blob: e079cb2d4fa5b725cb2d3773b97928d3b859dbb8 [file] [log] [blame]
//
// Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Texture.cpp: Implements the gl::Texture class and its derived classes
// Texture2D and TextureCubeMap. Implements GL texture objects and related
// functionality. [OpenGL ES 2.0.24] section 3.7 page 63.
#include "libGLESv2/Texture.h"
#include <algorithm>
#include "common/debug.h"
#include "libEGL/Display.h"
#include "libGLESv2/main.h"
#include "libGLESv2/mathutil.h"
#include "libGLESv2/utilities.h"
#include "libGLESv2/Blit.h"
#include "libGLESv2/Framebuffer.h"
namespace gl
{
namespace
{
struct L8
{
unsigned char L;
static void average(L8 *dst, const L8 *src1, const L8 *src2)
{
dst->L = ((src1->L ^ src2->L) >> 1) + (src1->L & src2->L);
}
};
struct A8L8
{
unsigned char L;
unsigned char A;
static void average(A8L8 *dst, const A8L8 *src1, const A8L8 *src2)
{
*(unsigned short*)dst = (((*(unsigned short*)src1 ^ *(unsigned short*)src2) & 0xFEFE) >> 1) + (*(unsigned short*)src1 & *(unsigned short*)src2);
}
};
struct A8R8G8B8
{
unsigned char B;
unsigned char G;
unsigned char R;
unsigned char A;
static void average(A8R8G8B8 *dst, const A8R8G8B8 *src1, const A8R8G8B8 *src2)
{
*(unsigned int*)dst = (((*(unsigned int*)src1 ^ *(unsigned int*)src2) & 0xFEFEFEFE) >> 1) + (*(unsigned int*)src1 & *(unsigned int*)src2);
}
};
struct A16B16G16R16F
{
unsigned short R;
unsigned short G;
unsigned short B;
unsigned short A;
static void average(A16B16G16R16F *dst, const A16B16G16R16F *src1, const A16B16G16R16F *src2)
{
dst->R = float32ToFloat16((float16ToFloat32(src1->R) + float16ToFloat32(src2->R)) * 0.5f);
dst->G = float32ToFloat16((float16ToFloat32(src1->G) + float16ToFloat32(src2->G)) * 0.5f);
dst->B = float32ToFloat16((float16ToFloat32(src1->B) + float16ToFloat32(src2->B)) * 0.5f);
dst->A = float32ToFloat16((float16ToFloat32(src1->A) + float16ToFloat32(src2->A)) * 0.5f);
}
};
struct A32B32G32R32F
{
float R;
float G;
float B;
float A;
static void average(A32B32G32R32F *dst, const A32B32G32R32F *src1, const A32B32G32R32F *src2)
{
dst->R = (src1->R + src2->R) * 0.5f;
dst->G = (src1->G + src2->G) * 0.5f;
dst->B = (src1->B + src2->B) * 0.5f;
dst->A = (src1->A + src2->A) * 0.5f;
}
};
template <typename T>
void GenerateMip(unsigned int sourceWidth, unsigned int sourceHeight,
const unsigned char *sourceData, int sourcePitch,
unsigned char *destData, int destPitch)
{
unsigned int mipWidth = std::max(1U, sourceWidth >> 1);
unsigned int mipHeight = std::max(1U, sourceHeight >> 1);
if (sourceHeight == 1)
{
ASSERT(sourceWidth != 1);
const T *src = (const T*)sourceData;
T *dst = (T*)destData;
for (unsigned int x = 0; x < mipWidth; x++)
{
T::average(&dst[x], &src[x * 2], &src[x * 2 + 1]);
}
}
else if (sourceWidth == 1)
{
ASSERT(sourceHeight != 1);
for (unsigned int y = 0; y < mipHeight; y++)
{
const T *src0 = (const T*)(sourceData + y * 2 * sourcePitch);
const T *src1 = (const T*)(sourceData + y * 2 * sourcePitch + sourcePitch);
T *dst = (T*)(destData + y * destPitch);
T::average(dst, src0, src1);
}
}
else
{
for (unsigned int y = 0; y < mipHeight; y++)
{
const T *src0 = (const T*)(sourceData + y * 2 * sourcePitch);
const T *src1 = (const T*)(sourceData + y * 2 * sourcePitch + sourcePitch);
T *dst = (T*)(destData + y * destPitch);
for (unsigned int x = 0; x < mipWidth; x++)
{
T tmp0;
T tmp1;
T::average(&tmp0, &src0[x * 2], &src0[x * 2 + 1]);
T::average(&tmp1, &src1[x * 2], &src1[x * 2 + 1]);
T::average(&dst[x], &tmp0, &tmp1);
}
}
}
}
void GenerateMip(IDirect3DSurface9 *destSurface, IDirect3DSurface9 *sourceSurface)
{
D3DSURFACE_DESC destDesc;
HRESULT result = destSurface->GetDesc(&destDesc);
ASSERT(SUCCEEDED(result));
D3DSURFACE_DESC sourceDesc;
result = sourceSurface->GetDesc(&sourceDesc);
ASSERT(SUCCEEDED(result));
ASSERT(sourceDesc.Format == destDesc.Format);
ASSERT(sourceDesc.Width == 1 || sourceDesc.Width / 2 == destDesc.Width);
ASSERT(sourceDesc.Height == 1 || sourceDesc.Height / 2 == destDesc.Height);
D3DLOCKED_RECT sourceLocked = {0};
result = sourceSurface->LockRect(&sourceLocked, NULL, D3DLOCK_READONLY);
ASSERT(SUCCEEDED(result));
D3DLOCKED_RECT destLocked = {0};
result = destSurface->LockRect(&destLocked, NULL, 0);
ASSERT(SUCCEEDED(result));
const unsigned char *sourceData = reinterpret_cast<const unsigned char*>(sourceLocked.pBits);
unsigned char *destData = reinterpret_cast<unsigned char*>(destLocked.pBits);
if (sourceData && destData)
{
switch (sourceDesc.Format)
{
case D3DFMT_L8:
GenerateMip<L8>(sourceDesc.Width, sourceDesc.Height, sourceData, sourceLocked.Pitch, destData, destLocked.Pitch);
break;
case D3DFMT_A8L8:
GenerateMip<A8L8>(sourceDesc.Width, sourceDesc.Height, sourceData, sourceLocked.Pitch, destData, destLocked.Pitch);
break;
case D3DFMT_A8R8G8B8:
case D3DFMT_X8R8G8B8:
GenerateMip<A8R8G8B8>(sourceDesc.Width, sourceDesc.Height, sourceData, sourceLocked.Pitch, destData, destLocked.Pitch);
break;
case D3DFMT_A16B16G16R16F:
GenerateMip<A16B16G16R16F>(sourceDesc.Width, sourceDesc.Height, sourceData, sourceLocked.Pitch, destData, destLocked.Pitch);
break;
case D3DFMT_A32B32G32R32F:
GenerateMip<A32B32G32R32F>(sourceDesc.Width, sourceDesc.Height, sourceData, sourceLocked.Pitch, destData, destLocked.Pitch);
break;
default:
UNREACHABLE();
break;
}
destSurface->UnlockRect();
sourceSurface->UnlockRect();
}
}
}
Texture::Texture(GLuint id) : RefCountObject(id)
{
mSamplerState.minFilter = GL_NEAREST_MIPMAP_LINEAR;
mSamplerState.magFilter = GL_LINEAR;
mSamplerState.wrapS = GL_REPEAT;
mSamplerState.wrapT = GL_REPEAT;
mSamplerState.maxAnisotropy = 1.0f;
mSamplerState.lodOffset = 0;
mDirtyParameters = true;
mUsage = GL_NONE;
mDirtyImages = true;
mImmutable = false;
}
Texture::~Texture()
{
}
// Returns true on successful filter state update (valid enum parameter)
bool Texture::setMinFilter(GLenum filter)
{
switch (filter)
{
case GL_NEAREST:
case GL_LINEAR:
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_LINEAR:
{
if (mSamplerState.minFilter != filter)
{
mSamplerState.minFilter = filter;
mDirtyParameters = true;
}
return true;
}
default:
return false;
}
}
// Returns true on successful filter state update (valid enum parameter)
bool Texture::setMagFilter(GLenum filter)
{
switch (filter)
{
case GL_NEAREST:
case GL_LINEAR:
{
if (mSamplerState.magFilter != filter)
{
mSamplerState.magFilter = filter;
mDirtyParameters = true;
}
return true;
}
default:
return false;
}
}
// Returns true on successful wrap state update (valid enum parameter)
bool Texture::setWrapS(GLenum wrap)
{
switch (wrap)
{
case GL_REPEAT:
case GL_CLAMP_TO_EDGE:
case GL_MIRRORED_REPEAT:
{
if (mSamplerState.wrapS != wrap)
{
mSamplerState.wrapS = wrap;
mDirtyParameters = true;
}
return true;
}
default:
return false;
}
}
// Returns true on successful wrap state update (valid enum parameter)
bool Texture::setWrapT(GLenum wrap)
{
switch (wrap)
{
case GL_REPEAT:
case GL_CLAMP_TO_EDGE:
case GL_MIRRORED_REPEAT:
{
if (mSamplerState.wrapT != wrap)
{
mSamplerState.wrapT = wrap;
mDirtyParameters = true;
}
return true;
}
default:
return false;
}
}
// Returns true on successful max anisotropy update (valid anisotropy value)
bool Texture::setMaxAnisotropy(float textureMaxAnisotropy, float contextMaxAnisotropy)
{
textureMaxAnisotropy = std::min(textureMaxAnisotropy, contextMaxAnisotropy);
if (textureMaxAnisotropy < 1.0f)
{
return false;
}
if (mSamplerState.maxAnisotropy != textureMaxAnisotropy)
{
mSamplerState.maxAnisotropy = textureMaxAnisotropy;
mDirtyParameters = true;
}
return true;
}
// Returns true on successful usage state update (valid enum parameter)
bool Texture::setUsage(GLenum usage)
{
switch (usage)
{
case GL_NONE:
case GL_FRAMEBUFFER_ATTACHMENT_ANGLE:
mUsage = usage;
return true;
default:
return false;
}
}
GLenum Texture::getMinFilter() const
{
return mSamplerState.minFilter;
}
GLenum Texture::getMagFilter() const
{
return mSamplerState.magFilter;
}
GLenum Texture::getWrapS() const
{
return mSamplerState.wrapS;
}
GLenum Texture::getWrapT() const
{
return mSamplerState.wrapT;
}
float Texture::getMaxAnisotropy() const
{
return mSamplerState.maxAnisotropy;
}
int Texture::getLodOffset()
{
TextureStorage *texture = getStorage(false);
return texture ? texture->getLodOffset() : 0;
}
void Texture::getSamplerState(SamplerState *sampler)
{
*sampler = mSamplerState;
sampler->lodOffset = getLodOffset();
}
GLenum Texture::getUsage() const
{
return mUsage;
}
bool Texture::isMipmapFiltered() const
{
switch (mSamplerState.minFilter)
{
case GL_NEAREST:
case GL_LINEAR:
return false;
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_LINEAR:
return true;
default: UNREACHABLE();
return false;
}
}
void Texture::setImage(GLint unpackAlignment, const void *pixels, Image *image)
{
if (pixels != NULL)
{
image->loadData(0, 0, image->getWidth(), image->getHeight(), unpackAlignment, pixels);
mDirtyImages = true;
}
}
void Texture::setCompressedImage(GLsizei imageSize, const void *pixels, Image *image)
{
if (pixels != NULL)
{
image->loadCompressedData(0, 0, image->getWidth(), image->getHeight(), pixels);
mDirtyImages = true;
}
}
bool Texture::subImage(GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels, Image *image)
{
if (pixels != NULL)
{
image->loadData(xoffset, yoffset, width, height, unpackAlignment, pixels);
mDirtyImages = true;
}
return true;
}
bool Texture::subImageCompressed(GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void *pixels, Image *image)
{
if (pixels != NULL)
{
image->loadCompressedData(xoffset, yoffset, width, height, pixels);
mDirtyImages = true;
}
return true;
}
// D3D9_REPLACE
IDirect3DBaseTexture9 *Texture::getD3DTexture()
{
// ensure the underlying texture is created
if (getStorage(false) == NULL)
{
return NULL;
}
updateTexture();
return getBaseTexture();
}
bool Texture::hasDirtyParameters() const
{
return mDirtyParameters;
}
bool Texture::hasDirtyImages() const
{
return mDirtyImages;
}
void Texture::resetDirty()
{
mDirtyParameters = false;
mDirtyImages = false;
}
unsigned int Texture::getTextureSerial()
{
TextureStorage *texture = getStorage(false);
return texture ? texture->getTextureSerial() : 0;
}
unsigned int Texture::getRenderTargetSerial(GLenum target)
{
TextureStorage *texture = getStorage(true);
return texture ? texture->getRenderTargetSerial(target) : 0;
}
bool Texture::isImmutable() const
{
return mImmutable;
}
GLint Texture::creationLevels(GLsizei width, GLsizei height) const
{
if ((isPow2(width) && isPow2(height)) || getContext()->supportsNonPower2Texture())
{
return 0; // Maximum number of levels
}
else
{
// OpenGL ES 2.0 without GL_OES_texture_npot does not permit NPOT mipmaps.
return 1;
}
}
GLint Texture::creationLevels(GLsizei size) const
{
return creationLevels(size, size);
}
int Texture::levelCount()
{
return getBaseTexture() ? getBaseTexture()->GetLevelCount() - getLodOffset() : 0;
}
Blit *Texture::getBlitter()
{
Context *context = getContext();
return context->getBlitter();
}
bool Texture::copyToRenderTarget(IDirect3DSurface9 *dest, IDirect3DSurface9 *source, bool fromManaged)
{
if (source && dest)
{
HRESULT result = D3DERR_OUTOFVIDEOMEMORY;
renderer::Renderer9 *renderer = getDisplay()->getRenderer();
IDirect3DDevice9 *device = renderer->getDevice(); // D3D9_REPLACE
if (fromManaged)
{
D3DSURFACE_DESC desc;
source->GetDesc(&desc);
IDirect3DSurface9 *surf = 0;
result = device->CreateOffscreenPlainSurface(desc.Width, desc.Height, desc.Format, D3DPOOL_SYSTEMMEM, &surf, NULL);
if (SUCCEEDED(result))
{
Image::CopyLockableSurfaces(surf, source);
result = device->UpdateSurface(surf, NULL, dest, NULL);
surf->Release();
}
}
else
{
renderer->endScene();
result = device->StretchRect(source, NULL, dest, NULL, D3DTEXF_NONE);
}
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY);
return false;
}
}
return true;
}
Texture2D::Texture2D(GLuint id) : Texture(id)
{
mTexStorage = NULL;
mSurface = NULL;
mColorbufferProxy = NULL;
mProxyRefs = 0;
}
Texture2D::~Texture2D()
{
mColorbufferProxy = NULL;
delete mTexStorage;
mTexStorage = NULL;
if (mSurface)
{
mSurface->setBoundTexture(NULL);
mSurface = NULL;
}
}
// We need to maintain a count of references to renderbuffers acting as
// proxies for this texture, so that we do not attempt to use a pointer
// to a renderbuffer proxy which has been deleted.
void Texture2D::addProxyRef(const Renderbuffer *proxy)
{
mProxyRefs++;
}
void Texture2D::releaseProxy(const Renderbuffer *proxy)
{
if (mProxyRefs > 0)
mProxyRefs--;
if (mProxyRefs == 0)
mColorbufferProxy = NULL;
}
GLenum Texture2D::getTarget() const
{
return GL_TEXTURE_2D;
}
GLsizei Texture2D::getWidth(GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[level].getWidth();
else
return 0;
}
GLsizei Texture2D::getHeight(GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[level].getHeight();
else
return 0;
}
GLenum Texture2D::getInternalFormat(GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[level].getInternalFormat();
else
return GL_NONE;
}
GLenum Texture2D::getActualFormat(GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[level].getActualFormat();
else
return D3DFMT_UNKNOWN;
}
void Texture2D::redefineImage(GLint level, GLint internalformat, GLsizei width, GLsizei height)
{
releaseTexImage();
bool redefined = mImageArray[level].redefine(internalformat, width, height, false);
if (mTexStorage && redefined)
{
for (int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++)
{
mImageArray[i].markDirty();
}
delete mTexStorage;
mTexStorage = NULL;
mDirtyImages = true;
}
}
void Texture2D::setImage(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
GLint internalformat = ConvertSizedInternalFormat(format, type);
redefineImage(level, internalformat, width, height);
Texture::setImage(unpackAlignment, pixels, &mImageArray[level]);
}
void Texture2D::bindTexImage(egl::Surface *surface)
{
releaseTexImage();
GLint internalformat = surface->getFormat();
mImageArray[0].redefine(internalformat, surface->getWidth(), surface->getHeight(), true);
delete mTexStorage;
renderer::SwapChain *swapchain = surface->getSwapChain(); // D3D9_REPLACE
mTexStorage = new TextureStorage2D(swapchain->getOffscreenTexture());
mDirtyImages = true;
mSurface = surface;
mSurface->setBoundTexture(this);
}
void Texture2D::releaseTexImage()
{
if (mSurface)
{
mSurface->setBoundTexture(NULL);
mSurface = NULL;
if (mTexStorage)
{
delete mTexStorage;
mTexStorage = NULL;
}
for (int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++)
{
mImageArray[i].redefine(GL_RGBA8_OES, 0, 0, true);
}
}
}
void Texture2D::setCompressedImage(GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei imageSize, const void *pixels)
{
// compressed formats don't have separate sized internal formats-- we can just use the compressed format directly
redefineImage(level, format, width, height);
Texture::setCompressedImage(imageSize, pixels, &mImageArray[level]);
}
void Texture2D::commitRect(GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height)
{
ASSERT(mImageArray[level].getSurface() != NULL);
if (level < levelCount())
{
IDirect3DSurface9 *destLevel = mTexStorage->getSurfaceLevel(level, true);
if (destLevel)
{
Image *image = &mImageArray[level];
image->updateSurface(destLevel, xoffset, yoffset, width, height);
destLevel->Release();
image->markClean();
}
}
}
void Texture2D::subImage(GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
if (Texture::subImage(xoffset, yoffset, width, height, format, type, unpackAlignment, pixels, &mImageArray[level]))
{
commitRect(level, xoffset, yoffset, width, height);
}
}
void Texture2D::subImageCompressed(GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void *pixels)
{
if (Texture::subImageCompressed(xoffset, yoffset, width, height, format, imageSize, pixels, &mImageArray[level]))
{
commitRect(level, xoffset, yoffset, width, height);
}
}
void Texture2D::copyImage(GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source)
{
IDirect3DSurface9 *renderTarget = source->getRenderTarget();
if (!renderTarget)
{
ERR("Failed to retrieve the render target.");
return error(GL_OUT_OF_MEMORY);
}
GLint internalformat = ConvertSizedInternalFormat(format, GL_UNSIGNED_BYTE);
redefineImage(level, internalformat, width, height);
if (!mImageArray[level].isRenderableFormat())
{
mImageArray[level].copy(0, 0, x, y, width, height, renderTarget);
mDirtyImages = true;
}
else
{
if (!mTexStorage || !mTexStorage->isRenderTarget())
{
convertToRenderTarget();
}
mImageArray[level].markClean();
if (width != 0 && height != 0 && level < levelCount())
{
RECT sourceRect;
sourceRect.left = x;
sourceRect.right = x + width;
sourceRect.top = y;
sourceRect.bottom = y + height;
IDirect3DSurface9 *dest = mTexStorage->getSurfaceLevel(level, true);
if (dest)
{
getBlitter()->copy(renderTarget, sourceRect, format, 0, 0, dest);
dest->Release();
}
}
}
renderTarget->Release();
}
void Texture2D::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source)
{
if (xoffset + width > mImageArray[level].getWidth() || yoffset + height > mImageArray[level].getHeight())
{
return error(GL_INVALID_VALUE);
}
IDirect3DSurface9 *renderTarget = source->getRenderTarget();
if (!renderTarget)
{
ERR("Failed to retrieve the render target.");
return error(GL_OUT_OF_MEMORY);
}
if (!mImageArray[level].isRenderableFormat() || (!mTexStorage && !isSamplerComplete()))
{
mImageArray[level].copy(xoffset, yoffset, x, y, width, height, renderTarget);
mDirtyImages = true;
}
else
{
if (!mTexStorage || !mTexStorage->isRenderTarget())
{
convertToRenderTarget();
}
updateTexture();
if (level < levelCount())
{
RECT sourceRect;
sourceRect.left = x;
sourceRect.right = x + width;
sourceRect.top = y;
sourceRect.bottom = y + height;
IDirect3DSurface9 *dest = mTexStorage->getSurfaceLevel(level, true);
if (dest)
{
getBlitter()->copy(renderTarget, sourceRect,
gl::ExtractFormat(mImageArray[0].getInternalFormat()),
xoffset, yoffset, dest);
dest->Release();
}
}
}
renderTarget->Release();
}
void Texture2D::storage(GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height)
{
delete mTexStorage;
mTexStorage = new TextureStorage2D(levels, internalformat, mUsage, false, width, height);
mImmutable = true;
for (int level = 0; level < levels; level++)
{
mImageArray[level].redefine(internalformat, width, height, true);
width = std::max(1, width >> 1);
height = std::max(1, height >> 1);
}
for (int level = levels; level < IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++)
{
mImageArray[level].redefine(GL_NONE, 0, 0, true);
}
if (mTexStorage->isManaged())
{
int levels = levelCount();
for (int level = 0; level < levels; level++)
{
IDirect3DSurface9 *surface = mTexStorage->getSurfaceLevel(level, false);
mImageArray[level].setManagedSurface(surface);
}
}
}
// Tests for 2D texture sampling completeness. [OpenGL ES 2.0.24] section 3.8.2 page 85.
bool Texture2D::isSamplerComplete() const
{
GLsizei width = mImageArray[0].getWidth();
GLsizei height = mImageArray[0].getHeight();
if (width <= 0 || height <= 0)
{
return false;
}
bool mipmapping = isMipmapFiltered();
if ((IsFloat32Format(getInternalFormat(0)) && !getContext()->supportsFloat32LinearFilter()) ||
(IsFloat16Format(getInternalFormat(0)) && !getContext()->supportsFloat16LinearFilter()))
{
if (mSamplerState.magFilter != GL_NEAREST ||
(mSamplerState.minFilter != GL_NEAREST && mSamplerState.minFilter != GL_NEAREST_MIPMAP_NEAREST))
{
return false;
}
}
bool npotSupport = getContext()->supportsNonPower2Texture();
if (!npotSupport)
{
if ((mSamplerState.wrapS != GL_CLAMP_TO_EDGE && !isPow2(width)) ||
(mSamplerState.wrapT != GL_CLAMP_TO_EDGE && !isPow2(height)))
{
return false;
}
}
if (mipmapping)
{
if (!npotSupport)
{
if (!isPow2(width) || !isPow2(height))
{
return false;
}
}
if (!isMipmapComplete())
{
return false;
}
}
return true;
}
// Tests for 2D texture (mipmap) completeness. [OpenGL ES 2.0.24] section 3.7.10 page 81.
bool Texture2D::isMipmapComplete() const
{
if (isImmutable())
{
return true;
}
GLsizei width = mImageArray[0].getWidth();
GLsizei height = mImageArray[0].getHeight();
if (width <= 0 || height <= 0)
{
return false;
}
int q = log2(std::max(width, height));
for (int level = 1; level <= q; level++)
{
if (mImageArray[level].getInternalFormat() != mImageArray[0].getInternalFormat())
{
return false;
}
if (mImageArray[level].getWidth() != std::max(1, width >> level))
{
return false;
}
if (mImageArray[level].getHeight() != std::max(1, height >> level))
{
return false;
}
}
return true;
}
bool Texture2D::isCompressed(GLint level) const
{
return IsCompressed(getInternalFormat(level));
}
bool Texture2D::isDepth(GLint level) const
{
return IsDepthTexture(getInternalFormat(level));
}
IDirect3DBaseTexture9 *Texture2D::getBaseTexture() const
{
return mTexStorage ? mTexStorage->getBaseTexture() : NULL;
}
// Constructs a native texture resource from the texture images
void Texture2D::createTexture()
{
GLsizei width = mImageArray[0].getWidth();
GLsizei height = mImageArray[0].getHeight();
if (!(width > 0 && height > 0))
return; // do not attempt to create native textures for nonexistant data
GLint levels = creationLevels(width, height);
GLenum internalformat = mImageArray[0].getInternalFormat();
delete mTexStorage;
mTexStorage = new TextureStorage2D(levels, internalformat, mUsage, false, width, height);
if (mTexStorage->isManaged())
{
int levels = levelCount();
for (int level = 0; level < levels; level++)
{
IDirect3DSurface9 *surface = mTexStorage->getSurfaceLevel(level, false);
mImageArray[level].setManagedSurface(surface);
}
}
mDirtyImages = true;
}
void Texture2D::updateTexture()
{
bool mipmapping = (isMipmapFiltered() && isMipmapComplete());
int levels = (mipmapping ? levelCount() : 1);
for (int level = 0; level < levels; level++)
{
Image *image = &mImageArray[level];
if (image->isDirty())
{
commitRect(level, 0, 0, mImageArray[level].getWidth(), mImageArray[level].getHeight());
}
}
}
void Texture2D::convertToRenderTarget()
{
TextureStorage2D *newTexStorage = NULL;
if (mImageArray[0].getWidth() != 0 && mImageArray[0].getHeight() != 0)
{
GLsizei width = mImageArray[0].getWidth();
GLsizei height = mImageArray[0].getHeight();
GLint levels = creationLevels(width, height);
GLenum internalformat = mImageArray[0].getInternalFormat();
newTexStorage = new TextureStorage2D(levels, internalformat, GL_FRAMEBUFFER_ATTACHMENT_ANGLE, true, width, height);
if (mTexStorage != NULL)
{
int levels = levelCount();
for (int i = 0; i < levels; i++)
{
IDirect3DSurface9 *source = mTexStorage->getSurfaceLevel(i, false);
IDirect3DSurface9 *dest = newTexStorage->getSurfaceLevel(i, true);
if (!copyToRenderTarget(dest, source, mTexStorage->isManaged()))
{
delete newTexStorage;
if (source) source->Release();
if (dest) dest->Release();
return error(GL_OUT_OF_MEMORY);
}
if (source) source->Release();
if (dest) dest->Release();
}
}
}
delete mTexStorage;
mTexStorage = newTexStorage;
mDirtyImages = true;
}
void Texture2D::generateMipmaps()
{
if (!getContext()->supportsNonPower2Texture())
{
if (!isPow2(mImageArray[0].getWidth()) || !isPow2(mImageArray[0].getHeight()))
{
return error(GL_INVALID_OPERATION);
}
}
// Purge array levels 1 through q and reset them to represent the generated mipmap levels.
unsigned int q = log2(std::max(mImageArray[0].getWidth(), mImageArray[0].getHeight()));
for (unsigned int i = 1; i <= q; i++)
{
redefineImage(i, mImageArray[0].getInternalFormat(),
std::max(mImageArray[0].getWidth() >> i, 1),
std::max(mImageArray[0].getHeight() >> i, 1));
}
if (mTexStorage && mTexStorage->isRenderTarget())
{
for (unsigned int i = 1; i <= q; i++)
{
IDirect3DSurface9 *upper = mTexStorage->getSurfaceLevel(i - 1, false);
IDirect3DSurface9 *lower = mTexStorage->getSurfaceLevel(i, true);
if (upper != NULL && lower != NULL)
{
getBlitter()->boxFilter(upper, lower);
}
if (upper != NULL) upper->Release();
if (lower != NULL) lower->Release();
mImageArray[i].markClean();
}
}
else
{
for (unsigned int i = 1; i <= q; i++)
{
if (mImageArray[i].getSurface() == NULL)
{
return error(GL_OUT_OF_MEMORY);
}
GenerateMip(mImageArray[i].getSurface(), mImageArray[i - 1].getSurface());
mImageArray[i].markDirty();
}
}
}
Renderbuffer *Texture2D::getRenderbuffer(GLenum target)
{
if (target != GL_TEXTURE_2D)
{
return error(GL_INVALID_OPERATION, (Renderbuffer *)NULL);
}
if (mColorbufferProxy == NULL)
{
mColorbufferProxy = new Renderbuffer(id(), new RenderbufferTexture2D(this, target));
}
return mColorbufferProxy;
}
// Increments refcount on surface.
// caller must Release() the returned surface
IDirect3DSurface9 *Texture2D::getRenderTarget(GLenum target)
{
ASSERT(target == GL_TEXTURE_2D);
// ensure the underlying texture is created
if (getStorage(true) == NULL)
{
return NULL;
}
updateTexture();
// ensure this is NOT a depth texture
if (isDepth(0))
{
return NULL;
}
return mTexStorage->getSurfaceLevel(0, false);
}
// Increments refcount on surface.
// caller must Release() the returned surface
IDirect3DSurface9 *Texture2D::getDepthStencil(GLenum target)
{
ASSERT(target == GL_TEXTURE_2D);
// ensure the underlying texture is created
if (getStorage(true) == NULL)
{
return NULL;
}
updateTexture();
// ensure this is actually a depth texture
if (!isDepth(0))
{
return NULL;
}
return mTexStorage->getSurfaceLevel(0, false);
}
TextureStorage *Texture2D::getStorage(bool renderTarget)
{
if (!mTexStorage || (renderTarget && !mTexStorage->isRenderTarget()))
{
if (renderTarget)
{
convertToRenderTarget();
}
else
{
createTexture();
}
}
return mTexStorage;
}
TextureCubeMap::TextureCubeMap(GLuint id) : Texture(id)
{
mTexStorage = NULL;
for (int i = 0; i < 6; i++)
{
mFaceProxies[i] = NULL;
mFaceProxyRefs[i] = 0;
}
}
TextureCubeMap::~TextureCubeMap()
{
for (int i = 0; i < 6; i++)
{
mFaceProxies[i] = NULL;
}
delete mTexStorage;
mTexStorage = NULL;
}
// We need to maintain a count of references to renderbuffers acting as
// proxies for this texture, so that the texture is not deleted while
// proxy references still exist. If the reference count drops to zero,
// we set our proxy pointer NULL, so that a new attempt at referencing
// will cause recreation.
void TextureCubeMap::addProxyRef(const Renderbuffer *proxy)
{
for (int i = 0; i < 6; i++)
{
if (mFaceProxies[i] == proxy)
mFaceProxyRefs[i]++;
}
}
void TextureCubeMap::releaseProxy(const Renderbuffer *proxy)
{
for (int i = 0; i < 6; i++)
{
if (mFaceProxies[i] == proxy)
{
if (mFaceProxyRefs[i] > 0)
mFaceProxyRefs[i]--;
if (mFaceProxyRefs[i] == 0)
mFaceProxies[i] = NULL;
}
}
}
GLenum TextureCubeMap::getTarget() const
{
return GL_TEXTURE_CUBE_MAP;
}
GLsizei TextureCubeMap::getWidth(GLenum target, GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[faceIndex(target)][level].getWidth();
else
return 0;
}
GLsizei TextureCubeMap::getHeight(GLenum target, GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[faceIndex(target)][level].getHeight();
else
return 0;
}
GLenum TextureCubeMap::getInternalFormat(GLenum target, GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[faceIndex(target)][level].getInternalFormat();
else
return GL_NONE;
}
GLenum TextureCubeMap::getActualFormat(GLenum target, GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[faceIndex(target)][level].getActualFormat();
else
return D3DFMT_UNKNOWN;
}
void TextureCubeMap::setImagePosX(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
setImage(0, level, width, height, format, type, unpackAlignment, pixels);
}
void TextureCubeMap::setImageNegX(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
setImage(1, level, width, height, format, type, unpackAlignment, pixels);
}
void TextureCubeMap::setImagePosY(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
setImage(2, level, width, height, format, type, unpackAlignment, pixels);
}
void TextureCubeMap::setImageNegY(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
setImage(3, level, width, height, format, type, unpackAlignment, pixels);
}
void TextureCubeMap::setImagePosZ(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
setImage(4, level, width, height, format, type, unpackAlignment, pixels);
}
void TextureCubeMap::setImageNegZ(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
setImage(5, level, width, height, format, type, unpackAlignment, pixels);
}
void TextureCubeMap::setCompressedImage(GLenum face, GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei imageSize, const void *pixels)
{
// compressed formats don't have separate sized internal formats-- we can just use the compressed format directly
redefineImage(faceIndex(face), level, format, width, height);
Texture::setCompressedImage(imageSize, pixels, &mImageArray[faceIndex(face)][level]);
}
void TextureCubeMap::commitRect(int face, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height)
{
ASSERT(mImageArray[face][level].getSurface() != NULL);
if (level < levelCount())
{
IDirect3DSurface9 *destLevel = mTexStorage->getCubeMapSurface(GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, level, true);
ASSERT(destLevel != NULL);
if (destLevel != NULL)
{
Image *image = &mImageArray[face][level];
image->updateSurface(destLevel, xoffset, yoffset, width, height);
destLevel->Release();
image->markClean();
}
}
}
void TextureCubeMap::subImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
if (Texture::subImage(xoffset, yoffset, width, height, format, type, unpackAlignment, pixels, &mImageArray[faceIndex(target)][level]))
{
commitRect(faceIndex(target), level, xoffset, yoffset, width, height);
}
}
void TextureCubeMap::subImageCompressed(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void *pixels)
{
if (Texture::subImageCompressed(xoffset, yoffset, width, height, format, imageSize, pixels, &mImageArray[faceIndex(target)][level]))
{
commitRect(faceIndex(target), level, xoffset, yoffset, width, height);
}
}
// Tests for cube map sampling completeness. [OpenGL ES 2.0.24] section 3.8.2 page 86.
bool TextureCubeMap::isSamplerComplete() const
{
int size = mImageArray[0][0].getWidth();
bool mipmapping = isMipmapFiltered();
if ((gl::ExtractType(getInternalFormat(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0)) == GL_FLOAT && !getContext()->supportsFloat32LinearFilter()) ||
(gl::ExtractType(getInternalFormat(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0) == GL_HALF_FLOAT_OES) && !getContext()->supportsFloat16LinearFilter()))
{
if (mSamplerState.magFilter != GL_NEAREST ||
(mSamplerState.minFilter != GL_NEAREST && mSamplerState.minFilter != GL_NEAREST_MIPMAP_NEAREST))
{
return false;
}
}
if (!isPow2(size) && !getContext()->supportsNonPower2Texture())
{
if (mSamplerState.wrapS != GL_CLAMP_TO_EDGE || mSamplerState.wrapT != GL_CLAMP_TO_EDGE || mipmapping)
{
return false;
}
}
if (!mipmapping)
{
if (!isCubeComplete())
{
return false;
}
}
else
{
if (!isMipmapCubeComplete()) // Also tests for isCubeComplete()
{
return false;
}
}
return true;
}
// Tests for cube texture completeness. [OpenGL ES 2.0.24] section 3.7.10 page 81.
bool TextureCubeMap::isCubeComplete() const
{
if (mImageArray[0][0].getWidth() <= 0 || mImageArray[0][0].getHeight() != mImageArray[0][0].getWidth())
{
return false;
}
for (unsigned int face = 1; face < 6; face++)
{
if (mImageArray[face][0].getWidth() != mImageArray[0][0].getWidth() ||
mImageArray[face][0].getWidth() != mImageArray[0][0].getHeight() ||
mImageArray[face][0].getInternalFormat() != mImageArray[0][0].getInternalFormat())
{
return false;
}
}
return true;
}
bool TextureCubeMap::isMipmapCubeComplete() const
{
if (isImmutable())
{
return true;
}
if (!isCubeComplete())
{
return false;
}
GLsizei size = mImageArray[0][0].getWidth();
int q = log2(size);
for (int face = 0; face < 6; face++)
{
for (int level = 1; level <= q; level++)
{
if (mImageArray[face][level].getInternalFormat() != mImageArray[0][0].getInternalFormat())
{
return false;
}
if (mImageArray[face][level].getWidth() != std::max(1, size >> level))
{
return false;
}
}
}
return true;
}
bool TextureCubeMap::isCompressed(GLenum target, GLint level) const
{
return IsCompressed(getInternalFormat(target, level));
}
IDirect3DBaseTexture9 *TextureCubeMap::getBaseTexture() const
{
return mTexStorage ? mTexStorage->getBaseTexture() : NULL;
}
// Constructs a native texture resource from the texture images, or returns an existing one
void TextureCubeMap::createTexture()
{
GLsizei size = mImageArray[0][0].getWidth();
if (!(size > 0))
return; // do not attempt to create native textures for nonexistant data
GLint levels = creationLevels(size);
GLenum internalformat = mImageArray[0][0].getInternalFormat();
delete mTexStorage;
mTexStorage = new TextureStorageCubeMap(levels, internalformat, mUsage, false, size);
if (mTexStorage->isManaged())
{
int levels = levelCount();
for (int face = 0; face < 6; face++)
{
for (int level = 0; level < levels; level++)
{
IDirect3DSurface9 *surface = mTexStorage->getCubeMapSurface(GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, level, false);
mImageArray[face][level].setManagedSurface(surface);
}
}
}
mDirtyImages = true;
}
void TextureCubeMap::updateTexture()
{
bool mipmapping = isMipmapFiltered() && isMipmapCubeComplete();
for (int face = 0; face < 6; face++)
{
int levels = (mipmapping ? levelCount() : 1);
for (int level = 0; level < levels; level++)
{
Image *image = &mImageArray[face][level];
if (image->isDirty())
{
commitRect(face, level, 0, 0, image->getWidth(), image->getHeight());
}
}
}
}
void TextureCubeMap::convertToRenderTarget()
{
TextureStorageCubeMap *newTexStorage = NULL;
if (mImageArray[0][0].getWidth() != 0)
{
GLsizei size = mImageArray[0][0].getWidth();
GLint levels = creationLevels(size);
GLenum internalformat = mImageArray[0][0].getInternalFormat();
newTexStorage = new TextureStorageCubeMap(levels, internalformat, GL_FRAMEBUFFER_ATTACHMENT_ANGLE, true, size);
if (mTexStorage != NULL)
{
int levels = levelCount();
for (int f = 0; f < 6; f++)
{
for (int i = 0; i < levels; i++)
{
IDirect3DSurface9 *source = mTexStorage->getCubeMapSurface(GL_TEXTURE_CUBE_MAP_POSITIVE_X + f, i, false);
IDirect3DSurface9 *dest = newTexStorage->getCubeMapSurface(GL_TEXTURE_CUBE_MAP_POSITIVE_X + f, i, true);
if (!copyToRenderTarget(dest, source, mTexStorage->isManaged()))
{
delete newTexStorage;
if (source) source->Release();
if (dest) dest->Release();
return error(GL_OUT_OF_MEMORY);
}
if (source) source->Release();
if (dest) dest->Release();
}
}
}
}
delete mTexStorage;
mTexStorage = newTexStorage;
mDirtyImages = true;
}
void TextureCubeMap::setImage(int faceIndex, GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
GLint internalformat = ConvertSizedInternalFormat(format, type);
redefineImage(faceIndex, level, internalformat, width, height);
Texture::setImage(unpackAlignment, pixels, &mImageArray[faceIndex][level]);
}
unsigned int TextureCubeMap::faceIndex(GLenum face)
{
META_ASSERT(GL_TEXTURE_CUBE_MAP_NEGATIVE_X - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 1);
META_ASSERT(GL_TEXTURE_CUBE_MAP_POSITIVE_Y - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 2);
META_ASSERT(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 3);
META_ASSERT(GL_TEXTURE_CUBE_MAP_POSITIVE_Z - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 4);
META_ASSERT(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 5);
return face - GL_TEXTURE_CUBE_MAP_POSITIVE_X;
}
void TextureCubeMap::redefineImage(int face, GLint level, GLint internalformat, GLsizei width, GLsizei height)
{
bool redefined = mImageArray[face][level].redefine(internalformat, width, height, false);
if (mTexStorage && redefined)
{
for (int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++)
{
for (int f = 0; f < 6; f++)
{
mImageArray[f][i].markDirty();
}
}
delete mTexStorage;
mTexStorage = NULL;
mDirtyImages = true;
}
}
void TextureCubeMap::copyImage(GLenum target, GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source)
{
IDirect3DSurface9 *renderTarget = source->getRenderTarget();
if (!renderTarget)
{
ERR("Failed to retrieve the render target.");
return error(GL_OUT_OF_MEMORY);
}
unsigned int faceindex = faceIndex(target);
GLint internalformat = gl::ConvertSizedInternalFormat(format, GL_UNSIGNED_BYTE);
redefineImage(faceindex, level, internalformat, width, height);
if (!mImageArray[faceindex][level].isRenderableFormat())
{
mImageArray[faceindex][level].copy(0, 0, x, y, width, height, renderTarget);
mDirtyImages = true;
}
else
{
if (!mTexStorage || !mTexStorage->isRenderTarget())
{
convertToRenderTarget();
}
mImageArray[faceindex][level].markClean();
ASSERT(width == height);
if (width > 0 && level < levelCount())
{
RECT sourceRect;
sourceRect.left = x;
sourceRect.right = x + width;
sourceRect.top = y;
sourceRect.bottom = y + height;
IDirect3DSurface9 *dest = mTexStorage->getCubeMapSurface(target, level, true);
if (dest)
{
getBlitter()->copy(renderTarget, sourceRect, format, 0, 0, dest);
dest->Release();
}
}
}
renderTarget->Release();
}
void TextureCubeMap::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source)
{
GLsizei size = mImageArray[faceIndex(target)][level].getWidth();
if (xoffset + width > size || yoffset + height > size)
{
return error(GL_INVALID_VALUE);
}
IDirect3DSurface9 *renderTarget = source->getRenderTarget();
if (!renderTarget)
{
ERR("Failed to retrieve the render target.");
return error(GL_OUT_OF_MEMORY);
}
unsigned int faceindex = faceIndex(target);
if (!mImageArray[faceindex][level].isRenderableFormat() || (!mTexStorage && !isSamplerComplete()))
{
mImageArray[faceindex][level].copy(0, 0, x, y, width, height, renderTarget);
mDirtyImages = true;
}
else
{
if (!mTexStorage || !mTexStorage->isRenderTarget())
{
convertToRenderTarget();
}
updateTexture();
if (level < levelCount())
{
RECT sourceRect;
sourceRect.left = x;
sourceRect.right = x + width;
sourceRect.top = y;
sourceRect.bottom = y + height;
IDirect3DSurface9 *dest = mTexStorage->getCubeMapSurface(target, level, true);
if (dest)
{
getBlitter()->copy(renderTarget, sourceRect, gl::ExtractFormat(mImageArray[0][0].getInternalFormat()), xoffset, yoffset, dest);
dest->Release();
}
}
}
renderTarget->Release();
}
void TextureCubeMap::storage(GLsizei levels, GLenum internalformat, GLsizei size)
{
delete mTexStorage;
mTexStorage = new TextureStorageCubeMap(levels, internalformat, mUsage, false, size);
mImmutable = true;
for (int level = 0; level < levels; level++)
{
for (int face = 0; face < 6; face++)
{
mImageArray[face][level].redefine(internalformat, size, size, true);
size = std::max(1, size >> 1);
}
}
for (int level = levels; level < IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++)
{
for (int face = 0; face < 6; face++)
{
mImageArray[face][level].redefine(GL_NONE, 0, 0, true);
}
}
if (mTexStorage->isManaged())
{
int levels = levelCount();
for (int face = 0; face < 6; face++)
{
for (int level = 0; level < levels; level++)
{
IDirect3DSurface9 *surface = mTexStorage->getCubeMapSurface(GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, level, false);
mImageArray[face][level].setManagedSurface(surface);
}
}
}
}
void TextureCubeMap::generateMipmaps()
{
if (!isCubeComplete())
{
return error(GL_INVALID_OPERATION);
}
if (!getContext()->supportsNonPower2Texture())
{
if (!isPow2(mImageArray[0][0].getWidth()))
{
return error(GL_INVALID_OPERATION);
}
}
// Purge array levels 1 through q and reset them to represent the generated mipmap levels.
unsigned int q = log2(mImageArray[0][0].getWidth());
for (unsigned int f = 0; f < 6; f++)
{
for (unsigned int i = 1; i <= q; i++)
{
redefineImage(f, i, mImageArray[f][0].getInternalFormat(),
std::max(mImageArray[f][0].getWidth() >> i, 1),
std::max(mImageArray[f][0].getWidth() >> i, 1));
}
}
if (mTexStorage && mTexStorage->isRenderTarget())
{
for (unsigned int f = 0; f < 6; f++)
{
for (unsigned int i = 1; i <= q; i++)
{
IDirect3DSurface9 *upper = mTexStorage->getCubeMapSurface(GL_TEXTURE_CUBE_MAP_POSITIVE_X + f, i - 1, false);
IDirect3DSurface9 *lower = mTexStorage->getCubeMapSurface(GL_TEXTURE_CUBE_MAP_POSITIVE_X + f, i, true);
if (upper != NULL && lower != NULL)
{
getBlitter()->boxFilter(upper, lower);
}
if (upper != NULL) upper->Release();
if (lower != NULL) lower->Release();
mImageArray[f][i].markClean();
}
}
}
else
{
for (unsigned int f = 0; f < 6; f++)
{
for (unsigned int i = 1; i <= q; i++)
{
if (mImageArray[f][i].getSurface() == NULL)
{
return error(GL_OUT_OF_MEMORY);
}
GenerateMip(mImageArray[f][i].getSurface(), mImageArray[f][i - 1].getSurface());
mImageArray[f][i].markDirty();
}
}
}
}
Renderbuffer *TextureCubeMap::getRenderbuffer(GLenum target)
{
if (!IsCubemapTextureTarget(target))
{
return error(GL_INVALID_OPERATION, (Renderbuffer *)NULL);
}
unsigned int face = faceIndex(target);
if (mFaceProxies[face] == NULL)
{
mFaceProxies[face] = new Renderbuffer(id(), new RenderbufferTextureCubeMap(this, target));
}
return mFaceProxies[face];
}
// Increments refcount on surface.
// caller must Release() the returned surface
IDirect3DSurface9 *TextureCubeMap::getRenderTarget(GLenum target)
{
ASSERT(IsCubemapTextureTarget(target));
// ensure the underlying texture is created
if (getStorage(true) == NULL)
{
return NULL;
}
updateTexture();
return mTexStorage->getCubeMapSurface(target, 0, false);
}
TextureStorage *TextureCubeMap::getStorage(bool renderTarget)
{
if (!mTexStorage || (renderTarget && !mTexStorage->isRenderTarget()))
{
if (renderTarget)
{
convertToRenderTarget();
}
else
{
createTexture();
}
}
return mTexStorage;
}
}