blob: 96f78ad11074ca0bbb527180bb2d174350e3941f [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Program.cpp: Implements the gl::Program class. Implements GL program objects
// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
#include "libGLESv2/BinaryStream.h"
#include "libGLESv2/ProgramBinary.h"
#include "libGLESv2/Framebuffer.h"
#include "libGLESv2/FramebufferAttachment.h"
#include "libGLESv2/Renderbuffer.h"
#include "libGLESv2/renderer/ShaderExecutable.h"
#include "common/debug.h"
#include "common/version.h"
#include "common/utilities.h"
#include "common/platform.h"
#include "libGLESv2/main.h"
#include "libGLESv2/Shader.h"
#include "libGLESv2/Program.h"
#include "libGLESv2/renderer/ProgramImpl.h"
#include "libGLESv2/renderer/d3d/ShaderD3D.h"
#include "libGLESv2/Context.h"
#include "libGLESv2/Buffer.h"
#include "common/blocklayout.h"
namespace gl
{
namespace
{
GLenum GetTextureType(GLenum samplerType)
{
switch (samplerType)
{
case GL_SAMPLER_2D:
case GL_INT_SAMPLER_2D:
case GL_UNSIGNED_INT_SAMPLER_2D:
case GL_SAMPLER_2D_SHADOW:
return GL_TEXTURE_2D;
case GL_SAMPLER_3D:
case GL_INT_SAMPLER_3D:
case GL_UNSIGNED_INT_SAMPLER_3D:
return GL_TEXTURE_3D;
case GL_SAMPLER_CUBE:
case GL_SAMPLER_CUBE_SHADOW:
return GL_TEXTURE_CUBE_MAP;
case GL_INT_SAMPLER_CUBE:
case GL_UNSIGNED_INT_SAMPLER_CUBE:
return GL_TEXTURE_CUBE_MAP;
case GL_SAMPLER_2D_ARRAY:
case GL_INT_SAMPLER_2D_ARRAY:
case GL_UNSIGNED_INT_SAMPLER_2D_ARRAY:
case GL_SAMPLER_2D_ARRAY_SHADOW:
return GL_TEXTURE_2D_ARRAY;
default: UNREACHABLE();
}
return GL_TEXTURE_2D;
}
unsigned int ParseAndStripArrayIndex(std::string* name)
{
unsigned int subscript = GL_INVALID_INDEX;
// Strip any trailing array operator and retrieve the subscript
size_t open = name->find_last_of('[');
size_t close = name->find_last_of(']');
if (open != std::string::npos && close == name->length() - 1)
{
subscript = atoi(name->substr(open + 1).c_str());
name->erase(open);
}
return subscript;
}
bool IsRowMajorLayout(const sh::InterfaceBlockField &var)
{
return var.isRowMajorLayout;
}
bool IsRowMajorLayout(const sh::ShaderVariable &var)
{
return false;
}
}
VariableLocation::VariableLocation(const std::string &name, unsigned int element, unsigned int index)
: name(name), element(element), index(index)
{
}
LinkedVarying::LinkedVarying()
{
}
LinkedVarying::LinkedVarying(const std::string &name, GLenum type, GLsizei size, const std::string &semanticName,
unsigned int semanticIndex, unsigned int semanticIndexCount)
: name(name), type(type), size(size), semanticName(semanticName), semanticIndex(semanticIndex), semanticIndexCount(semanticIndexCount)
{
}
unsigned int ProgramBinary::mCurrentSerial = 1;
ProgramBinary::ProgramBinary(rx::ProgramImpl *impl)
: RefCountObject(0),
mProgram(impl),
mUsedVertexSamplerRange(0),
mUsedPixelSamplerRange(0),
mDirtySamplerMapping(true),
mValidated(false),
mSerial(issueSerial())
{
ASSERT(impl);
for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
{
mSemanticIndex[index] = -1;
}
}
ProgramBinary::~ProgramBinary()
{
reset();
SafeDelete(mProgram);
}
unsigned int ProgramBinary::getSerial() const
{
return mSerial;
}
unsigned int ProgramBinary::issueSerial()
{
return mCurrentSerial++;
}
GLuint ProgramBinary::getAttributeLocation(const char *name)
{
if (name)
{
for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
{
if (mLinkedAttribute[index].name == std::string(name))
{
return index;
}
}
}
return -1;
}
int ProgramBinary::getSemanticIndex(int attributeIndex)
{
ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS);
return mSemanticIndex[attributeIndex];
}
// Returns one more than the highest sampler index used.
GLint ProgramBinary::getUsedSamplerRange(SamplerType type)
{
switch (type)
{
case SAMPLER_PIXEL:
return mUsedPixelSamplerRange;
case SAMPLER_VERTEX:
return mUsedVertexSamplerRange;
default:
UNREACHABLE();
return 0;
}
}
bool ProgramBinary::usesPointSize() const
{
return mProgram->usesPointSize();
}
GLint ProgramBinary::getSamplerMapping(SamplerType type, unsigned int samplerIndex, const Caps &caps)
{
GLint logicalTextureUnit = -1;
switch (type)
{
case SAMPLER_PIXEL:
ASSERT(samplerIndex < caps.maxTextureImageUnits);
if (samplerIndex < mSamplersPS.size() && mSamplersPS[samplerIndex].active)
{
logicalTextureUnit = mSamplersPS[samplerIndex].logicalTextureUnit;
}
break;
case SAMPLER_VERTEX:
ASSERT(samplerIndex < caps.maxVertexTextureImageUnits);
if (samplerIndex < mSamplersVS.size() && mSamplersVS[samplerIndex].active)
{
logicalTextureUnit = mSamplersVS[samplerIndex].logicalTextureUnit;
}
break;
default: UNREACHABLE();
}
if (logicalTextureUnit >= 0 && logicalTextureUnit < static_cast<GLint>(caps.maxCombinedTextureImageUnits))
{
return logicalTextureUnit;
}
return -1;
}
// Returns the texture type for a given Direct3D 9 sampler type and
// index (0-15 for the pixel shader and 0-3 for the vertex shader).
GLenum ProgramBinary::getSamplerTextureType(SamplerType type, unsigned int samplerIndex)
{
switch (type)
{
case SAMPLER_PIXEL:
ASSERT(samplerIndex < mSamplersPS.size());
ASSERT(mSamplersPS[samplerIndex].active);
return mSamplersPS[samplerIndex].textureType;
case SAMPLER_VERTEX:
ASSERT(samplerIndex < mSamplersVS.size());
ASSERT(mSamplersVS[samplerIndex].active);
return mSamplersVS[samplerIndex].textureType;
default: UNREACHABLE();
}
return GL_TEXTURE_2D;
}
GLint ProgramBinary::getUniformLocation(std::string name)
{
unsigned int subscript = ParseAndStripArrayIndex(&name);
unsigned int numUniforms = mUniformIndex.size();
for (unsigned int location = 0; location < numUniforms; location++)
{
if (mUniformIndex[location].name == name)
{
const int index = mUniformIndex[location].index;
const bool isArray = mUniforms[index]->isArray();
if ((isArray && mUniformIndex[location].element == subscript) ||
(subscript == GL_INVALID_INDEX))
{
return location;
}
}
}
return -1;
}
GLuint ProgramBinary::getUniformIndex(std::string name)
{
unsigned int subscript = ParseAndStripArrayIndex(&name);
// The app is not allowed to specify array indices other than 0 for arrays of basic types
if (subscript != 0 && subscript != GL_INVALID_INDEX)
{
return GL_INVALID_INDEX;
}
unsigned int numUniforms = mUniforms.size();
for (unsigned int index = 0; index < numUniforms; index++)
{
if (mUniforms[index]->name == name)
{
if (mUniforms[index]->isArray() || subscript == GL_INVALID_INDEX)
{
return index;
}
}
}
return GL_INVALID_INDEX;
}
GLuint ProgramBinary::getUniformBlockIndex(std::string name)
{
unsigned int subscript = ParseAndStripArrayIndex(&name);
unsigned int numUniformBlocks = mUniformBlocks.size();
for (unsigned int blockIndex = 0; blockIndex < numUniformBlocks; blockIndex++)
{
const UniformBlock &uniformBlock = *mUniformBlocks[blockIndex];
if (uniformBlock.name == name)
{
const bool arrayElementZero = (subscript == GL_INVALID_INDEX && uniformBlock.elementIndex == 0);
if (subscript == uniformBlock.elementIndex || arrayElementZero)
{
return blockIndex;
}
}
}
return GL_INVALID_INDEX;
}
UniformBlock *ProgramBinary::getUniformBlockByIndex(GLuint blockIndex)
{
ASSERT(blockIndex < mUniformBlocks.size());
return mUniformBlocks[blockIndex];
}
GLint ProgramBinary::getFragDataLocation(const char *name) const
{
std::string baseName(name);
unsigned int arrayIndex;
arrayIndex = ParseAndStripArrayIndex(&baseName);
for (auto locationIt = mOutputVariables.begin(); locationIt != mOutputVariables.end(); locationIt++)
{
const VariableLocation &outputVariable = locationIt->second;
if (outputVariable.name == baseName && (arrayIndex == GL_INVALID_INDEX || arrayIndex == outputVariable.element))
{
return static_cast<GLint>(locationIt->first);
}
}
return -1;
}
size_t ProgramBinary::getTransformFeedbackVaryingCount() const
{
return mProgram->getTransformFeedbackLinkedVaryings().size();
}
const LinkedVarying &ProgramBinary::getTransformFeedbackVarying(size_t idx) const
{
return mProgram->getTransformFeedbackLinkedVaryings()[idx];
}
GLenum ProgramBinary::getTransformFeedbackBufferMode() const
{
return mProgram->getTransformFeedbackBufferMode();
}
template <typename T>
static inline void SetIfDirty(T *dest, const T& source, bool *dirtyFlag)
{
ASSERT(dest != NULL);
ASSERT(dirtyFlag != NULL);
*dirtyFlag = *dirtyFlag || (memcmp(dest, &source, sizeof(T)) != 0);
*dest = source;
}
template <typename T>
void ProgramBinary::setUniform(GLint location, GLsizei count, const T* v, GLenum targetUniformType)
{
const int components = VariableComponentCount(targetUniformType);
const GLenum targetBoolType = VariableBoolVectorType(targetUniformType);
LinkedUniform *targetUniform = getUniformByLocation(location);
int elementCount = targetUniform->elementCount();
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
if (targetUniform->type == targetUniformType)
{
T *target = reinterpret_cast<T*>(targetUniform->data) + mUniformIndex[location].element * 4;
for (int i = 0; i < count; i++)
{
T *dest = target + (i * 4);
const T *source = v + (i * components);
for (int c = 0; c < components; c++)
{
SetIfDirty(dest + c, source[c], &targetUniform->dirty);
}
for (int c = components; c < 4; c++)
{
SetIfDirty(dest + c, T(0), &targetUniform->dirty);
}
}
}
else if (targetUniform->type == targetBoolType)
{
GLint *boolParams = reinterpret_cast<GLint*>(targetUniform->data) + mUniformIndex[location].element * 4;
for (int i = 0; i < count; i++)
{
GLint *dest = boolParams + (i * 4);
const T *source = v + (i * components);
for (int c = 0; c < components; c++)
{
SetIfDirty(dest + c, (source[c] == static_cast<T>(0)) ? GL_FALSE : GL_TRUE, &targetUniform->dirty);
}
for (int c = components; c < 4; c++)
{
SetIfDirty(dest + c, GL_FALSE, &targetUniform->dirty);
}
}
}
else if (IsSampler(targetUniform->type))
{
ASSERT(targetUniformType == GL_INT);
GLint *target = reinterpret_cast<GLint*>(targetUniform->data) + mUniformIndex[location].element * 4;
bool wasDirty = targetUniform->dirty;
for (int i = 0; i < count; i++)
{
GLint *dest = target + (i * 4);
const GLint *source = reinterpret_cast<const GLint*>(v) + (i * components);
SetIfDirty(dest + 0, source[0], &targetUniform->dirty);
SetIfDirty(dest + 1, 0, &targetUniform->dirty);
SetIfDirty(dest + 2, 0, &targetUniform->dirty);
SetIfDirty(dest + 3, 0, &targetUniform->dirty);
}
if (!wasDirty && targetUniform->dirty)
{
mDirtySamplerMapping = true;
}
}
else UNREACHABLE();
}
void ProgramBinary::setUniform1fv(GLint location, GLsizei count, const GLfloat* v)
{
setUniform(location, count, v, GL_FLOAT);
}
void ProgramBinary::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniform(location, count, v, GL_FLOAT_VEC2);
}
void ProgramBinary::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniform(location, count, v, GL_FLOAT_VEC3);
}
void ProgramBinary::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniform(location, count, v, GL_FLOAT_VEC4);
}
template<typename T>
bool transposeMatrix(T *target, const GLfloat *value, int targetWidth, int targetHeight, int srcWidth, int srcHeight)
{
bool dirty = false;
int copyWidth = std::min(targetHeight, srcWidth);
int copyHeight = std::min(targetWidth, srcHeight);
for (int x = 0; x < copyWidth; x++)
{
for (int y = 0; y < copyHeight; y++)
{
SetIfDirty(target + (x * targetWidth + y), static_cast<T>(value[y * srcWidth + x]), &dirty);
}
}
// clear unfilled right side
for (int y = 0; y < copyWidth; y++)
{
for (int x = copyHeight; x < targetWidth; x++)
{
SetIfDirty(target + (y * targetWidth + x), static_cast<T>(0), &dirty);
}
}
// clear unfilled bottom.
for (int y = copyWidth; y < targetHeight; y++)
{
for (int x = 0; x < targetWidth; x++)
{
SetIfDirty(target + (y * targetWidth + x), static_cast<T>(0), &dirty);
}
}
return dirty;
}
template<typename T>
bool expandMatrix(T *target, const GLfloat *value, int targetWidth, int targetHeight, int srcWidth, int srcHeight)
{
bool dirty = false;
int copyWidth = std::min(targetWidth, srcWidth);
int copyHeight = std::min(targetHeight, srcHeight);
for (int y = 0; y < copyHeight; y++)
{
for (int x = 0; x < copyWidth; x++)
{
SetIfDirty(target + (y * targetWidth + x), static_cast<T>(value[y * srcWidth + x]), &dirty);
}
}
// clear unfilled right side
for (int y = 0; y < copyHeight; y++)
{
for (int x = copyWidth; x < targetWidth; x++)
{
SetIfDirty(target + (y * targetWidth + x), static_cast<T>(0), &dirty);
}
}
// clear unfilled bottom.
for (int y = copyHeight; y < targetHeight; y++)
{
for (int x = 0; x < targetWidth; x++)
{
SetIfDirty(target + (y * targetWidth + x), static_cast<T>(0), &dirty);
}
}
return dirty;
}
template <int cols, int rows>
void ProgramBinary::setUniformMatrixfv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value, GLenum targetUniformType)
{
LinkedUniform *targetUniform = getUniformByLocation(location);
int elementCount = targetUniform->elementCount();
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
const unsigned int targetMatrixStride = (4 * rows);
GLfloat *target = (GLfloat*)(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * targetMatrixStride);
for (int i = 0; i < count; i++)
{
// Internally store matrices as transposed versions to accomodate HLSL matrix indexing
if (transpose == GL_FALSE)
{
targetUniform->dirty = transposeMatrix<GLfloat>(target, value, 4, rows, rows, cols) || targetUniform->dirty;
}
else
{
targetUniform->dirty = expandMatrix<GLfloat>(target, value, 4, rows, cols, rows) || targetUniform->dirty;
}
target += targetMatrixStride;
value += cols * rows;
}
}
void ProgramBinary::setUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<2, 2>(location, count, transpose, value, GL_FLOAT_MAT2);
}
void ProgramBinary::setUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<3, 3>(location, count, transpose, value, GL_FLOAT_MAT3);
}
void ProgramBinary::setUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<4, 4>(location, count, transpose, value, GL_FLOAT_MAT4);
}
void ProgramBinary::setUniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<2, 3>(location, count, transpose, value, GL_FLOAT_MAT2x3);
}
void ProgramBinary::setUniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<3, 2>(location, count, transpose, value, GL_FLOAT_MAT3x2);
}
void ProgramBinary::setUniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<2, 4>(location, count, transpose, value, GL_FLOAT_MAT2x4);
}
void ProgramBinary::setUniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<4, 2>(location, count, transpose, value, GL_FLOAT_MAT4x2);
}
void ProgramBinary::setUniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<3, 4>(location, count, transpose, value, GL_FLOAT_MAT3x4);
}
void ProgramBinary::setUniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<4, 3>(location, count, transpose, value, GL_FLOAT_MAT4x3);
}
void ProgramBinary::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
setUniform(location, count, v, GL_INT);
}
void ProgramBinary::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
setUniform(location, count, v, GL_INT_VEC2);
}
void ProgramBinary::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
setUniform(location, count, v, GL_INT_VEC3);
}
void ProgramBinary::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
setUniform(location, count, v, GL_INT_VEC4);
}
void ProgramBinary::setUniform1uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniform(location, count, v, GL_UNSIGNED_INT);
}
void ProgramBinary::setUniform2uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniform(location, count, v, GL_UNSIGNED_INT_VEC2);
}
void ProgramBinary::setUniform3uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniform(location, count, v, GL_UNSIGNED_INT_VEC3);
}
void ProgramBinary::setUniform4uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniform(location, count, v, GL_UNSIGNED_INT_VEC4);
}
template <typename T>
void ProgramBinary::getUniformv(GLint location, T *params, GLenum uniformType)
{
LinkedUniform *targetUniform = mUniforms[mUniformIndex[location].index];
if (IsMatrixType(targetUniform->type))
{
const int rows = VariableRowCount(targetUniform->type);
const int cols = VariableColumnCount(targetUniform->type);
transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4 * rows, rows, cols, 4, rows);
}
else if (uniformType == VariableComponentType(targetUniform->type))
{
unsigned int size = VariableComponentCount(targetUniform->type);
memcpy(params, targetUniform->data + mUniformIndex[location].element * 4 * sizeof(T),
size * sizeof(T));
}
else
{
unsigned int size = VariableComponentCount(targetUniform->type);
switch (VariableComponentType(targetUniform->type))
{
case GL_BOOL:
{
GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
for (unsigned int i = 0; i < size; i++)
{
params[i] = (boolParams[i] == GL_FALSE) ? static_cast<T>(0) : static_cast<T>(1);
}
}
break;
case GL_FLOAT:
{
GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
for (unsigned int i = 0; i < size; i++)
{
params[i] = static_cast<T>(floatParams[i]);
}
}
break;
case GL_INT:
{
GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
for (unsigned int i = 0; i < size; i++)
{
params[i] = static_cast<T>(intParams[i]);
}
}
break;
case GL_UNSIGNED_INT:
{
GLuint *uintParams = (GLuint*)targetUniform->data + mUniformIndex[location].element * 4;
for (unsigned int i = 0; i < size; i++)
{
params[i] = static_cast<T>(uintParams[i]);
}
}
break;
default: UNREACHABLE();
}
}
}
void ProgramBinary::getUniformfv(GLint location, GLfloat *params)
{
getUniformv(location, params, GL_FLOAT);
}
void ProgramBinary::getUniformiv(GLint location, GLint *params)
{
getUniformv(location, params, GL_INT);
}
void ProgramBinary::getUniformuiv(GLint location, GLuint *params)
{
getUniformv(location, params, GL_UNSIGNED_INT);
}
void ProgramBinary::dirtyAllUniforms()
{
unsigned int numUniforms = mUniforms.size();
for (unsigned int index = 0; index < numUniforms; index++)
{
mUniforms[index]->dirty = true;
}
}
void ProgramBinary::updateSamplerMapping()
{
if (!mDirtySamplerMapping)
{
return;
}
mDirtySamplerMapping = false;
// Retrieve sampler uniform values
for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); uniformIndex++)
{
LinkedUniform *targetUniform = mUniforms[uniformIndex];
if (targetUniform->dirty)
{
if (IsSampler(targetUniform->type))
{
int count = targetUniform->elementCount();
GLint (*v)[4] = reinterpret_cast<GLint(*)[4]>(targetUniform->data);
if (targetUniform->isReferencedByFragmentShader())
{
unsigned int firstIndex = targetUniform->psRegisterIndex;
for (int i = 0; i < count; i++)
{
unsigned int samplerIndex = firstIndex + i;
if (samplerIndex < mSamplersPS.size())
{
ASSERT(mSamplersPS[samplerIndex].active);
mSamplersPS[samplerIndex].logicalTextureUnit = v[i][0];
}
}
}
if (targetUniform->isReferencedByVertexShader())
{
unsigned int firstIndex = targetUniform->vsRegisterIndex;
for (int i = 0; i < count; i++)
{
unsigned int samplerIndex = firstIndex + i;
if (samplerIndex < mSamplersVS.size())
{
ASSERT(mSamplersVS[samplerIndex].active);
mSamplersVS[samplerIndex].logicalTextureUnit = v[i][0];
}
}
}
}
}
}
}
// Applies all the uniforms set for this program object to the renderer
Error ProgramBinary::applyUniforms()
{
updateSamplerMapping();
Error error = mProgram->applyUniforms(mUniforms);
if (error.isError())
{
return error;
}
for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); uniformIndex++)
{
mUniforms[uniformIndex]->dirty = false;
}
return gl::Error(GL_NO_ERROR);
}
Error ProgramBinary::applyUniformBuffers(const std::vector<gl::Buffer*> boundBuffers, const Caps &caps)
{
ASSERT(boundBuffers.size() == mUniformBlocks.size());
return mProgram->applyUniformBuffers(mUniformBlocks, boundBuffers, caps);
}
bool ProgramBinary::linkVaryings(InfoLog &infoLog, Shader *fragmentShader, Shader *vertexShader)
{
std::vector<PackedVarying> &fragmentVaryings = fragmentShader->getVaryings();
std::vector<PackedVarying> &vertexVaryings = vertexShader->getVaryings();
for (size_t fragVaryingIndex = 0; fragVaryingIndex < fragmentVaryings.size(); fragVaryingIndex++)
{
PackedVarying *input = &fragmentVaryings[fragVaryingIndex];
bool matched = false;
// Built-in varyings obey special rules
if (input->isBuiltIn())
{
continue;
}
for (size_t vertVaryingIndex = 0; vertVaryingIndex < vertexVaryings.size(); vertVaryingIndex++)
{
PackedVarying *output = &vertexVaryings[vertVaryingIndex];
if (output->name == input->name)
{
if (!linkValidateVaryings(infoLog, output->name, *input, *output))
{
return false;
}
output->registerIndex = input->registerIndex;
output->columnIndex = input->columnIndex;
matched = true;
break;
}
}
// We permit unmatched, unreferenced varyings
if (!matched && input->staticUse)
{
infoLog.append("Fragment varying %s does not match any vertex varying", input->name.c_str());
return false;
}
}
return true;
}
bool ProgramBinary::load(InfoLog &infoLog, GLenum binaryFormat, const void *binary, GLsizei length)
{
#ifdef ANGLE_DISABLE_PROGRAM_BINARY_LOAD
return false;
#else
ASSERT(binaryFormat == mProgram->getBinaryFormat());
reset();
BinaryInputStream stream(binary, length);
GLenum format = stream.readInt<GLenum>();
if (format != mProgram->getBinaryFormat())
{
infoLog.append("Invalid program binary format.");
return false;
}
int majorVersion = stream.readInt<int>();
int minorVersion = stream.readInt<int>();
if (majorVersion != ANGLE_MAJOR_VERSION || minorVersion != ANGLE_MINOR_VERSION)
{
infoLog.append("Invalid program binary version.");
return false;
}
unsigned char commitString[ANGLE_COMMIT_HASH_SIZE];
stream.readBytes(commitString, ANGLE_COMMIT_HASH_SIZE);
if (memcmp(commitString, ANGLE_COMMIT_HASH, sizeof(unsigned char) * ANGLE_COMMIT_HASH_SIZE) != 0)
{
infoLog.append("Invalid program binary version.");
return false;
}
int compileFlags = stream.readInt<int>();
if (compileFlags != ANGLE_COMPILE_OPTIMIZATION_LEVEL)
{
infoLog.append("Mismatched compilation flags.");
return false;
}
for (int i = 0; i < MAX_VERTEX_ATTRIBS; ++i)
{
stream.readInt(&mLinkedAttribute[i].type);
stream.readString(&mLinkedAttribute[i].name);
stream.readInt(&mProgram->getShaderAttributes()[i].type);
stream.readString(&mProgram->getShaderAttributes()[i].name);
stream.readInt(&mSemanticIndex[i]);
}
initAttributesByLayout();
const unsigned int psSamplerCount = stream.readInt<unsigned int>();
for (unsigned int i = 0; i < psSamplerCount; ++i)
{
Sampler sampler;
stream.readBool(&sampler.active);
stream.readInt(&sampler.logicalTextureUnit);
stream.readInt(&sampler.textureType);
mSamplersPS.push_back(sampler);
}
const unsigned int vsSamplerCount = stream.readInt<unsigned int>();
for (unsigned int i = 0; i < vsSamplerCount; ++i)
{
Sampler sampler;
stream.readBool(&sampler.active);
stream.readInt(&sampler.logicalTextureUnit);
stream.readInt(&sampler.textureType);
mSamplersVS.push_back(sampler);
}
stream.readInt(&mUsedVertexSamplerRange);
stream.readInt(&mUsedPixelSamplerRange);
const unsigned int uniformCount = stream.readInt<unsigned int>();
if (stream.error())
{
infoLog.append("Invalid program binary.");
return false;
}
mUniforms.resize(uniformCount);
for (unsigned int uniformIndex = 0; uniformIndex < uniformCount; uniformIndex++)
{
GLenum type = stream.readInt<GLenum>();
GLenum precision = stream.readInt<GLenum>();
std::string name = stream.readString();
unsigned int arraySize = stream.readInt<unsigned int>();
int blockIndex = stream.readInt<int>();
int offset = stream.readInt<int>();
int arrayStride = stream.readInt<int>();
int matrixStride = stream.readInt<int>();
bool isRowMajorMatrix = stream.readBool();
const sh::BlockMemberInfo blockInfo(offset, arrayStride, matrixStride, isRowMajorMatrix);
LinkedUniform *uniform = new LinkedUniform(type, precision, name, arraySize, blockIndex, blockInfo);
stream.readInt(&uniform->psRegisterIndex);
stream.readInt(&uniform->vsRegisterIndex);
stream.readInt(&uniform->registerCount);
stream.readInt(&uniform->registerElement);
mUniforms[uniformIndex] = uniform;
}
unsigned int uniformBlockCount = stream.readInt<unsigned int>();
if (stream.error())
{
infoLog.append("Invalid program binary.");
return false;
}
mUniformBlocks.resize(uniformBlockCount);
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < uniformBlockCount; ++uniformBlockIndex)
{
std::string name = stream.readString();
unsigned int elementIndex = stream.readInt<unsigned int>();
unsigned int dataSize = stream.readInt<unsigned int>();
UniformBlock *uniformBlock = new UniformBlock(name, elementIndex, dataSize);
stream.readInt(&uniformBlock->psRegisterIndex);
stream.readInt(&uniformBlock->vsRegisterIndex);
unsigned int numMembers = stream.readInt<unsigned int>();
uniformBlock->memberUniformIndexes.resize(numMembers);
for (unsigned int blockMemberIndex = 0; blockMemberIndex < numMembers; blockMemberIndex++)
{
stream.readInt(&uniformBlock->memberUniformIndexes[blockMemberIndex]);
}
mUniformBlocks[uniformBlockIndex] = uniformBlock;
}
const unsigned int uniformIndexCount = stream.readInt<unsigned int>();
if (stream.error())
{
infoLog.append("Invalid program binary.");
return false;
}
mUniformIndex.resize(uniformIndexCount);
for (unsigned int uniformIndexIndex = 0; uniformIndexIndex < uniformIndexCount; uniformIndexIndex++)
{
stream.readString(&mUniformIndex[uniformIndexIndex].name);
stream.readInt(&mUniformIndex[uniformIndexIndex].element);
stream.readInt(&mUniformIndex[uniformIndexIndex].index);
}
if (!mProgram->load(infoLog, &stream))
{
return false;
}
mProgram->initializeUniformStorage(mUniforms);
return true;
#endif // #ifdef ANGLE_DISABLE_PROGRAM_BINARY_LOAD
}
bool ProgramBinary::save(GLenum *binaryFormat, void *binary, GLsizei bufSize, GLsizei *length)
{
if (binaryFormat)
{
*binaryFormat = mProgram->getBinaryFormat();
}
BinaryOutputStream stream;
stream.writeInt(mProgram->getBinaryFormat());
stream.writeInt(ANGLE_MAJOR_VERSION);
stream.writeInt(ANGLE_MINOR_VERSION);
stream.writeBytes(reinterpret_cast<const unsigned char*>(ANGLE_COMMIT_HASH), ANGLE_COMMIT_HASH_SIZE);
stream.writeInt(ANGLE_COMPILE_OPTIMIZATION_LEVEL);
for (unsigned int i = 0; i < MAX_VERTEX_ATTRIBS; ++i)
{
stream.writeInt(mLinkedAttribute[i].type);
stream.writeString(mLinkedAttribute[i].name);
stream.writeInt(mProgram->getShaderAttributes()[i].type);
stream.writeString(mProgram->getShaderAttributes()[i].name);
stream.writeInt(mSemanticIndex[i]);
}
stream.writeInt(mSamplersPS.size());
for (unsigned int i = 0; i < mSamplersPS.size(); ++i)
{
stream.writeInt(mSamplersPS[i].active);
stream.writeInt(mSamplersPS[i].logicalTextureUnit);
stream.writeInt(mSamplersPS[i].textureType);
}
stream.writeInt(mSamplersVS.size());
for (unsigned int i = 0; i < mSamplersVS.size(); ++i)
{
stream.writeInt(mSamplersVS[i].active);
stream.writeInt(mSamplersVS[i].logicalTextureUnit);
stream.writeInt(mSamplersVS[i].textureType);
}
stream.writeInt(mUsedVertexSamplerRange);
stream.writeInt(mUsedPixelSamplerRange);
stream.writeInt(mUniforms.size());
for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); ++uniformIndex)
{
const LinkedUniform &uniform = *mUniforms[uniformIndex];
stream.writeInt(uniform.type);
stream.writeInt(uniform.precision);
stream.writeString(uniform.name);
stream.writeInt(uniform.arraySize);
stream.writeInt(uniform.blockIndex);
stream.writeInt(uniform.blockInfo.offset);
stream.writeInt(uniform.blockInfo.arrayStride);
stream.writeInt(uniform.blockInfo.matrixStride);
stream.writeInt(uniform.blockInfo.isRowMajorMatrix);
stream.writeInt(uniform.psRegisterIndex);
stream.writeInt(uniform.vsRegisterIndex);
stream.writeInt(uniform.registerCount);
stream.writeInt(uniform.registerElement);
}
stream.writeInt(mUniformBlocks.size());
for (size_t uniformBlockIndex = 0; uniformBlockIndex < mUniformBlocks.size(); ++uniformBlockIndex)
{
const UniformBlock& uniformBlock = *mUniformBlocks[uniformBlockIndex];
stream.writeString(uniformBlock.name);
stream.writeInt(uniformBlock.elementIndex);
stream.writeInt(uniformBlock.dataSize);
stream.writeInt(uniformBlock.memberUniformIndexes.size());
for (unsigned int blockMemberIndex = 0; blockMemberIndex < uniformBlock.memberUniformIndexes.size(); blockMemberIndex++)
{
stream.writeInt(uniformBlock.memberUniformIndexes[blockMemberIndex]);
}
stream.writeInt(uniformBlock.psRegisterIndex);
stream.writeInt(uniformBlock.vsRegisterIndex);
}
stream.writeInt(mUniformIndex.size());
for (size_t i = 0; i < mUniformIndex.size(); ++i)
{
stream.writeString(mUniformIndex[i].name);
stream.writeInt(mUniformIndex[i].element);
stream.writeInt(mUniformIndex[i].index);
}
if (!mProgram->save(&stream))
{
if (length)
{
*length = 0;
}
return false;
}
GLsizei streamLength = stream.length();
const void *streamData = stream.data();
if (streamLength > bufSize)
{
if (length)
{
*length = 0;
}
return false;
}
if (binary)
{
char *ptr = (char*) binary;
memcpy(ptr, streamData, streamLength);
ptr += streamLength;
ASSERT(ptr - streamLength == binary);
}
if (length)
{
*length = streamLength;
}
return true;
}
GLint ProgramBinary::getLength()
{
GLint length;
if (save(NULL, NULL, INT_MAX, &length))
{
return length;
}
else
{
return 0;
}
}
bool ProgramBinary::link(InfoLog &infoLog, const AttributeBindings &attributeBindings, Shader *fragmentShader, Shader *vertexShader,
const std::vector<std::string>& transformFeedbackVaryings, GLenum transformFeedbackBufferMode, const Caps &caps)
{
if (!fragmentShader || !fragmentShader->isCompiled())
{
return false;
}
ASSERT(fragmentShader->getType() == GL_FRAGMENT_SHADER);
if (!vertexShader || !vertexShader->isCompiled())
{
return false;
}
ASSERT(vertexShader->getType() == GL_VERTEX_SHADER);
reset();
mSamplersPS.resize(caps.maxTextureImageUnits);
mSamplersVS.resize(caps.maxVertexTextureImageUnits);
rx::ShaderD3D *vertexShaderD3D = rx::ShaderD3D::makeShaderD3D(vertexShader->getImplementation());
rx::ShaderD3D *fragmentShaderD3D = rx::ShaderD3D::makeShaderD3D(fragmentShader->getImplementation());
int registers;
std::vector<LinkedVarying> linkedVaryings;
if (!mProgram->link(infoLog, fragmentShader, vertexShader, transformFeedbackVaryings, transformFeedbackBufferMode,
&registers, &linkedVaryings, &mOutputVariables, caps))
{
return false;
}
bool success = true;
if (!linkAttributes(infoLog, attributeBindings, vertexShader))
{
success = false;
}
if (!linkUniforms(infoLog, *vertexShader, *fragmentShader, caps))
{
success = false;
}
// special case for gl_DepthRange, the only built-in uniform (also a struct)
if (vertexShaderD3D->usesDepthRange() || fragmentShaderD3D->usesDepthRange())
{
const sh::BlockMemberInfo &defaultInfo = sh::BlockMemberInfo::getDefaultBlockInfo();
mUniforms.push_back(new LinkedUniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.near", 0, -1, defaultInfo));
mUniforms.push_back(new LinkedUniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.far", 0, -1, defaultInfo));
mUniforms.push_back(new LinkedUniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.diff", 0, -1, defaultInfo));
}
if (!linkUniformBlocks(infoLog, *vertexShader, *fragmentShader, caps))
{
success = false;
}
if (!gatherTransformFeedbackLinkedVaryings(infoLog, linkedVaryings, transformFeedbackVaryings,
transformFeedbackBufferMode, &mProgram->getTransformFeedbackLinkedVaryings(), caps))
{
success = false;
}
if (success)
{
// TODO: The concept of "executables" is D3D only, and as such this belongs in ProgramD3D. It must be called,
// however, last in this function, so it can't simply be moved to ProgramD3D::link without further shuffling.
if (!mProgram->compileProgramExecutables(infoLog, fragmentShader, vertexShader, registers))
{
infoLog.append("Failed to create D3D shaders.");
success = false;
reset();
}
}
return success;
}
// Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices
bool ProgramBinary::linkAttributes(InfoLog &infoLog, const AttributeBindings &attributeBindings, const Shader *vertexShader)
{
const rx::ShaderD3D *vertexShaderD3D = rx::ShaderD3D::makeShaderD3D(vertexShader->getImplementation());
unsigned int usedLocations = 0;
const std::vector<sh::Attribute> &shaderAttributes = vertexShader->getActiveAttributes();
// Link attributes that have a binding location
for (unsigned int attributeIndex = 0; attributeIndex < shaderAttributes.size(); attributeIndex++)
{
const sh::Attribute &attribute = shaderAttributes[attributeIndex];
ASSERT(attribute.staticUse);
const int location = attribute.location == -1 ? attributeBindings.getAttributeBinding(attribute.name) : attribute.location;
mProgram->getShaderAttributes()[attributeIndex] = attribute;
if (location != -1) // Set by glBindAttribLocation or by location layout qualifier
{
const int rows = VariableRegisterCount(attribute.type);
if (rows + location > MAX_VERTEX_ATTRIBS)
{
infoLog.append("Active attribute (%s) at location %d is too big to fit", attribute.name.c_str(), location);
return false;
}
for (int row = 0; row < rows; row++)
{
const int rowLocation = location + row;
sh::ShaderVariable &linkedAttribute = mLinkedAttribute[rowLocation];
// In GLSL 3.00, attribute aliasing produces a link error
// In GLSL 1.00, attribute aliasing is allowed
if (mProgram->getShaderVersion() >= 300)
{
if (!linkedAttribute.name.empty())
{
infoLog.append("Attribute '%s' aliases attribute '%s' at location %d", attribute.name.c_str(), linkedAttribute.name.c_str(), rowLocation);
return false;
}
}
linkedAttribute = attribute;
usedLocations |= 1 << rowLocation;
}
}
}
// Link attributes that don't have a binding location
for (unsigned int attributeIndex = 0; attributeIndex < shaderAttributes.size(); attributeIndex++)
{
const sh::Attribute &attribute = shaderAttributes[attributeIndex];
ASSERT(attribute.staticUse);
const int location = attribute.location == -1 ? attributeBindings.getAttributeBinding(attribute.name) : attribute.location;
if (location == -1) // Not set by glBindAttribLocation or by location layout qualifier
{
int rows = VariableRegisterCount(attribute.type);
int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS);
if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS)
{
infoLog.append("Too many active attributes (%s)", attribute.name.c_str());
return false; // Fail to link
}
mLinkedAttribute[availableIndex] = attribute;
}
}
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; )
{
int index = vertexShaderD3D->getSemanticIndex(mLinkedAttribute[attributeIndex].name);
int rows = VariableRegisterCount(mLinkedAttribute[attributeIndex].type);
for (int r = 0; r < rows; r++)
{
mSemanticIndex[attributeIndex++] = index++;
}
}
initAttributesByLayout();
return true;
}
bool ProgramBinary::linkValidateVariablesBase(InfoLog &infoLog, const std::string &variableName, const sh::ShaderVariable &vertexVariable,
const sh::ShaderVariable &fragmentVariable, bool validatePrecision)
{
if (vertexVariable.type != fragmentVariable.type)
{
infoLog.append("Types for %s differ between vertex and fragment shaders", variableName.c_str());
return false;
}
if (vertexVariable.arraySize != fragmentVariable.arraySize)
{
infoLog.append("Array sizes for %s differ between vertex and fragment shaders", variableName.c_str());
return false;
}
if (validatePrecision && vertexVariable.precision != fragmentVariable.precision)
{
infoLog.append("Precisions for %s differ between vertex and fragment shaders", variableName.c_str());
return false;
}
if (vertexVariable.fields.size() != fragmentVariable.fields.size())
{
infoLog.append("Structure lengths for %s differ between vertex and fragment shaders", variableName.c_str());
return false;
}
const unsigned int numMembers = vertexVariable.fields.size();
for (unsigned int memberIndex = 0; memberIndex < numMembers; memberIndex++)
{
const sh::ShaderVariable &vertexMember = vertexVariable.fields[memberIndex];
const sh::ShaderVariable &fragmentMember = fragmentVariable.fields[memberIndex];
if (vertexMember.name != fragmentMember.name)
{
infoLog.append("Name mismatch for field '%d' of %s: (in vertex: '%s', in fragment: '%s')",
memberIndex, variableName.c_str(),
vertexMember.name.c_str(), fragmentMember.name.c_str());
return false;
}
const std::string memberName = variableName.substr(0, variableName.length() - 1) + "." +
vertexMember.name + "'";
if (!linkValidateVariablesBase(infoLog, vertexMember.name, vertexMember, fragmentMember, validatePrecision))
{
return false;
}
}
return true;
}
bool ProgramBinary::linkValidateUniforms(InfoLog &infoLog, const std::string &uniformName, const sh::Uniform &vertexUniform, const sh::Uniform &fragmentUniform)
{
if (!linkValidateVariablesBase(infoLog, uniformName, vertexUniform, fragmentUniform, true))
{
return false;
}
return true;
}
bool ProgramBinary::linkValidateVaryings(InfoLog &infoLog, const std::string &varyingName, const sh::Varying &vertexVarying, const sh::Varying &fragmentVarying)
{
if (!linkValidateVariablesBase(infoLog, varyingName, vertexVarying, fragmentVarying, false))
{
return false;
}
if (vertexVarying.interpolation != fragmentVarying.interpolation)
{
infoLog.append("Interpolation types for %s differ between vertex and fragment shaders", varyingName.c_str());
return false;
}
return true;
}
bool ProgramBinary::linkValidateInterfaceBlockFields(InfoLog &infoLog, const std::string &uniformName, const sh::InterfaceBlockField &vertexUniform, const sh::InterfaceBlockField &fragmentUniform)
{
if (!linkValidateVariablesBase(infoLog, uniformName, vertexUniform, fragmentUniform, true))
{
return false;
}
if (vertexUniform.isRowMajorLayout != fragmentUniform.isRowMajorLayout)
{
infoLog.append("Matrix packings for %s differ between vertex and fragment shaders", uniformName.c_str());
return false;
}
return true;
}
bool ProgramBinary::linkUniforms(InfoLog &infoLog, const Shader &vertexShader, const Shader &fragmentShader, const Caps &caps)
{
const rx::ShaderD3D *vertexShaderD3D = rx::ShaderD3D::makeShaderD3D(vertexShader.getImplementation());
const rx::ShaderD3D *fragmentShaderD3D = rx::ShaderD3D::makeShaderD3D(fragmentShader.getImplementation());
const std::vector<sh::Uniform> &vertexUniforms = vertexShader.getUniforms();
const std::vector<sh::Uniform> &fragmentUniforms = fragmentShader.getUniforms();
// Check that uniforms defined in the vertex and fragment shaders are identical
typedef std::map<std::string, const sh::Uniform*> UniformMap;
UniformMap linkedUniforms;
for (unsigned int vertexUniformIndex = 0; vertexUniformIndex < vertexUniforms.size(); vertexUniformIndex++)
{
const sh::Uniform &vertexUniform = vertexUniforms[vertexUniformIndex];
linkedUniforms[vertexUniform.name] = &vertexUniform;
}
for (unsigned int fragmentUniformIndex = 0; fragmentUniformIndex < fragmentUniforms.size(); fragmentUniformIndex++)
{
const sh::Uniform &fragmentUniform = fragmentUniforms[fragmentUniformIndex];
UniformMap::const_iterator entry = linkedUniforms.find(fragmentUniform.name);
if (entry != linkedUniforms.end())
{
const sh::Uniform &vertexUniform = *entry->second;
const std::string &uniformName = "uniform '" + vertexUniform.name + "'";
if (!linkValidateUniforms(infoLog, uniformName, vertexUniform, fragmentUniform))
{
return false;
}
}
}
for (unsigned int uniformIndex = 0; uniformIndex < vertexUniforms.size(); uniformIndex++)
{
const sh::Uniform &uniform = vertexUniforms[uniformIndex];
if (uniform.staticUse)
{
defineUniformBase(GL_VERTEX_SHADER, uniform, vertexShaderD3D->getUniformRegister(uniform.name));
}
}
for (unsigned int uniformIndex = 0; uniformIndex < fragmentUniforms.size(); uniformIndex++)
{
const sh::Uniform &uniform = fragmentUniforms[uniformIndex];
if (uniform.staticUse)
{
defineUniformBase(GL_FRAGMENT_SHADER, uniform, fragmentShaderD3D->getUniformRegister(uniform.name));
}
}
if (!indexUniforms(infoLog, caps))
{
return false;
}
mProgram->initializeUniformStorage(mUniforms);
return true;
}
void ProgramBinary::defineUniformBase(GLenum shader, const sh::Uniform &uniform, unsigned int uniformRegister)
{
ShShaderOutput outputType = rx::ShaderD3D::getCompilerOutputType(shader);
sh::HLSLBlockEncoder encoder(sh::HLSLBlockEncoder::GetStrategyFor(outputType));
encoder.skipRegisters(uniformRegister);
defineUniform(shader, uniform, uniform.name, &encoder);
}
void ProgramBinary::defineUniform(GLenum shader, const sh::ShaderVariable &uniform,
const std::string &fullName, sh::HLSLBlockEncoder *encoder)
{
if (uniform.isStruct())
{
for (unsigned int elementIndex = 0; elementIndex < uniform.elementCount(); elementIndex++)
{
const std::string &elementString = (uniform.isArray() ? ArrayString(elementIndex) : "");
encoder->enterAggregateType();
for (size_t fieldIndex = 0; fieldIndex < uniform.fields.size(); fieldIndex++)
{
const sh::ShaderVariable &field = uniform.fields[fieldIndex];
const std::string &fieldFullName = (fullName + elementString + "." + field.name);
defineUniform(shader, field, fieldFullName, encoder);
}
encoder->exitAggregateType();
}
}
else // Not a struct
{
// Arrays are treated as aggregate types
if (uniform.isArray())
{
encoder->enterAggregateType();
}
LinkedUniform *linkedUniform = getUniformByName(fullName);
if (!linkedUniform)
{
linkedUniform = new LinkedUniform(uniform.type, uniform.precision, fullName, uniform.arraySize,
-1, sh::BlockMemberInfo::getDefaultBlockInfo());
ASSERT(linkedUniform);
linkedUniform->registerElement = encoder->getCurrentElement();
mUniforms.push_back(linkedUniform);
}
ASSERT(linkedUniform->registerElement == encoder->getCurrentElement());
if (shader == GL_FRAGMENT_SHADER)
{
linkedUniform->psRegisterIndex = encoder->getCurrentRegister();
}
else if (shader == GL_VERTEX_SHADER)
{
linkedUniform->vsRegisterIndex = encoder->getCurrentRegister();
}
else UNREACHABLE();
// Advance the uniform offset, to track registers allocation for structs
encoder->encodeType(uniform.type, uniform.arraySize, false);
// Arrays are treated as aggregate types
if (uniform.isArray())
{
encoder->exitAggregateType();
}
}
}
bool ProgramBinary::indexSamplerUniform(const LinkedUniform &uniform, InfoLog &infoLog, const Caps &caps)
{
ASSERT(IsSampler(uniform.type));
ASSERT(uniform.vsRegisterIndex != GL_INVALID_INDEX || uniform.psRegisterIndex != GL_INVALID_INDEX);
if (uniform.vsRegisterIndex != GL_INVALID_INDEX)
{
if (!assignSamplers(uniform.vsRegisterIndex, uniform.type, uniform.arraySize, mSamplersVS,
&mUsedVertexSamplerRange))
{
infoLog.append("Vertex shader sampler count exceeds the maximum vertex texture units (%d).",
mSamplersVS.size());
return false;
}
unsigned int maxVertexVectors = mProgram->getReservedUniformVectors(GL_VERTEX_SHADER) + caps.maxVertexUniformVectors;
if (uniform.vsRegisterIndex + uniform.registerCount > maxVertexVectors)
{
infoLog.append("Vertex shader active uniforms exceed GL_MAX_VERTEX_UNIFORM_VECTORS (%u)",
caps.maxVertexUniformVectors);
return false;
}
}
if (uniform.psRegisterIndex != GL_INVALID_INDEX)
{
if (!assignSamplers(uniform.psRegisterIndex, uniform.type, uniform.arraySize, mSamplersPS,
&mUsedPixelSamplerRange))
{
infoLog.append("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).",
mSamplersPS.size());
return false;
}
unsigned int maxFragmentVectors = mProgram->getReservedUniformVectors(GL_FRAGMENT_SHADER) + caps.maxFragmentUniformVectors;
if (uniform.psRegisterIndex + uniform.registerCount > maxFragmentVectors)
{
infoLog.append("Fragment shader active uniforms exceed GL_MAX_FRAGMENT_UNIFORM_VECTORS (%u)",
caps.maxFragmentUniformVectors);
return false;
}
}
return true;
}
bool ProgramBinary::indexUniforms(InfoLog &infoLog, const Caps &caps)
{
for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); uniformIndex++)
{
const LinkedUniform &uniform = *mUniforms[uniformIndex];
if (IsSampler(uniform.type))
{
if (!indexSamplerUniform(uniform, infoLog, caps))
{
return false;
}
}
for (unsigned int arrayElementIndex = 0; arrayElementIndex < uniform.elementCount(); arrayElementIndex++)
{
mUniformIndex.push_back(VariableLocation(uniform.name, arrayElementIndex, uniformIndex));
}
}
return true;
}
bool ProgramBinary::assignSamplers(unsigned int startSamplerIndex,
GLenum samplerType,
unsigned int samplerCount,
std::vector<Sampler> &outSamplers,
GLuint *outUsedRange)
{
unsigned int samplerIndex = startSamplerIndex;
do
{
if (samplerIndex < outSamplers.size())
{
Sampler& sampler = outSamplers[samplerIndex];
sampler.active = true;
sampler.textureType = GetTextureType(samplerType);
sampler.logicalTextureUnit = 0;
*outUsedRange = std::max(samplerIndex + 1, *outUsedRange);
}
else
{
return false;
}
samplerIndex++;
} while (samplerIndex < startSamplerIndex + samplerCount);
return true;
}
bool ProgramBinary::areMatchingInterfaceBlocks(InfoLog &infoLog, const sh::InterfaceBlock &vertexInterfaceBlock, const sh::InterfaceBlock &fragmentInterfaceBlock)
{
const char* blockName = vertexInterfaceBlock.name.c_str();
// validate blocks for the same member types
if (vertexInterfaceBlock.fields.size() != fragmentInterfaceBlock.fields.size())
{
infoLog.append("Types for interface block '%s' differ between vertex and fragment shaders", blockName);
return false;
}
if (vertexInterfaceBlock.arraySize != fragmentInterfaceBlock.arraySize)
{
infoLog.append("Array sizes differ for interface block '%s' between vertex and fragment shaders", blockName);
return false;
}
if (vertexInterfaceBlock.layout != fragmentInterfaceBlock.layout || vertexInterfaceBlock.isRowMajorLayout != fragmentInterfaceBlock.isRowMajorLayout)
{
infoLog.append("Layout qualifiers differ for interface block '%s' between vertex and fragment shaders", blockName);
return false;
}
const unsigned int numBlockMembers = vertexInterfaceBlock.fields.size();
for (unsigned int blockMemberIndex = 0; blockMemberIndex < numBlockMembers; blockMemberIndex++)
{
const sh::InterfaceBlockField &vertexMember = vertexInterfaceBlock.fields[blockMemberIndex];
const sh::InterfaceBlockField &fragmentMember = fragmentInterfaceBlock.fields[blockMemberIndex];
if (vertexMember.name != fragmentMember.name)
{
infoLog.append("Name mismatch for field %d of interface block '%s': (in vertex: '%s', in fragment: '%s')",
blockMemberIndex, blockName, vertexMember.name.c_str(), fragmentMember.name.c_str());
return false;
}
std::string memberName = "interface block '" + vertexInterfaceBlock.name + "' member '" + vertexMember.name + "'";
if (!linkValidateInterfaceBlockFields(infoLog, memberName, vertexMember, fragmentMember))
{
return false;
}
}
return true;
}
bool ProgramBinary::linkUniformBlocks(InfoLog &infoLog, const Shader &vertexShader, const Shader &fragmentShader, const Caps &caps)
{
const std::vector<sh::InterfaceBlock> &vertexInterfaceBlocks = vertexShader.getInterfaceBlocks();
const std::vector<sh::InterfaceBlock> &fragmentInterfaceBlocks = fragmentShader.getInterfaceBlocks();
// Check that interface blocks defined in the vertex and fragment shaders are identical
typedef std::map<std::string, const sh::InterfaceBlock*> UniformBlockMap;
UniformBlockMap linkedUniformBlocks;
for (unsigned int blockIndex = 0; blockIndex < vertexInterfaceBlocks.size(); blockIndex++)
{
const sh::InterfaceBlock &vertexInterfaceBlock = vertexInterfaceBlocks[blockIndex];
linkedUniformBlocks[vertexInterfaceBlock.name] = &vertexInterfaceBlock;
}
for (unsigned int blockIndex = 0; blockIndex < fragmentInterfaceBlocks.size(); blockIndex++)
{
const sh::InterfaceBlock &fragmentInterfaceBlock = fragmentInterfaceBlocks[blockIndex];
UniformBlockMap::const_iterator entry = linkedUniformBlocks.find(fragmentInterfaceBlock.name);
if (entry != linkedUniformBlocks.end())
{
const sh::InterfaceBlock &vertexInterfaceBlock = *entry->second;
if (!areMatchingInterfaceBlocks(infoLog, vertexInterfaceBlock, fragmentInterfaceBlock))
{
return false;
}
}
}
for (unsigned int blockIndex = 0; blockIndex < vertexInterfaceBlocks.size(); blockIndex++)
{
const sh::InterfaceBlock &interfaceBlock = vertexInterfaceBlocks[blockIndex];
// Note: shared and std140 layouts are always considered active
if (interfaceBlock.staticUse || interfaceBlock.layout != sh::BLOCKLAYOUT_PACKED)
{
if (!defineUniformBlock(infoLog, vertexShader, interfaceBlock, caps))
{
return false;
}
}
}
for (unsigned int blockIndex = 0; blockIndex < fragmentInterfaceBlocks.size(); blockIndex++)
{
const sh::InterfaceBlock &interfaceBlock = fragmentInterfaceBlocks[blockIndex];
// Note: shared and std140 layouts are always considered active
if (interfaceBlock.staticUse || interfaceBlock.layout != sh::BLOCKLAYOUT_PACKED)
{
if (!defineUniformBlock(infoLog, fragmentShader, interfaceBlock, caps))
{
return false;
}
}
}
return true;
}
bool ProgramBinary::gatherTransformFeedbackLinkedVaryings(InfoLog &infoLog, const std::vector<LinkedVarying> &linkedVaryings,
const std::vector<std::string> &transformFeedbackVaryingNames,
GLenum transformFeedbackBufferMode,
std::vector<LinkedVarying> *outTransformFeedbackLinkedVaryings,
const Caps &caps) const
{
size_t totalComponents = 0;
// Gather the linked varyings that are used for transform feedback, they should all exist.
outTransformFeedbackLinkedVaryings->clear();
for (size_t i = 0; i < transformFeedbackVaryingNames.size(); i++)
{
bool found = false;
for (size_t j = 0; j < linkedVaryings.size(); j++)
{
if (transformFeedbackVaryingNames[i] == linkedVaryings[j].name)
{
for (size_t k = 0; k < outTransformFeedbackLinkedVaryings->size(); k++)
{
if (outTransformFeedbackLinkedVaryings->at(k).name == linkedVaryings[j].name)
{
infoLog.append("Two transform feedback varyings specify the same output variable (%s).", linkedVaryings[j].name.c_str());
return false;
}
}
size_t componentCount = linkedVaryings[j].semanticIndexCount * 4;
if (transformFeedbackBufferMode == GL_SEPARATE_ATTRIBS &&
componentCount > caps.maxTransformFeedbackSeparateComponents)
{
infoLog.append("Transform feedback varying's %s components (%u) exceed the maximum separate components (%u).",
linkedVaryings[j].name.c_str(), componentCount, caps.maxTransformFeedbackSeparateComponents);
return false;
}
totalComponents += componentCount;
outTransformFeedbackLinkedVaryings->push_back(linkedVaryings[j]);
found = true;
break;
}
}
// All transform feedback varyings are expected to exist since packVaryings checks for them.
ASSERT(found);
}
if (transformFeedbackBufferMode == GL_INTERLEAVED_ATTRIBS && totalComponents > caps.maxTransformFeedbackInterleavedComponents)
{
infoLog.append("Transform feedback varying total components (%u) exceed the maximum interleaved components (%u).",
totalComponents, caps.maxTransformFeedbackInterleavedComponents);
return false;
}
return true;
}
template <typename VarT>
void ProgramBinary::defineUniformBlockMembers(const std::vector<VarT> &fields, const std::string &prefix, int blockIndex,
sh::BlockLayoutEncoder *encoder, std::vector<unsigned int> *blockUniformIndexes,
bool inRowMajorLayout)
{
for (unsigned int uniformIndex = 0; uniformIndex < fields.size(); uniformIndex++)
{
const VarT &field = fields[uniformIndex];
const std::string &fieldName = (prefix.empty() ? field.name : prefix + "." + field.name);
if (field.isStruct())
{
bool rowMajorLayout = (inRowMajorLayout || IsRowMajorLayout(field));
for (unsigned int arrayElement = 0; arrayElement < field.elementCount(); arrayElement++)
{
encoder->enterAggregateType();
const std::string uniformElementName = fieldName + (field.isArray() ? ArrayString(arrayElement) : "");
defineUniformBlockMembers(field.fields, uniformElementName, blockIndex, encoder, blockUniformIndexes, rowMajorLayout);
encoder->exitAggregateType();
}
}
else
{
bool isRowMajorMatrix = (IsMatrixType(field.type) && inRowMajorLayout);
sh::BlockMemberInfo memberInfo = encoder->encodeType(field.type, field.arraySize, isRowMajorMatrix);
LinkedUniform *newUniform = new LinkedUniform(field.type, field.precision, fieldName, field.arraySize,
blockIndex, memberInfo);
// add to uniform list, but not index, since uniform block uniforms have no location
blockUniformIndexes->push_back(mUniforms.size());
mUniforms.push_back(newUniform);
}
}
}
bool ProgramBinary::defineUniformBlock(InfoLog &infoLog, const Shader &shader, const sh::InterfaceBlock &interfaceBlock, const Caps &caps)
{
const rx::ShaderD3D* shaderD3D = rx::ShaderD3D::makeShaderD3D(shader.getImplementation());
// create uniform block entries if they do not exist
if (getUniformBlockIndex(interfaceBlock.name) == GL_INVALID_INDEX)
{
std::vector<unsigned int> blockUniformIndexes;
const unsigned int blockIndex = mUniformBlocks.size();
// define member uniforms
sh::BlockLayoutEncoder *encoder = NULL;
if (interfaceBlock.layout == sh::BLOCKLAYOUT_STANDARD)
{
encoder = new sh::Std140BlockEncoder;
}
else
{
encoder = new sh::HLSLBlockEncoder(sh::HLSLBlockEncoder::ENCODE_PACKED);
}
ASSERT(encoder);
defineUniformBlockMembers(interfaceBlock.fields, "", blockIndex, encoder, &blockUniformIndexes, interfaceBlock.isRowMajorLayout);
size_t dataSize = encoder->getBlockSize();
// create all the uniform blocks
if (interfaceBlock.arraySize > 0)
{
for (unsigned int uniformBlockElement = 0; uniformBlockElement < interfaceBlock.arraySize; uniformBlockElement++)
{
UniformBlock *newUniformBlock = new UniformBlock(interfaceBlock.name, uniformBlockElement, dataSize);
newUniformBlock->memberUniformIndexes = blockUniformIndexes;
mUniformBlocks.push_back(newUniformBlock);
}
}
else
{
UniformBlock *newUniformBlock = new UniformBlock(interfaceBlock.name, GL_INVALID_INDEX, dataSize);
newUniformBlock->memberUniformIndexes = blockUniformIndexes;
mUniformBlocks.push_back(newUniformBlock);
}
}
if (interfaceBlock.staticUse)
{
// Assign registers to the uniform blocks
const GLuint blockIndex = getUniformBlockIndex(interfaceBlock.name);
const unsigned int elementCount = std::max(1u, interfaceBlock.arraySize);
ASSERT(blockIndex != GL_INVALID_INDEX);
ASSERT(blockIndex + elementCount <= mUniformBlocks.size());
unsigned int interfaceBlockRegister = shaderD3D->getInterfaceBlockRegister(interfaceBlock.name);
for (unsigned int uniformBlockElement = 0; uniformBlockElement < elementCount; uniformBlockElement++)
{
UniformBlock *uniformBlock = mUniformBlocks[blockIndex + uniformBlockElement];
ASSERT(uniformBlock->name == interfaceBlock.name);
if (!mProgram->assignUniformBlockRegister(infoLog, uniformBlock, shader.getType(),
interfaceBlockRegister + uniformBlockElement, caps))
{
return false;
}
}
}
return true;
}
bool ProgramBinary::isValidated() const
{
return mValidated;
}
void ProgramBinary::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const
{
// Skip over inactive attributes
unsigned int activeAttribute = 0;
unsigned int attribute;
for (attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
{
if (mLinkedAttribute[attribute].name.empty())
{
continue;
}
if (activeAttribute == index)
{
break;
}
activeAttribute++;
}
if (bufsize > 0)
{
const char *string = mLinkedAttribute[attribute].name.c_str();
strncpy(name, string, bufsize);
name[bufsize - 1] = '\0';
if (length)
{
*length = strlen(name);
}
}
*size = 1; // Always a single 'type' instance
*type = mLinkedAttribute[attribute].type;
}
GLint ProgramBinary::getActiveAttributeCount() const
{
int count = 0;
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
if (!mLinkedAttribute[attributeIndex].name.empty())
{
count++;
}
}
return count;
}
GLint ProgramBinary::getActiveAttributeMaxLength() const
{
int maxLength = 0;
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
if (!mLinkedAttribute[attributeIndex].name.empty())
{
maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength);
}
}
return maxLength;
}
void ProgramBinary::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const
{
ASSERT(index < mUniforms.size()); // index must be smaller than getActiveUniformCount()
if (bufsize > 0)
{
std::string string = mUniforms[index]->name;
if (mUniforms[index]->isArray())
{
string += "[0]";
}
strncpy(name, string.c_str(), bufsize);
name[bufsize - 1] = '\0';
if (length)
{
*length = strlen(name);
}
}
*size = mUniforms[index]->elementCount();
*type = mUniforms[index]->type;
}
GLint ProgramBinary::getActiveUniformCount() const
{
return mUniforms.size();
}
GLint ProgramBinary::getActiveUniformMaxLength() const
{
int maxLength = 0;
unsigned int numUniforms = mUniforms.size();
for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++)
{
if (!mUniforms[uniformIndex]->name.empty())
{
int length = (int)(mUniforms[uniformIndex]->name.length() + 1);
if (mUniforms[uniformIndex]->isArray())
{
length += 3; // Counting in "[0]".
}
maxLength = std::max(length, maxLength);
}
}
return maxLength;
}
GLint ProgramBinary::getActiveUniformi(GLuint index, GLenum pname) const
{
const gl::LinkedUniform& uniform = *mUniforms[index];
switch (pname)
{
case GL_UNIFORM_TYPE: return static_cast<GLint>(uniform.type);
case GL_UNIFORM_SIZE: return static_cast<GLint>(uniform.elementCount());
case GL_UNIFORM_NAME_LENGTH: return static_cast<GLint>(uniform.name.size() + 1 + (uniform.isArray() ? 3 : 0));
case GL_UNIFORM_BLOCK_INDEX: return uniform.blockIndex;
case GL_UNIFORM_OFFSET: return uniform.blockInfo.offset;
case GL_UNIFORM_ARRAY_STRIDE: return uniform.blockInfo.arrayStride;
case GL_UNIFORM_MATRIX_STRIDE: return uniform.blockInfo.matrixStride;
case GL_UNIFORM_IS_ROW_MAJOR: return static_cast<GLint>(uniform.blockInfo.isRowMajorMatrix);
default:
UNREACHABLE();
break;
}
return 0;
}
bool ProgramBinary::isValidUniformLocation(GLint location) const
{
ASSERT(rx::IsIntegerCastSafe<GLint>(mUniformIndex.size()));
return (location >= 0 && location < static_cast<GLint>(mUniformIndex.size()));
}
LinkedUniform *ProgramBinary::getUniformByLocation(GLint location) const
{
ASSERT(location >= 0 && static_cast<size_t>(location) < mUniformIndex.size());
return mUniforms[mUniformIndex[location].index];
}
LinkedUniform *ProgramBinary::getUniformByName(const std::string &name) const
{
for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); uniformIndex++)
{
if (mUniforms[uniformIndex]->name == name)
{
return mUniforms[uniformIndex];
}
}
return NULL;
}
void ProgramBinary::getActiveUniformBlockName(GLuint uniformBlockIndex, GLsizei bufSize, GLsizei *length, GLchar *uniformBlockName) const
{
ASSERT(uniformBlockIndex < mUniformBlocks.size()); // index must be smaller than getActiveUniformBlockCount()
const UniformBlock &uniformBlock = *mUniformBlocks[uniformBlockIndex];
if (bufSize > 0)
{
std::string string = uniformBlock.name;
if (uniformBlock.isArrayElement())
{
string += ArrayString(uniformBlock.elementIndex);
}
strncpy(uniformBlockName, string.c_str(), bufSize);
uniformBlockName[bufSize - 1] = '\0';
if (length)
{
*length = strlen(uniformBlockName);
}
}
}
void ProgramBinary::getActiveUniformBlockiv(GLuint uniformBlockIndex, GLenum pname, GLint *params) const
{
ASSERT(uniformBlockIndex < mUniformBlocks.size()); // index must be smaller than getActiveUniformBlockCount()
const UniformBlock &uniformBlock = *mUniformBlocks[uniformBlockIndex];
switch (pname)
{
case GL_UNIFORM_BLOCK_DATA_SIZE:
*params = static_cast<GLint>(uniformBlock.dataSize);
break;
case GL_UNIFORM_BLOCK_NAME_LENGTH:
*params = static_cast<GLint>(uniformBlock.name.size() + 1 + (uniformBlock.isArrayElement() ? 3 : 0));
break;
case GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS:
*params = static_cast<GLint>(uniformBlock.memberUniformIndexes.size());
break;
case GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES:
{
for (unsigned int blockMemberIndex = 0; blockMemberIndex < uniformBlock.memberUniformIndexes.size(); blockMemberIndex++)
{
params[blockMemberIndex] = static_cast<GLint>(uniformBlock.memberUniformIndexes[blockMemberIndex]);
}
}
break;
case GL_UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER:
*params = static_cast<GLint>(uniformBlock.isReferencedByVertexShader());
break;
case GL_UNIFORM_BLOCK_REFERENCED_BY_FRAGMENT_SHADER:
*params = static_cast<GLint>(uniformBlock.isReferencedByFragmentShader());
break;
default: UNREACHABLE();
}
}
GLuint ProgramBinary::getActiveUniformBlockCount() const
{
return mUniformBlocks.size();
}
GLuint ProgramBinary::getActiveUniformBlockMaxLength() const
{
unsigned int maxLength = 0;
unsigned int numUniformBlocks = mUniformBlocks.size();
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < numUniformBlocks; uniformBlockIndex++)
{
const UniformBlock &uniformBlock = *mUniformBlocks[uniformBlockIndex];
if (!uniformBlock.name.empty())
{
const unsigned int length = uniformBlock.name.length() + 1;
// Counting in "[0]".
const unsigned int arrayLength = (uniformBlock.isArrayElement() ? 3 : 0);
maxLength = std::max(length + arrayLength, maxLength);
}
}
return maxLength;
}
void ProgramBinary::validate(InfoLog &infoLog, const Caps &caps)
{
applyUniforms();
if (!validateSamplers(&infoLog, caps))
{
mValidated = false;
}
else
{
mValidated = true;
}
}
bool ProgramBinary::validateSamplers(InfoLog *infoLog, const Caps &caps)
{
// if any two active samplers in a program are of different types, but refer to the same
// texture image unit, and this is the current program, then ValidateProgram will fail, and
// DrawArrays and DrawElements will issue the INVALID_OPERATION error.
updateSamplerMapping();
std::vector<GLenum> textureUnitTypes(caps.maxCombinedTextureImageUnits, GL_NONE);
for (unsigned int i = 0; i < mUsedPixelSamplerRange; ++i)
{
if (mSamplersPS[i].active)
{
unsigned int unit = mSamplersPS[i].logicalTextureUnit;
if (unit >= textureUnitTypes.size())
{
if (infoLog)
{
infoLog->append("Sampler uniform (%d) exceeds GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, textureUnitTypes.size());
}
return false;
}
if (textureUnitTypes[unit] != GL_NONE)
{
if (mSamplersPS[i].textureType != textureUnitTypes[unit])
{
if (infoLog)
{
infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
}
return false;
}
}
else
{
textureUnitTypes[unit] = mSamplersPS[i].textureType;
}
}
}
for (unsigned int i = 0; i < mUsedVertexSamplerRange; ++i)
{
if (mSamplersVS[i].active)
{
unsigned int unit = mSamplersVS[i].logicalTextureUnit;
if (unit >= textureUnitTypes.size())
{
if (infoLog)
{
infoLog->append("Sampler uniform (%d) exceeds GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, textureUnitTypes.size());
}
return false;
}
if (textureUnitTypes[unit] != GL_NONE)
{
if (mSamplersVS[i].textureType != textureUnitTypes[unit])
{
if (infoLog)
{
infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
}
return false;
}
}
else
{
textureUnitTypes[unit] = mSamplersVS[i].textureType;
}
}
}
return true;
}
ProgramBinary::Sampler::Sampler() : active(false), logicalTextureUnit(0), textureType(GL_TEXTURE_2D)
{
}
struct AttributeSorter
{
AttributeSorter(const int (&semanticIndices)[MAX_VERTEX_ATTRIBS])
: originalIndices(semanticIndices)
{
}
bool operator()(int a, int b)
{
if (originalIndices[a] == -1) return false;
if (originalIndices[b] == -1) return true;
return (originalIndices[a] < originalIndices[b]);
}
const int (&originalIndices)[MAX_VERTEX_ATTRIBS];
};
void ProgramBinary::initAttributesByLayout()
{
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
mAttributesByLayout[i] = i;
}
std::sort(&mAttributesByLayout[0], &mAttributesByLayout[MAX_VERTEX_ATTRIBS], AttributeSorter(mSemanticIndex));
}
void ProgramBinary::sortAttributesByLayout(rx::TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS], int sortedSemanticIndices[MAX_VERTEX_ATTRIBS]) const
{
rx::TranslatedAttribute oldTranslatedAttributes[MAX_VERTEX_ATTRIBS];
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
oldTranslatedAttributes[i] = attributes[i];
}
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
int oldIndex = mAttributesByLayout[i];
sortedSemanticIndices[i] = mSemanticIndex[oldIndex];
attributes[i] = oldTranslatedAttributes[oldIndex];
}
}
void ProgramBinary::reset()
{
mSamplersPS.clear();
mSamplersVS.clear();
mUsedVertexSamplerRange = 0;
mUsedPixelSamplerRange = 0;
mDirtySamplerMapping = true;
SafeDeleteContainer(mUniforms);
SafeDeleteContainer(mUniformBlocks);
mUniformIndex.clear();
mOutputVariables.clear();
mProgram->reset();
mValidated = false;
}
}