);
}
}
gl::Uniform OutputHLSL::declareUniformToList(const TType &type, const TString &name, int registerIndex, std::vector<gl::Uniform>& output)
{
const TStructure *structure = type.getStruct();
if (!structure)
{
gl::Uniform uniform(glVariableType(type), glVariablePrecision(type), name.c_str(),
(unsigned int)type.getArraySize(), (unsigned int)registerIndex, 0);
output.push_back(uniform);
return uniform;
}
else
{
gl::Uniform structUniform(GL_STRUCT_ANGLEX, GL_NONE, name.c_str(), (unsigned int)type.getArraySize(),
(unsigned int)registerIndex, GL_INVALID_INDEX);
const TFieldList &fields = structure->fields();
for (size_t fieldIndex = 0; fieldIndex < fields.size(); fieldIndex++)
{
TField *field = fields[fieldIndex];
TType *fieldType = field->type();
declareUniformToList(*fieldType, field->name(), GL_INVALID_INDEX, structUniform.fields);
}
// assign register offset information -- this will override the information in any sub-structures.
HLSLVariableGetRegisterInfo(registerIndex, &structUniform, mOutputType);
output.push_back(structUniform);
return structUniform;
}
}
gl::InterpolationType getInterpolationType(TQualifier qualifier)
{
switch (qualifier)
{
case EvqFlatIn:
case EvqFlatOut:
return gl::INTERPOLATION_FLAT;
case EvqSmoothIn:
case EvqSmoothOut:
case EvqVertexOut:
case EvqFragmentIn:
case EvqVaryingIn:
case EvqVaryingOut:
return gl::INTERPOLATION_SMOOTH;
case EvqCentroidIn:
case EvqCentroidOut:
return gl::INTERPOLATION_CENTROID;
default: UNREACHABLE();
return gl::INTERPOLATION_SMOOTH;
}
}
void OutputHLSL::declareVaryingToList(const TType &type, TQualifier baseTypeQualifier, const TString &name, std::vector<gl::Varying>& fieldsOut)
{
const TStructure *structure = type.getStruct();
gl::InterpolationType interpolation = getInterpolationType(baseTypeQualifier);
if (!structure)
{
gl::Varying varying(glVariableType(type), glVariablePrecision(type), name.c_str(), (unsigned int)type.getArraySize(), interpolation);
fieldsOut.push_back(varying);
}
else
{
gl::Varying structVarying(GL_STRUCT_ANGLEX, GL_NONE, name.c_str(), (unsigned int)type.getArraySize(), interpolation);
const TFieldList &fields = structure->fields();
structVarying.structName = structure->name().c_str();
for (size_t fieldIndex = 0; fieldIndex < fields.size(); fieldIndex++)
{
const TField &field = *fields[fieldIndex];
declareVaryingToList(*field.type(), baseTypeQualifier, field.name(), structVarying.fields);
}
fieldsOut.push_back(structVarying);
}
}
int OutputHLSL::declareUniformAndAssignRegister(const TType &type, const TString &name)
{
int registerIndex = (IsSampler(type.getBasicType()) ? mSamplerRegister : mUniformRegister);
const gl::Uniform &uniform = declareUniformToList(type, name, registerIndex, mActiveUniforms);
if (IsSampler(type.getBasicType()))
{
mSamplerRegister += gl::HLSLVariableRegisterCount(uniform, mOutputType);
}
else
{
mUniformRegister += gl::HLSLVariableRegisterCount(uniform, mOutputType);
}
return registerIndex;
}
GLenum OutputHLSL::glVariableType(const TType &type)
{
if (type.getBasicType() == EbtFloat)
{
if (type.isScalar())
{
return GL_FLOAT;
}
else if (type.isVector())
{
switch(type.getNominalSize())
{
case 2: return GL_FLOAT_VEC2;
case 3: return GL_FLOAT_VEC3;
case 4: return GL_FLOAT_VEC4;
default: UNREACHABLE();
}
}
else if (type.isMatrix())
{
switch (type.getCols())
{
case 2:
switch(type.getRows())
{
case 2: return GL_FLOAT_MAT2;
case 3: return GL_FLOAT_MAT2x3;
case 4: return GL_FLOAT_MAT2x4;
default: UNREACHABLE();
}
case 3:
switch(type.getRows())
{
case 2: return GL_FLOAT_MAT3x2;
case 3: return GL_FLOAT_MAT3;
case 4: return GL_FLOAT_MAT3x4;
default: UNREACHABLE();
}
case 4:
switch(type.getRows())
{
case 2: return GL_FLOAT_MAT4x2;
case 3: return GL_FLOAT_MAT4x3;
case 4: return GL_FLOAT_MAT4;
default: UNREACHABLE();
}
default: UNREACHABLE();
}
}
else UNREACHABLE();
}
else if (type.getBasicType() == EbtInt)
{
if (type.isScalar())
{
return GL_INT;
}
else if (type.isVector())
{
switch(type.getNominalSize())
{
case 2: return GL_INT_VEC2;
case 3: return GL_INT_VEC3;
case 4: return GL_INT_VEC4;
default: UNREACHABLE();
}
}
else UNREACHABLE();
}
else if (type.getBasicType() == EbtUInt)
{
if (type.isScalar())
{
return GL_UNSIGNED_INT;
}
else if (type.isVector())
{
switch(type.getNominalSize())
{
case 2: return GL_UNSIGNED_INT_VEC2;
case 3: return GL_UNSIGNED_INT_VEC3;
case 4: return GL_UNSIGNED_INT_VEC4;
default: UNREACHABLE();
}
}
else UNREACHABLE();
}
else if (type.getBasicType() == EbtBool)
{
if (type.isScalar())
{
return GL_BOOL;
}
else if (type.isVector())
{
switch(type.getNominalSize())
{
case 2: return GL_BOOL_VEC2;
case 3: return GL_BOOL_VEC3;
case 4: return GL_BOOL_VEC4;
default: UNREACHABLE();
}
}
else UNREACHABLE();
}
switch(type.getBasicType())
{
case EbtSampler2D: return GL_SAMPLER_2D;
case EbtSampler3D: return GL_SAMPLER_3D;
case EbtSamplerCube: return GL_SAMPLER_CUBE;
case EbtSampler2DArray: return GL_SAMPLER_2D_ARRAY;
case EbtISampler2D: return GL_INT_SAMPLER_2D;
case EbtISampler3D: return GL_INT_SAMPLER_3D;
case EbtISamplerCube: return GL_INT_SAMPLER_CUBE;
case EbtISampler2DArray: return GL_INT_SAMPLER_2D_ARRAY;
case EbtUSampler2D: return GL_UNSIGNED_INT_SAMPLER_2D;
case EbtUSampler3D: return GL_UNSIGNED_INT_SAMPLER_3D;
case EbtUSamplerCube: return GL_UNSIGNED_INT_SAMPLER_CUBE;
case EbtUSampler2DArray: return GL_UNSIGNED_INT_SAMPLER_2D_ARRAY;
case EbtSampler2DShadow: return GL_SAMPLER_2D_SHADOW;
case EbtSamplerCubeShadow: return GL_SAMPLER_CUBE_SHADOW;
case EbtSampler2DArrayShadow: return GL_SAMPLER_2D_ARRAY_SHADOW;
default: UNREACHABLE();
}
return GL_NONE;
}
GLenum OutputHLSL::glVariablePrecision(const TType &type)
{
if (type.getBasicType() == EbtFloat)
{
switch (type.getPrecision())
{
case EbpHigh: return GL_HIGH_FLOAT;
case EbpMedium: return GL_MEDIUM_FLOAT;
case EbpLow: return GL_LOW_FLOAT;
case EbpUndefined:
// Should be defined as the default precision by the parser
default: UNREACHABLE();
}
}
else if (type.getBasicType() == EbtInt || type.getBasicType() == EbtUInt)
{
switch (type.getPrecision())
{
case EbpHigh: return GL_HIGH_INT;
case EbpMedium: return GL_MEDIUM_INT;
case EbpLow: return GL_LOW_INT;
case EbpUndefined:
// Should be defined as the default precision by the parser
default: UNREACHABLE();
}
}
// Other types (boolean, sampler) don't have a precision
return GL_NONE;
}
bool OutputHLSL::isVaryingOut(TQualifier qualifier)
{
switch(qualifier)
{
case EvqVaryingOut:
case EvqInvariantVaryingOut:
case EvqSmoothOut:
case EvqFlatOut:
case EvqCentroidOut:
case EvqVertexOut:
return true;
default: break;
}
return false;
}
bool OutputHLSL::isVaryingIn(TQualifier qualifier)
{
switch(qualifier)
{
case EvqVaryingIn:
case EvqInvariantVaryingIn:
case EvqSmoothIn:
case EvqFlatIn:
case EvqCentroidIn:
case EvqFragmentIn:
return true;
default: break;
}
return false;
}
bool OutputHLSL::isVarying(TQualifier qualifier)
{
return isVaryingIn(qualifier) || isVaryingOut(qualifier);
}
}