blob: 8592a0b684ca02a2ada48a1684bc5acac9209027 [file] [log] [blame]
//
// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Texture.cpp: Implements the gl::Texture class and its derived classes
// Texture2D and TextureCubeMap. Implements GL texture objects and related
// functionality. [OpenGL ES 2.0.24] section 3.7 page 63.
#include "libGLESv2/Texture.h"
#include <d3dx9tex.h>
#include <algorithm>
#include <intrin.h>
#include "common/debug.h"
#include "libEGL/Display.h"
#include "libGLESv2/main.h"
#include "libGLESv2/mathutil.h"
#include "libGLESv2/utilities.h"
#include "libGLESv2/Blit.h"
#include "libGLESv2/Framebuffer.h"
namespace gl
{
unsigned int TextureStorage::mCurrentTextureSerial = 1;
static D3DFORMAT ConvertTextureFormatType(GLenum format, GLenum type)
{
if (format == GL_COMPRESSED_RGB_S3TC_DXT1_EXT ||
format == GL_COMPRESSED_RGBA_S3TC_DXT1_EXT)
{
return D3DFMT_DXT1;
}
else if (format == GL_COMPRESSED_RGBA_S3TC_DXT3_ANGLE)
{
return D3DFMT_DXT3;
}
else if (format == GL_COMPRESSED_RGBA_S3TC_DXT5_ANGLE)
{
return D3DFMT_DXT5;
}
else if (type == GL_FLOAT)
{
return D3DFMT_A32B32G32R32F;
}
else if (type == GL_HALF_FLOAT_OES)
{
return D3DFMT_A16B16G16R16F;
}
else if (type == GL_UNSIGNED_BYTE)
{
if (format == GL_LUMINANCE && getContext()->supportsLuminanceTextures())
{
return D3DFMT_L8;
}
else if (format == GL_LUMINANCE_ALPHA && getContext()->supportsLuminanceAlphaTextures())
{
return D3DFMT_A8L8;
}
else if (format == GL_RGB)
{
return D3DFMT_X8R8G8B8;
}
return D3DFMT_A8R8G8B8;
}
return D3DFMT_A8R8G8B8;
}
static bool IsTextureFormatRenderable(D3DFORMAT format)
{
switch(format)
{
case D3DFMT_L8:
case D3DFMT_A8L8:
case D3DFMT_DXT1:
case D3DFMT_DXT3:
case D3DFMT_DXT5:
return false;
case D3DFMT_A8R8G8B8:
case D3DFMT_X8R8G8B8:
case D3DFMT_A16B16G16R16F:
case D3DFMT_A32B32G32R32F:
return true;
default:
UNREACHABLE();
}
return false;
}
Image::Image()
{
mWidth = 0;
mHeight = 0;
mFormat = GL_NONE;
mType = GL_UNSIGNED_BYTE;
mSurface = NULL;
mDirty = false;
mD3DPool = D3DPOOL_SYSTEMMEM;
mD3DFormat = D3DFMT_UNKNOWN;
}
Image::~Image()
{
if (mSurface)
{
mSurface->Release();
}
}
bool Image::redefine(GLenum format, GLsizei width, GLsizei height, GLenum type, bool forceRelease)
{
if (mWidth != width ||
mHeight != height ||
mFormat != format ||
mType != type ||
forceRelease)
{
mWidth = width;
mHeight = height;
mFormat = format;
mType = type;
// compute the d3d format that will be used
mD3DFormat = ConvertTextureFormatType(mFormat, mType);
if (mSurface)
{
mSurface->Release();
mSurface = NULL;
}
return true;
}
return false;
}
void Image::createSurface()
{
if(mSurface)
{
return;
}
IDirect3DTexture9 *newTexture = NULL;
IDirect3DSurface9 *newSurface = NULL;
const D3DPOOL poolToUse = D3DPOOL_SYSTEMMEM;
if (mWidth != 0 && mHeight != 0)
{
int levelToFetch = 0;
GLsizei requestWidth = mWidth;
GLsizei requestHeight = mHeight;
if (IsCompressed(mFormat) && (mWidth % 4 != 0 || mHeight % 4 != 0))
{
bool isMult4 = false;
int upsampleCount = 0;
while (!isMult4)
{
requestWidth <<= 1;
requestHeight <<= 1;
upsampleCount++;
if (requestWidth % 4 == 0 && requestHeight % 4 == 0)
{
isMult4 = true;
}
}
levelToFetch = upsampleCount;
}
HRESULT result = getDevice()->CreateTexture(requestWidth, requestHeight, levelToFetch + 1, NULL, getD3DFormat(),
poolToUse, &newTexture, NULL);
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY);
ERR("Creating image surface failed.");
return error(GL_OUT_OF_MEMORY);
}
newTexture->GetSurfaceLevel(levelToFetch, &newSurface);
newTexture->Release();
}
mSurface = newSurface;
mDirty = false;
mD3DPool = poolToUse;
}
HRESULT Image::lock(D3DLOCKED_RECT *lockedRect, const RECT *rect)
{
createSurface();
HRESULT result = D3DERR_INVALIDCALL;
if (mSurface)
{
result = mSurface->LockRect(lockedRect, rect, 0);
ASSERT(SUCCEEDED(result));
mDirty = true;
}
return result;
}
void Image::unlock()
{
if (mSurface)
{
HRESULT result = mSurface->UnlockRect();
ASSERT(SUCCEEDED(result));
}
}
bool Image::isRenderableFormat() const
{
return IsTextureFormatRenderable(getD3DFormat());
}
D3DFORMAT Image::getD3DFormat() const
{
// this should only happen if the image hasn't been redefined first
// which would be a bug by the caller
ASSERT(mD3DFormat != D3DFMT_UNKNOWN);
return mD3DFormat;
}
IDirect3DSurface9 *Image::getSurface()
{
createSurface();
return mSurface;
}
void Image::setManagedSurface(IDirect3DSurface9 *surface)
{
if (mSurface)
{
D3DXLoadSurfaceFromSurface(surface, NULL, NULL, mSurface, NULL, NULL, D3DX_FILTER_BOX, 0);
mSurface->Release();
}
D3DSURFACE_DESC desc;
surface->GetDesc(&desc);
ASSERT(desc.Pool == D3DPOOL_MANAGED);
mSurface = surface;
mD3DPool = desc.Pool;
}
void Image::updateSurface(IDirect3DSurface9 *destSurface, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height)
{
IDirect3DSurface9 *sourceSurface = getSurface();
if (sourceSurface && sourceSurface != destSurface)
{
RECT rect = transformPixelRect(xoffset, yoffset, width, height, mHeight);
if (mD3DPool == D3DPOOL_MANAGED)
{
HRESULT result = D3DXLoadSurfaceFromSurface(destSurface, NULL, &rect, sourceSurface, NULL, &rect, D3DX_FILTER_BOX, 0);
ASSERT(SUCCEEDED(result));
}
else
{
// UpdateSurface: source must be SYSTEMMEM, dest must be DEFAULT pools
POINT point = {rect.left, rect.top};
HRESULT result = getDevice()->UpdateSurface(sourceSurface, &rect, destSurface, &point);
ASSERT(SUCCEEDED(result));
}
}
}
// Store the pixel rectangle designated by xoffset,yoffset,width,height with pixels stored as format/type at input
// into the target pixel rectangle at locked.pBits with locked.Pitch bytes in between each line.
void Image::loadData(GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum type,
GLint unpackAlignment, const void *input)
{
RECT lockRect = transformPixelRect(xoffset, yoffset, width, height, mHeight);
D3DLOCKED_RECT locked;
HRESULT result = lock(&locked, &lockRect);
if (FAILED(result))
{
return;
}
GLsizei inputPitch = -ComputePitch(width, mFormat, type, unpackAlignment);
input = ((char*)input) - inputPitch * (height - 1);
switch (type)
{
case GL_UNSIGNED_BYTE:
switch (mFormat)
{
case GL_ALPHA:
if (supportsSSE2())
{
loadAlphaDataSSE2(width, height, inputPitch, input, locked.Pitch, locked.pBits);
}
else
{
loadAlphaData(width, height, inputPitch, input, locked.Pitch, locked.pBits);
}
break;
case GL_LUMINANCE:
loadLuminanceData(width, height, inputPitch, input, locked.Pitch, locked.pBits, getD3DFormat() == D3DFMT_L8);
break;
case GL_LUMINANCE_ALPHA:
loadLuminanceAlphaData(width, height, inputPitch, input, locked.Pitch, locked.pBits, getD3DFormat() == D3DFMT_A8L8);
break;
case GL_RGB:
loadRGBUByteData(width, height, inputPitch, input, locked.Pitch, locked.pBits);
break;
case GL_RGBA:
if (supportsSSE2())
{
loadRGBAUByteDataSSE2(width, height, inputPitch, input, locked.Pitch, locked.pBits);
}
else
{
loadRGBAUByteData(width, height, inputPitch, input, locked.Pitch, locked.pBits);
}
break;
case GL_BGRA_EXT:
loadBGRAData(width, height, inputPitch, input, locked.Pitch, locked.pBits);
break;
default: UNREACHABLE();
}
break;
case GL_UNSIGNED_SHORT_5_6_5:
switch (mFormat)
{
case GL_RGB:
loadRGB565Data(width, height, inputPitch, input, locked.Pitch, locked.pBits);
break;
default: UNREACHABLE();
}
break;
case GL_UNSIGNED_SHORT_4_4_4_4:
switch (mFormat)
{
case GL_RGBA:
loadRGBA4444Data(width, height, inputPitch, input, locked.Pitch, locked.pBits);
break;
default: UNREACHABLE();
}
break;
case GL_UNSIGNED_SHORT_5_5_5_1:
switch (mFormat)
{
case GL_RGBA:
loadRGBA5551Data(width, height, inputPitch, input, locked.Pitch, locked.pBits);
break;
default: UNREACHABLE();
}
break;
case GL_FLOAT:
switch (mFormat)
{
// float textures are converted to RGBA, not BGRA, as they're stored that way in D3D
case GL_ALPHA:
loadAlphaFloatData(width, height, inputPitch, input, locked.Pitch, locked.pBits);
break;
case GL_LUMINANCE:
loadLuminanceFloatData(width, height, inputPitch, input, locked.Pitch, locked.pBits);
break;
case GL_LUMINANCE_ALPHA:
loadLuminanceAlphaFloatData(width, height, inputPitch, input, locked.Pitch, locked.pBits);
break;
case GL_RGB:
loadRGBFloatData(width, height, inputPitch, input, locked.Pitch, locked.pBits);
break;
case GL_RGBA:
loadRGBAFloatData(width, height, inputPitch, input, locked.Pitch, locked.pBits);
break;
default: UNREACHABLE();
}
break;
case GL_HALF_FLOAT_OES:
switch (mFormat)
{
// float textures are converted to RGBA, not BGRA, as they're stored that way in D3D
case GL_ALPHA:
loadAlphaHalfFloatData(width, height, inputPitch, input, locked.Pitch, locked.pBits);
break;
case GL_LUMINANCE:
loadLuminanceHalfFloatData(width, height, inputPitch, input, locked.Pitch, locked.pBits);
break;
case GL_LUMINANCE_ALPHA:
loadLuminanceAlphaHalfFloatData(width, height, inputPitch, input, locked.Pitch, locked.pBits);
break;
case GL_RGB:
loadRGBHalfFloatData(width, height, inputPitch, input, locked.Pitch, locked.pBits);
break;
case GL_RGBA:
loadRGBAHalfFloatData(width, height, inputPitch, input, locked.Pitch, locked.pBits);
break;
default: UNREACHABLE();
}
break;
default: UNREACHABLE();
}
unlock();
}
void Image::loadAlphaData(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
const unsigned char *source = NULL;
unsigned char *dest = NULL;
for (int y = 0; y < height; y++)
{
source = static_cast<const unsigned char*>(input) + y * inputPitch;
dest = static_cast<unsigned char*>(output) + y * outputPitch;
for (int x = 0; x < width; x++)
{
dest[4 * x + 0] = 0;
dest[4 * x + 1] = 0;
dest[4 * x + 2] = 0;
dest[4 * x + 3] = source[x];
}
}
}
void Image::loadAlphaDataSSE2(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
const unsigned char *source = NULL;
unsigned int *dest = NULL;
__m128i zeroWide = _mm_setzero_si128();
for (int y = 0; y < height; y++)
{
source = static_cast<const unsigned char*>(input) + y * inputPitch;
dest = reinterpret_cast<unsigned int*>(static_cast<unsigned char*>(output) + y * outputPitch);
int x;
// Make output writes aligned
for (x = 0; ((reinterpret_cast<intptr_t>(&dest[x]) & 0xF) != 0 && x < width); x++)
{
dest[x] = static_cast<unsigned int>(source[x]) << 24;
}
for (; x + 7 < width; x += 8)
{
__m128i sourceData = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(&source[x]));
// Interleave each byte to 16bit, make the lower byte to zero
sourceData = _mm_unpacklo_epi8(zeroWide, sourceData);
// Interleave each 16bit to 32bit, make the lower 16bit to zero
__m128i lo = _mm_unpacklo_epi16(zeroWide, sourceData);
__m128i hi = _mm_unpackhi_epi16(zeroWide, sourceData);
_mm_store_si128(reinterpret_cast<__m128i*>(&dest[x]), lo);
_mm_store_si128(reinterpret_cast<__m128i*>(&dest[x + 4]), hi);
}
// Handle the remainder
for (; x < width; x++)
{
dest[x] = static_cast<unsigned int>(source[x]) << 24;
}
}
}
void Image::loadAlphaFloatData(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
const float *source = NULL;
float *dest = NULL;
for (int y = 0; y < height; y++)
{
source = reinterpret_cast<const float*>(static_cast<const unsigned char*>(input) + y * inputPitch);
dest = reinterpret_cast<float*>(static_cast<unsigned char*>(output) + y * outputPitch);
for (int x = 0; x < width; x++)
{
dest[4 * x + 0] = 0;
dest[4 * x + 1] = 0;
dest[4 * x + 2] = 0;
dest[4 * x + 3] = source[x];
}
}
}
void Image::loadAlphaHalfFloatData(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
const unsigned short *source = NULL;
unsigned short *dest = NULL;
for (int y = 0; y < height; y++)
{
source = reinterpret_cast<const unsigned short*>(static_cast<const unsigned char*>(input) + y * inputPitch);
dest = reinterpret_cast<unsigned short*>(static_cast<unsigned char*>(output) + y * outputPitch);
for (int x = 0; x < width; x++)
{
dest[4 * x + 0] = 0;
dest[4 * x + 1] = 0;
dest[4 * x + 2] = 0;
dest[4 * x + 3] = source[x];
}
}
}
void Image::loadLuminanceData(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output, bool native) const
{
const unsigned char *source = NULL;
unsigned char *dest = NULL;
for (int y = 0; y < height; y++)
{
source = static_cast<const unsigned char*>(input) + y * inputPitch;
dest = static_cast<unsigned char*>(output) + y * outputPitch;
if (!native) // BGRA8 destination format
{
for (int x = 0; x < width; x++)
{
dest[4 * x + 0] = source[x];
dest[4 * x + 1] = source[x];
dest[4 * x + 2] = source[x];
dest[4 * x + 3] = 0xFF;
}
}
else // L8 destination format
{
memcpy(dest, source, width);
}
}
}
void Image::loadLuminanceFloatData(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
const float *source = NULL;
float *dest = NULL;
for (int y = 0; y < height; y++)
{
source = reinterpret_cast<const float*>(static_cast<const unsigned char*>(input) + y * inputPitch);
dest = reinterpret_cast<float*>(static_cast<unsigned char*>(output) + y * outputPitch);
for (int x = 0; x < width; x++)
{
dest[4 * x + 0] = source[x];
dest[4 * x + 1] = source[x];
dest[4 * x + 2] = source[x];
dest[4 * x + 3] = 1.0f;
}
}
}
void Image::loadLuminanceHalfFloatData(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
const unsigned short *source = NULL;
unsigned short *dest = NULL;
for (int y = 0; y < height; y++)
{
source = reinterpret_cast<const unsigned short*>(static_cast<const unsigned char*>(input) + y * inputPitch);
dest = reinterpret_cast<unsigned short*>(static_cast<unsigned char*>(output) + y * outputPitch);
for (int x = 0; x < width; x++)
{
dest[4 * x + 0] = source[x];
dest[4 * x + 1] = source[x];
dest[4 * x + 2] = source[x];
dest[4 * x + 3] = 0x3C00; // SEEEEEMMMMMMMMMM, S = 0, E = 15, M = 0: 16bit flpt representation of 1
}
}
}
void Image::loadLuminanceAlphaData(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output, bool native) const
{
const unsigned char *source = NULL;
unsigned char *dest = NULL;
for (int y = 0; y < height; y++)
{
source = static_cast<const unsigned char*>(input) + y * inputPitch;
dest = static_cast<unsigned char*>(output) + y * outputPitch;
if (!native) // BGRA8 destination format
{
for (int x = 0; x < width; x++)
{
dest[4 * x + 0] = source[2*x+0];
dest[4 * x + 1] = source[2*x+0];
dest[4 * x + 2] = source[2*x+0];
dest[4 * x + 3] = source[2*x+1];
}
}
else
{
memcpy(dest, source, width * 2);
}
}
}
void Image::loadLuminanceAlphaFloatData(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
const float *source = NULL;
float *dest = NULL;
for (int y = 0; y < height; y++)
{
source = reinterpret_cast<const float*>(static_cast<const unsigned char*>(input) + y * inputPitch);
dest = reinterpret_cast<float*>(static_cast<unsigned char*>(output) + y * outputPitch);
for (int x = 0; x < width; x++)
{
dest[4 * x + 0] = source[2*x+0];
dest[4 * x + 1] = source[2*x+0];
dest[4 * x + 2] = source[2*x+0];
dest[4 * x + 3] = source[2*x+1];
}
}
}
void Image::loadLuminanceAlphaHalfFloatData(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
const unsigned short *source = NULL;
unsigned short *dest = NULL;
for (int y = 0; y < height; y++)
{
source = reinterpret_cast<const unsigned short*>(static_cast<const unsigned char*>(input) + y * inputPitch);
dest = reinterpret_cast<unsigned short*>(static_cast<unsigned char*>(output) + y * outputPitch);
for (int x = 0; x < width; x++)
{
dest[4 * x + 0] = source[2*x+0];
dest[4 * x + 1] = source[2*x+0];
dest[4 * x + 2] = source[2*x+0];
dest[4 * x + 3] = source[2*x+1];
}
}
}
void Image::loadRGBUByteData(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
const unsigned char *source = NULL;
unsigned char *dest = NULL;
for (int y = 0; y < height; y++)
{
source = static_cast<const unsigned char*>(input) + y * inputPitch;
dest = static_cast<unsigned char*>(output) + y * outputPitch;
for (int x = 0; x < width; x++)
{
dest[4 * x + 0] = source[x * 3 + 2];
dest[4 * x + 1] = source[x * 3 + 1];
dest[4 * x + 2] = source[x * 3 + 0];
dest[4 * x + 3] = 0xFF;
}
}
}
void Image::loadRGB565Data(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
const unsigned short *source = NULL;
unsigned char *dest = NULL;
for (int y = 0; y < height; y++)
{
source = reinterpret_cast<const unsigned short*>(static_cast<const unsigned char*>(input) + y * inputPitch);
dest = static_cast<unsigned char*>(output) + y * outputPitch;
for (int x = 0; x < width; x++)
{
unsigned short rgba = source[x];
dest[4 * x + 0] = ((rgba & 0x001F) << 3) | ((rgba & 0x001F) >> 2);
dest[4 * x + 1] = ((rgba & 0x07E0) >> 3) | ((rgba & 0x07E0) >> 9);
dest[4 * x + 2] = ((rgba & 0xF800) >> 8) | ((rgba & 0xF800) >> 13);
dest[4 * x + 3] = 0xFF;
}
}
}
void Image::loadRGBFloatData(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
const float *source = NULL;
float *dest = NULL;
for (int y = 0; y < height; y++)
{
source = reinterpret_cast<const float*>(static_cast<const unsigned char*>(input) + y * inputPitch);
dest = reinterpret_cast<float*>(static_cast<unsigned char*>(output) + y * outputPitch);
for (int x = 0; x < width; x++)
{
dest[4 * x + 0] = source[x * 3 + 0];
dest[4 * x + 1] = source[x * 3 + 1];
dest[4 * x + 2] = source[x * 3 + 2];
dest[4 * x + 3] = 1.0f;
}
}
}
void Image::loadRGBHalfFloatData(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
const unsigned short *source = NULL;
unsigned short *dest = NULL;
for (int y = 0; y < height; y++)
{
source = reinterpret_cast<const unsigned short*>(static_cast<const unsigned char*>(input) + y * inputPitch);
dest = reinterpret_cast<unsigned short*>(static_cast<unsigned char*>(output) + y * outputPitch);
for (int x = 0; x < width; x++)
{
dest[4 * x + 0] = source[x * 3 + 0];
dest[4 * x + 1] = source[x * 3 + 1];
dest[4 * x + 2] = source[x * 3 + 2];
dest[4 * x + 3] = 0x3C00; // SEEEEEMMMMMMMMMM, S = 0, E = 15, M = 0: 16bit flpt representation of 1
}
}
}
void Image::loadRGBAUByteDataSSE2(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
const unsigned int *source = NULL;
unsigned int *dest = NULL;
__m128i brMask = _mm_set1_epi32(0x00ff00ff);
for (int y = 0; y < height; y++)
{
source = reinterpret_cast<const unsigned int*>(static_cast<const unsigned char*>(input) + y * inputPitch);
dest = reinterpret_cast<unsigned int*>(static_cast<unsigned char*>(output) + y * outputPitch);
int x = 0;
// Make output writes aligned
for (x = 0; ((reinterpret_cast<intptr_t>(&dest[x]) & 15) != 0) && x < width; x++)
{
unsigned int rgba = source[x];
dest[x] = (_rotl(rgba, 16) & 0x00ff00ff) | (rgba & 0xff00ff00);
}
for (; x + 3 < width; x += 4)
{
__m128i sourceData = _mm_loadu_si128(reinterpret_cast<const __m128i*>(&source[x]));
// Mask out g and a, which don't change
__m128i gaComponents = _mm_andnot_si128(brMask, sourceData);
// Mask out b and r
__m128i brComponents = _mm_and_si128(sourceData, brMask);
// Swap b and r
__m128i brSwapped = _mm_shufflehi_epi16(_mm_shufflelo_epi16(brComponents, _MM_SHUFFLE(2, 3, 0, 1)), _MM_SHUFFLE(2, 3, 0, 1));
__m128i result = _mm_or_si128(gaComponents, brSwapped);
_mm_store_si128(reinterpret_cast<__m128i*>(&dest[x]), result);
}
// Perform leftover writes
for (; x < width; x++)
{
unsigned int rgba = source[x];
dest[x] = (_rotl(rgba, 16) & 0x00ff00ff) | (rgba & 0xff00ff00);
}
}
}
void Image::loadRGBAUByteData(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
const unsigned int *source = NULL;
unsigned int *dest = NULL;
for (int y = 0; y < height; y++)
{
source = reinterpret_cast<const unsigned int*>(static_cast<const unsigned char*>(input) + y * inputPitch);
dest = reinterpret_cast<unsigned int*>(static_cast<unsigned char*>(output) + y * outputPitch);
for (int x = 0; x < width; x++)
{
unsigned int rgba = source[x];
dest[x] = (_rotl(rgba, 16) & 0x00ff00ff) | (rgba & 0xff00ff00);
}
}
}
void Image::loadRGBA4444Data(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
const unsigned short *source = NULL;
unsigned char *dest = NULL;
for (int y = 0; y < height; y++)
{
source = reinterpret_cast<const unsigned short*>(static_cast<const unsigned char*>(input) + y * inputPitch);
dest = static_cast<unsigned char*>(output) + y * outputPitch;
for (int x = 0; x < width; x++)
{
unsigned short rgba = source[x];
dest[4 * x + 0] = ((rgba & 0x00F0) << 0) | ((rgba & 0x00F0) >> 4);
dest[4 * x + 1] = ((rgba & 0x0F00) >> 4) | ((rgba & 0x0F00) >> 8);
dest[4 * x + 2] = ((rgba & 0xF000) >> 8) | ((rgba & 0xF000) >> 12);
dest[4 * x + 3] = ((rgba & 0x000F) << 4) | ((rgba & 0x000F) >> 0);
}
}
}
void Image::loadRGBA5551Data(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
const unsigned short *source = NULL;
unsigned char *dest = NULL;
for (int y = 0; y < height; y++)
{
source = reinterpret_cast<const unsigned short*>(static_cast<const unsigned char*>(input) + y * inputPitch);
dest = static_cast<unsigned char*>(output) + y * outputPitch;
for (int x = 0; x < width; x++)
{
unsigned short rgba = source[x];
dest[4 * x + 0] = ((rgba & 0x003E) << 2) | ((rgba & 0x003E) >> 3);
dest[4 * x + 1] = ((rgba & 0x07C0) >> 3) | ((rgba & 0x07C0) >> 8);
dest[4 * x + 2] = ((rgba & 0xF800) >> 8) | ((rgba & 0xF800) >> 13);
dest[4 * x + 3] = (rgba & 0x0001) ? 0xFF : 0;
}
}
}
void Image::loadRGBAFloatData(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
const float *source = NULL;
float *dest = NULL;
for (int y = 0; y < height; y++)
{
source = reinterpret_cast<const float*>(static_cast<const unsigned char*>(input) + y * inputPitch);
dest = reinterpret_cast<float*>(static_cast<unsigned char*>(output) + y * outputPitch);
memcpy(dest, source, width * 16);
}
}
void Image::loadRGBAHalfFloatData(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
const unsigned char *source = NULL;
unsigned char *dest = NULL;
for (int y = 0; y < height; y++)
{
source = static_cast<const unsigned char*>(input) + y * inputPitch;
dest = static_cast<unsigned char*>(output) + y * outputPitch;
memcpy(dest, source, width * 8);
}
}
void Image::loadBGRAData(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
const unsigned char *source = NULL;
unsigned char *dest = NULL;
for (int y = 0; y < height; y++)
{
source = static_cast<const unsigned char*>(input) + y * inputPitch;
dest = static_cast<unsigned char*>(output) + y * outputPitch;
memcpy(dest, source, width*4);
}
}
void Image::loadCompressedData(GLint xoffset, GLint yoffset, GLsizei width, GLsizei height,
const void *input) {
ASSERT(xoffset % 4 == 0);
ASSERT(yoffset % 4 == 0);
RECT lockRect = transformPixelRect(xoffset, yoffset, width, height, mHeight);
D3DLOCKED_RECT locked;
HRESULT result = lock(&locked, &lockRect);
if (FAILED(result))
{
return;
}
GLsizei inputPitch = -ComputeCompressedPitch(width, mFormat);
GLsizei inputSize = ComputeCompressedSize(width, height, mFormat);
input = ((char*)input) + inputSize + inputPitch;
switch (getD3DFormat())
{
case D3DFMT_DXT1:
loadDXT1Data(width, height, inputPitch, input, locked.Pitch, locked.pBits);
break;
case D3DFMT_DXT3:
loadDXT3Data(width, height, inputPitch, input, locked.Pitch, locked.pBits);
break;
case D3DFMT_DXT5:
loadDXT5Data(width, height, inputPitch, input, locked.Pitch, locked.pBits);
break;
}
unlock();
}
static void FlipCopyDXT1BlockFull(const unsigned int* source, unsigned int* dest) {
// A DXT1 block layout is:
// [0-1] color0.
// [2-3] color1.
// [4-7] color bitmap, 2 bits per pixel.
// So each of the 4-7 bytes represents one line, flipping a block is just
// flipping those bytes.
// First 32-bits is two RGB565 colors shared by tile and does not need to be modified.
dest[0] = source[0];
// Second 32-bits contains 4 rows of 4 2-bit interpolants between the colors. All rows should be flipped.
dest[1] = (source[1] >> 24) |
((source[1] << 8) & 0x00FF0000) |
((source[1] >> 8) & 0x0000FF00) |
(source[1] << 24);
}
// Flips the first 2 lines of a DXT1 block in the y direction.
static void FlipCopyDXT1BlockHalf(const unsigned int* source, unsigned int* dest) {
// See layout above.
dest[0] = source[0];
dest[1] = ((source[1] << 8) & 0x0000FF00) |
((source[1] >> 8) & 0x000000FF);
}
// Flips a full DXT3 block in the y direction.
static void FlipCopyDXT3BlockFull(const unsigned int* source, unsigned int* dest) {
// A DXT3 block layout is:
// [0-7] alpha bitmap, 4 bits per pixel.
// [8-15] a DXT1 block.
// First and Second 32 bits are 4bit per pixel alpha and need to be flipped.
dest[0] = (source[1] >> 16) | (source[1] << 16);
dest[1] = (source[0] >> 16) | (source[0] << 16);
// And flip the DXT1 block using the above function.
FlipCopyDXT1BlockFull(source + 2, dest + 2);
}
// Flips the first 2 lines of a DXT3 block in the y direction.
static void FlipCopyDXT3BlockHalf(const unsigned int* source, unsigned int* dest) {
// See layout above.
dest[0] = (source[1] >> 16) | (source[1] << 16);
FlipCopyDXT1BlockHalf(source + 2, dest + 2);
}
// Flips a full DXT5 block in the y direction.
static void FlipCopyDXT5BlockFull(const unsigned int* source, unsigned int* dest) {
// A DXT5 block layout is:
// [0] alpha0.
// [1] alpha1.
// [2-7] alpha bitmap, 3 bits per pixel.
// [8-15] a DXT1 block.
// The alpha bitmap doesn't easily map lines to bytes, so we have to
// interpret it correctly. Extracted from
// http://www.opengl.org/registry/specs/EXT/texture_compression_s3tc.txt :
//
// The 6 "bits" bytes of the block are decoded into one 48-bit integer:
//
// bits = bits_0 + 256 * (bits_1 + 256 * (bits_2 + 256 * (bits_3 +
// 256 * (bits_4 + 256 * bits_5))))
//
// bits is a 48-bit unsigned integer, from which a three-bit control code
// is extracted for a texel at location (x,y) in the block using:
//
// code(x,y) = bits[3*(4*y+x)+1..3*(4*y+x)+0]
//
// where bit 47 is the most significant and bit 0 is the least
// significant bit.
const unsigned char* sourceBytes = static_cast<const unsigned char*>(static_cast<const void*>(source));
unsigned char* destBytes = static_cast<unsigned char*>(static_cast<void*>(dest));
unsigned int line_0_1 = sourceBytes[2] + 256 * (sourceBytes[3] + 256 * sourceBytes[4]);
unsigned int line_2_3 = sourceBytes[5] + 256 * (sourceBytes[6] + 256 * sourceBytes[7]);
// swap lines 0 and 1 in line_0_1.
unsigned int line_1_0 = ((line_0_1 & 0x000fff) << 12) |
((line_0_1 & 0xfff000) >> 12);
// swap lines 2 and 3 in line_2_3.
unsigned int line_3_2 = ((line_2_3 & 0x000fff) << 12) |
((line_2_3 & 0xfff000) >> 12);
destBytes[0] = sourceBytes[0];
destBytes[1] = sourceBytes[1];
destBytes[2] = line_3_2 & 0xff;
destBytes[3] = (line_3_2 & 0xff00) >> 8;
destBytes[4] = (line_3_2 & 0xff0000) >> 16;
destBytes[5] = line_1_0 & 0xff;
destBytes[6] = (line_1_0 & 0xff00) >> 8;
destBytes[7] = (line_1_0 & 0xff0000) >> 16;
// And flip the DXT1 block using the above function.
FlipCopyDXT1BlockFull(source + 2, dest + 2);
}
// Flips the first 2 lines of a DXT5 block in the y direction.
static void FlipCopyDXT5BlockHalf(const unsigned int* source, unsigned int* dest) {
// See layout above.
const unsigned char* sourceBytes = static_cast<const unsigned char*>(static_cast<const void*>(source));
unsigned char* destBytes = static_cast<unsigned char*>(static_cast<void*>(dest));
unsigned int line_0_1 = sourceBytes[2] + 256 * (sourceBytes[3] + 256 * sourceBytes[4]);
unsigned int line_1_0 = ((line_0_1 & 0x000fff) << 12) |
((line_0_1 & 0xfff000) >> 12);
destBytes[0] = sourceBytes[0];
destBytes[1] = sourceBytes[1];
destBytes[2] = line_1_0 & 0xff;
destBytes[3] = (line_1_0 & 0xff00) >> 8;
destBytes[4] = (line_1_0 & 0xff0000) >> 16;
FlipCopyDXT1BlockHalf(source + 2, dest + 2);
}
void Image::loadDXT1Data(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
ASSERT(width % 4 == 0 || width == 2 || width == 1);
ASSERT(inputPitch % 8 == 0);
ASSERT(outputPitch % 8 == 0);
const unsigned int *source = reinterpret_cast<const unsigned int*>(input);
unsigned int *dest = reinterpret_cast<unsigned int*>(output);
// Round width up in case it is less than 4.
int blocksAcross = (width + 3) / 4;
int intsAcross = blocksAcross * 2;
switch (height)
{
case 1:
for (int x = 0; x < intsAcross; x += 2)
{
// just copy the block
dest[x] = source[x];
dest[x + 1] = source[x + 1];
}
break;
case 2:
for (int x = 0; x < intsAcross; x += 2)
{
FlipCopyDXT1BlockHalf(source + x, dest + x);
}
break;
default:
ASSERT(height % 4 == 0);
for (int y = 0; y < height / 4; ++y)
{
const unsigned int *source = reinterpret_cast<const unsigned int*>(static_cast<const unsigned char*>(input) + y * inputPitch);
unsigned int *dest = reinterpret_cast<unsigned int*>(static_cast<unsigned char*>(output) + y * outputPitch);
for (int x = 0; x < intsAcross; x += 2)
{
FlipCopyDXT1BlockFull(source + x, dest + x);
}
}
break;
}
}
void Image::loadDXT3Data(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
ASSERT(width % 4 == 0 || width == 2 || width == 1);
ASSERT(inputPitch % 16 == 0);
ASSERT(outputPitch % 16 == 0);
const unsigned int *source = reinterpret_cast<const unsigned int*>(input);
unsigned int *dest = reinterpret_cast<unsigned int*>(output);
// Round width up in case it is less than 4.
int blocksAcross = (width + 3) / 4;
int intsAcross = blocksAcross * 4;
switch (height)
{
case 1:
for (int x = 0; x < intsAcross; x += 4)
{
// just copy the block
dest[x] = source[x];
dest[x + 1] = source[x + 1];
dest[x + 2] = source[x + 2];
dest[x + 3] = source[x + 3];
}
break;
case 2:
for (int x = 0; x < intsAcross; x += 4)
{
FlipCopyDXT3BlockHalf(source + x, dest + x);
}
break;
default:
ASSERT(height % 4 == 0);
for (int y = 0; y < height / 4; ++y)
{
const unsigned int *source = reinterpret_cast<const unsigned int*>(static_cast<const unsigned char*>(input) + y * inputPitch);
unsigned int *dest = reinterpret_cast<unsigned int*>(static_cast<unsigned char*>(output) + y * outputPitch);
for (int x = 0; x < intsAcross; x += 4)
{
FlipCopyDXT3BlockFull(source + x, dest + x);
}
}
break;
}
}
void Image::loadDXT5Data(GLsizei width, GLsizei height,
int inputPitch, const void *input, size_t outputPitch, void *output) const
{
ASSERT(width % 4 == 0 || width == 2 || width == 1);
ASSERT(inputPitch % 16 == 0);
ASSERT(outputPitch % 16 == 0);
const unsigned int *source = reinterpret_cast<const unsigned int*>(input);
unsigned int *dest = reinterpret_cast<unsigned int*>(output);
// Round width up in case it is less than 4.
int blocksAcross = (width + 3) / 4;
int intsAcross = blocksAcross * 4;
switch (height)
{
case 1:
for (int x = 0; x < intsAcross; x += 4)
{
// just copy the block
dest[x] = source[x];
dest[x + 1] = source[x + 1];
dest[x + 2] = source[x + 2];
dest[x + 3] = source[x + 3];
}
break;
case 2:
for (int x = 0; x < intsAcross; x += 4)
{
FlipCopyDXT5BlockHalf(source + x, dest + x);
}
break;
default:
ASSERT(height % 4 == 0);
for (int y = 0; y < height / 4; ++y)
{
const unsigned int *source = reinterpret_cast<const unsigned int*>(static_cast<const unsigned char*>(input) + y * inputPitch);
unsigned int *dest = reinterpret_cast<unsigned int*>(static_cast<unsigned char*>(output) + y * outputPitch);
for (int x = 0; x < intsAcross; x += 4)
{
FlipCopyDXT5BlockFull(source + x, dest + x);
}
}
break;
}
}
// This implements glCopyTex[Sub]Image2D for non-renderable internal texture formats and incomplete textures
void Image::copy(GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height, IDirect3DSurface9 *renderTarget)
{
IDirect3DDevice9 *device = getDevice();
IDirect3DSurface9 *renderTargetData = NULL;
D3DSURFACE_DESC description;
renderTarget->GetDesc(&description);
HRESULT result = device->CreateOffscreenPlainSurface(description.Width, description.Height, description.Format, D3DPOOL_SYSTEMMEM, &renderTargetData, NULL);
if (FAILED(result))
{
ERR("Could not create matching destination surface.");
return error(GL_OUT_OF_MEMORY);
}
result = device->GetRenderTargetData(renderTarget, renderTargetData);
if (FAILED(result))
{
ERR("GetRenderTargetData unexpectedly failed.");
renderTargetData->Release();
return error(GL_OUT_OF_MEMORY);
}
RECT sourceRect = transformPixelRect(x, y, width, height, description.Height);
int destYOffset = transformPixelYOffset(yoffset, height, mHeight);
RECT destRect = {xoffset, destYOffset, xoffset + width, destYOffset + height};
if (isRenderableFormat())
{
result = D3DXLoadSurfaceFromSurface(getSurface(), NULL, &destRect, renderTargetData, NULL, &sourceRect, D3DX_FILTER_BOX, 0);
if (FAILED(result))
{
ERR("Copying surfaces unexpectedly failed.");
renderTargetData->Release();
return error(GL_OUT_OF_MEMORY);
}
}
else
{
D3DLOCKED_RECT sourceLock = {0};
result = renderTargetData->LockRect(&sourceLock, &sourceRect, 0);
if (FAILED(result))
{
ERR("Failed to lock the source surface (rectangle might be invalid).");
renderTargetData->Release();
return error(GL_OUT_OF_MEMORY);
}
D3DLOCKED_RECT destLock = {0};
result = lock(&destLock, &destRect);
if (FAILED(result))
{
ERR("Failed to lock the destination surface (rectangle might be invalid).");
renderTargetData->UnlockRect();
renderTargetData->Release();
return error(GL_OUT_OF_MEMORY);
}
if (destLock.pBits && sourceLock.pBits)
{
unsigned char *source = (unsigned char*)sourceLock.pBits;
unsigned char *dest = (unsigned char*)destLock.pBits;
switch (description.Format)
{
case D3DFMT_X8R8G8B8:
case D3DFMT_A8R8G8B8:
switch(getD3DFormat())
{
case D3DFMT_L8:
for(int y = 0; y < height; y++)
{
for(int x = 0; x < width; x++)
{
dest[x] = source[x * 4 + 2];
}
source += sourceLock.Pitch;
dest += destLock.Pitch;
}
break;
case D3DFMT_A8L8:
for(int y = 0; y < height; y++)
{
for(int x = 0; x < width; x++)
{
dest[x * 2 + 0] = source[x * 4 + 2];
dest[x * 2 + 1] = source[x * 4 + 3];
}
source += sourceLock.Pitch;
dest += destLock.Pitch;
}
break;
default:
UNREACHABLE();
}
break;
case D3DFMT_R5G6B5:
switch(getD3DFormat())
{
case D3DFMT_L8:
for(int y = 0; y < height; y++)
{
for(int x = 0; x < width; x++)
{
unsigned char red = source[x * 2 + 1] & 0xF8;
dest[x] = red | (red >> 5);
}
source += sourceLock.Pitch;
dest += destLock.Pitch;
}
break;
default:
UNREACHABLE();
}
break;
case D3DFMT_A1R5G5B5:
switch(getD3DFormat())
{
case D3DFMT_L8:
for(int y = 0; y < height; y++)
{
for(int x = 0; x < width; x++)
{
unsigned char red = source[x * 2 + 1] & 0x7C;
dest[x] = (red << 1) | (red >> 4);
}
source += sourceLock.Pitch;
dest += destLock.Pitch;
}
break;
case D3DFMT_A8L8:
for(int y = 0; y < height; y++)
{
for(int x = 0; x < width; x++)
{
unsigned char red = source[x * 2 + 1] & 0x7C;
dest[x * 2 + 0] = (red << 1) | (red >> 4);
dest[x * 2 + 1] = (signed char)source[x * 2 + 1] >> 7;
}
source += sourceLock.Pitch;
dest += destLock.Pitch;
}
break;
default:
UNREACHABLE();
}
break;
default:
UNREACHABLE();
}
}
unlock();
renderTargetData->UnlockRect();
}
renderTargetData->Release();
mDirty = true;
}
TextureStorage::TextureStorage(bool renderTarget)
: mRenderTarget(renderTarget),
mD3DPool(getDisplay()->getTexturePool(mRenderTarget)),
mTextureSerial(issueTextureSerial())
{
}
TextureStorage::~TextureStorage()
{
}
bool TextureStorage::isRenderTarget() const
{
return mRenderTarget;
}
bool TextureStorage::isManaged() const
{
return (mD3DPool == D3DPOOL_MANAGED);
}
D3DPOOL TextureStorage::getPool() const
{
return mD3DPool;
}
unsigned int TextureStorage::getTextureSerial() const
{
return mTextureSerial;
}
unsigned int TextureStorage::issueTextureSerial()
{
return mCurrentTextureSerial++;
}
Texture::Texture(GLuint id) : RefCountObject(id)
{
mMinFilter = GL_NEAREST_MIPMAP_LINEAR;
mMagFilter = GL_LINEAR;
mWrapS = GL_REPEAT;
mWrapT = GL_REPEAT;
mDirtyParameters = true;
mUsage = GL_NONE;
mDirtyImages = true;
mImmutable = false;
}
Texture::~Texture()
{
}
// Returns true on successful filter state update (valid enum parameter)
bool Texture::setMinFilter(GLenum filter)
{
switch (filter)
{
case GL_NEAREST:
case GL_LINEAR:
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_LINEAR:
{
if (mMinFilter != filter)
{
mMinFilter = filter;
mDirtyParameters = true;
}
return true;
}
default:
return false;
}
}
// Returns true on successful filter state update (valid enum parameter)
bool Texture::setMagFilter(GLenum filter)
{
switch (filter)
{
case GL_NEAREST:
case GL_LINEAR:
{
if (mMagFilter != filter)
{
mMagFilter = filter;
mDirtyParameters = true;
}
return true;
}
default:
return false;
}
}
// Returns true on successful wrap state update (valid enum parameter)
bool Texture::setWrapS(GLenum wrap)
{
switch (wrap)
{
case GL_REPEAT:
case GL_CLAMP_TO_EDGE:
case GL_MIRRORED_REPEAT:
{
if (mWrapS != wrap)
{
mWrapS = wrap;
mDirtyParameters = true;
}
return true;
}
default:
return false;
}
}
// Returns true on successful wrap state update (valid enum parameter)
bool Texture::setWrapT(GLenum wrap)
{
switch (wrap)
{
case GL_REPEAT:
case GL_CLAMP_TO_EDGE:
case GL_MIRRORED_REPEAT:
{
if (mWrapT != wrap)
{
mWrapT = wrap;
mDirtyParameters = true;
}
return true;
}
default:
return false;
}
}
// Returns true on successful usage state update (valid enum parameter)
bool Texture::setUsage(GLenum usage)
{
switch (usage)
{
case GL_NONE:
case GL_FRAMEBUFFER_ATTACHMENT_ANGLE:
mUsage = usage;
return true;
default:
return false;
}
}
GLenum Texture::getMinFilter() const
{
return mMinFilter;
}
GLenum Texture::getMagFilter() const
{
return mMagFilter;
}
GLenum Texture::getWrapS() const
{
return mWrapS;
}
GLenum Texture::getWrapT() const
{
return mWrapT;
}
GLenum Texture::getUsage() const
{
return mUsage;
}
void Texture::setImage(GLint unpackAlignment, const void *pixels, Image *image)
{
if (pixels != NULL)
{
image->loadData(0, 0, image->getWidth(), image->getHeight(), image->getType(), unpackAlignment, pixels);
mDirtyImages = true;
}
}
void Texture::setCompressedImage(GLsizei imageSize, const void *pixels, Image *image)
{
if (pixels != NULL)
{
image->loadCompressedData(0, 0, image->getWidth(), image->getHeight(), pixels);
mDirtyImages = true;
}
}
bool Texture::subImage(GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels, Image *image)
{
if (width + xoffset > image->getWidth() || height + yoffset > image->getHeight())
{
error(GL_INVALID_VALUE);
return false;
}
if (IsCompressed(image->getFormat()))
{
error(GL_INVALID_OPERATION);
return false;
}
if (format != image->getFormat())
{
error(GL_INVALID_OPERATION);
return false;
}
if (pixels != NULL)
{
image->loadData(xoffset, yoffset, width, height, type, unpackAlignment, pixels);
mDirtyImages = true;
}
return true;
}
bool Texture::subImageCompressed(GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void *pixels, Image *image)
{
if (width + xoffset > image->getWidth() || height + yoffset > image->getHeight())
{
error(GL_INVALID_VALUE);
return false;
}
if (format != getInternalFormat())
{
error(GL_INVALID_OPERATION);
return false;
}
if (pixels != NULL)
{
image->loadCompressedData(xoffset, yoffset, width, height, pixels);
mDirtyImages = true;
}
return true;
}
IDirect3DBaseTexture9 *Texture::getTexture()
{
if (!isSamplerComplete())
{
return NULL;
}
// ensure the underlying texture is created
if (getStorage(false) == NULL)
{
return NULL;
}
updateTexture();
return getBaseTexture();
}
bool Texture::hasDirtyParameters() const
{
return mDirtyParameters;
}
bool Texture::hasDirtyImages() const
{
return mDirtyImages;
}
void Texture::resetDirty()
{
mDirtyParameters = false;
mDirtyImages = false;
}
unsigned int Texture::getTextureSerial()
{
TextureStorage *texture = getStorage(false);
return texture ? texture->getTextureSerial() : 0;
}
unsigned int Texture::getRenderTargetSerial(GLenum target)
{
TextureStorage *texture = getStorage(true);
return texture ? texture->getRenderTargetSerial(target) : 0;
}
bool Texture::isImmutable() const
{
return mImmutable;
}
GLint Texture::creationLevels(GLsizei width, GLsizei height) const
{
if ((isPow2(width) && isPow2(height)) || getContext()->supportsNonPower2Texture())
{
return 0; // Maximum number of levels
}
else
{
// OpenGL ES 2.0 without GL_OES_texture_npot does not permit NPOT mipmaps.
return 1;
}
}
GLint Texture::creationLevels(GLsizei size) const
{
return creationLevels(size, size);
}
int Texture::levelCount() const
{
return getBaseTexture() ? getBaseTexture()->GetLevelCount() : 0;
}
Blit *Texture::getBlitter()
{
Context *context = getContext();
return context->getBlitter();
}
bool Texture::copyToRenderTarget(IDirect3DSurface9 *dest, IDirect3DSurface9 *source, bool fromManaged)
{
if (source && dest)
{
HRESULT result;
if (fromManaged)
{
result = D3DXLoadSurfaceFromSurface(dest, NULL, NULL, source, NULL, NULL, D3DX_FILTER_BOX, 0);
}
else
{
egl::Display *display = getDisplay();
IDirect3DDevice9 *device = display->getDevice();
display->endScene();
result = device->StretchRect(source, NULL, dest, NULL, D3DTEXF_NONE);
}
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY);
return false;
}
}
return true;
}
TextureStorage2D::TextureStorage2D(IDirect3DTexture9 *surfaceTexture) : TextureStorage(true), mRenderTargetSerial(RenderbufferStorage::issueSerial())
{
mTexture = surfaceTexture;
}
TextureStorage2D::TextureStorage2D(int levels, D3DFORMAT format, int width, int height, bool renderTarget)
: TextureStorage(renderTarget), mRenderTargetSerial(RenderbufferStorage::issueSerial())
{
mTexture = NULL;
// if the width or height is not positive this should be treated as an incomplete texture
// we handle that here by skipping the d3d texture creation
if (width > 0 && height > 0)
{
IDirect3DDevice9 *device = getDevice();
HRESULT result = device->CreateTexture(width, height, levels, isRenderTarget() ? D3DUSAGE_RENDERTARGET : 0, format, getPool(), &mTexture, NULL);
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY);
error(GL_OUT_OF_MEMORY);
}
}
}
TextureStorage2D::~TextureStorage2D()
{
if (mTexture)
{
mTexture->Release();
}
}
IDirect3DSurface9 *TextureStorage2D::getSurfaceLevel(int level)
{
IDirect3DSurface9 *surface = NULL;
if (mTexture)
{
HRESULT result = mTexture->GetSurfaceLevel(level, &surface);
ASSERT(SUCCEEDED(result));
}
return surface;
}
IDirect3DBaseTexture9 *TextureStorage2D::getBaseTexture() const
{
return mTexture;
}
unsigned int TextureStorage2D::getRenderTargetSerial(GLenum target) const
{
return mRenderTargetSerial;
}
Texture2D::Texture2D(GLuint id) : Texture(id)
{
mTexStorage = NULL;
mSurface = NULL;
mColorbufferProxy = NULL;
mProxyRefs = 0;
}
Texture2D::~Texture2D()
{
mColorbufferProxy = NULL;
delete mTexStorage;
mTexStorage = NULL;
if (mSurface)
{
mSurface->setBoundTexture(NULL);
mSurface = NULL;
}
}
// We need to maintain a count of references to renderbuffers acting as
// proxies for this texture, so that we do not attempt to use a pointer
// to a renderbuffer proxy which has been deleted.
void Texture2D::addProxyRef(const Renderbuffer *proxy)
{
mProxyRefs++;
}
void Texture2D::releaseProxy(const Renderbuffer *proxy)
{
if (mProxyRefs > 0)
mProxyRefs--;
if (mProxyRefs == 0)
mColorbufferProxy = NULL;
}
GLenum Texture2D::getTarget() const
{
return GL_TEXTURE_2D;
}
GLsizei Texture2D::getWidth(GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[level].getWidth();
else
return 0;
}
GLsizei Texture2D::getHeight(GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[level].getHeight();
else
return 0;
}
GLenum Texture2D::getInternalFormat() const
{
return mImageArray[0].getFormat();
}
GLenum Texture2D::getType() const
{
return mImageArray[0].getType();
}
D3DFORMAT Texture2D::getD3DFormat() const
{
return mImageArray[0].getD3DFormat();
}
void Texture2D::redefineImage(GLint level, GLenum format, GLsizei width, GLsizei height, GLenum type)
{
releaseTexImage();
bool redefined = mImageArray[level].redefine(format, width, height, type, false);
if (mTexStorage && redefined)
{
for (int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++)
{
mImageArray[i].markDirty();
}
delete mTexStorage;
mTexStorage = NULL;
mDirtyImages = true;
}
}
void Texture2D::setImage(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
redefineImage(level, format, width, height, type);
Texture::setImage(unpackAlignment, pixels, &mImageArray[level]);
}
void Texture2D::bindTexImage(egl::Surface *surface)
{
releaseTexImage();
GLenum format;
switch(surface->getFormat())
{
case D3DFMT_A8R8G8B8:
format = GL_RGBA;
break;
case D3DFMT_X8R8G8B8:
format = GL_RGB;
break;
default:
UNIMPLEMENTED();
return;
}
mImageArray[0].redefine(format, surface->getWidth(), surface->getHeight(), GL_UNSIGNED_BYTE, true);
delete mTexStorage;
mTexStorage = new TextureStorage2D(surface->getOffscreenTexture());
mDirtyImages = true;
mSurface = surface;
mSurface->setBoundTexture(this);
}
void Texture2D::releaseTexImage()
{
if (mSurface)
{
mSurface->setBoundTexture(NULL);
mSurface = NULL;
if (mTexStorage)
{
delete mTexStorage;
mTexStorage = NULL;
}
for (int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++)
{
mImageArray[i].redefine(GL_RGBA, 0, 0, GL_UNSIGNED_BYTE, true);
}
}
}
void Texture2D::setCompressedImage(GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei imageSize, const void *pixels)
{
redefineImage(level, format, width, height, GL_UNSIGNED_BYTE);
Texture::setCompressedImage(imageSize, pixels, &mImageArray[level]);
}
void Texture2D::commitRect(GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height)
{
ASSERT(mImageArray[level].getSurface() != NULL);
if (level < levelCount())
{
IDirect3DSurface9 *destLevel = mTexStorage->getSurfaceLevel(level);
if (destLevel)
{
Image *image = &mImageArray[level];
image->updateSurface(destLevel, xoffset, yoffset, width, height);
destLevel->Release();
image->markClean();
}
}
}
void Texture2D::subImage(GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
if (Texture::subImage(xoffset, yoffset, width, height, format, type, unpackAlignment, pixels, &mImageArray[level]))
{
commitRect(level, xoffset, yoffset, width, height);
}
}
void Texture2D::subImageCompressed(GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void *pixels)
{
if (Texture::subImageCompressed(xoffset, yoffset, width, height, format, imageSize, pixels, &mImageArray[level]))
{
commitRect(level, xoffset, yoffset, width, height);
}
}
void Texture2D::copyImage(GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source)
{
IDirect3DSurface9 *renderTarget = source->getRenderTarget();
if (!renderTarget)
{
ERR("Failed to retrieve the render target.");
return error(GL_OUT_OF_MEMORY);
}
redefineImage(level, format, width, height, GL_UNSIGNED_BYTE);
if (!mImageArray[level].isRenderableFormat())
{
mImageArray[level].copy(0, 0, x, y, width, height, renderTarget);
mDirtyImages = true;
}
else
{
if (!mTexStorage || !mTexStorage->isRenderTarget())
{
convertToRenderTarget();
}
mImageArray[level].markClean();
if (width != 0 && height != 0 && level < levelCount())
{
RECT sourceRect = transformPixelRect(x, y, width, height, source->getColorbuffer()->getHeight());
sourceRect.left = clamp(sourceRect.left, 0, source->getColorbuffer()->getWidth());
sourceRect.top = clamp(sourceRect.top, 0, source->getColorbuffer()->getHeight());
sourceRect.right = clamp(sourceRect.right, 0, source->getColorbuffer()->getWidth());
sourceRect.bottom = clamp(sourceRect.bottom, 0, source->getColorbuffer()->getHeight());
GLint destYOffset = transformPixelYOffset(0, height, mImageArray[level].getHeight());
IDirect3DSurface9 *dest = mTexStorage->getSurfaceLevel(level);
if (dest)
{
getBlitter()->copy(renderTarget, sourceRect, format, 0, destYOffset, dest);
dest->Release();
}
}
}
renderTarget->Release();
}
void Texture2D::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source)
{
if (xoffset + width > mImageArray[level].getWidth() || yoffset + height > mImageArray[level].getHeight())
{
return error(GL_INVALID_VALUE);
}
IDirect3DSurface9 *renderTarget = source->getRenderTarget();
if (!renderTarget)
{
ERR("Failed to retrieve the render target.");
return error(GL_OUT_OF_MEMORY);
}
if (!mImageArray[level].isRenderableFormat() || (!mTexStorage && !isSamplerComplete()))
{
mImageArray[level].copy(xoffset, yoffset, x, y, width, height, renderTarget);
mDirtyImages = true;
}
else
{
if (!mTexStorage || !mTexStorage->isRenderTarget())
{
convertToRenderTarget();
}
updateTexture();
if (level < levelCount())
{
RECT sourceRect = transformPixelRect(x, y, width, height, source->getColorbuffer()->getHeight());
sourceRect.left = clamp(sourceRect.left, 0, source->getColorbuffer()->getWidth());
sourceRect.top = clamp(sourceRect.top, 0, source->getColorbuffer()->getHeight());
sourceRect.right = clamp(sourceRect.right, 0, source->getColorbuffer()->getWidth());
sourceRect.bottom = clamp(sourceRect.bottom, 0, source->getColorbuffer()->getHeight());
GLint destYOffset = transformPixelYOffset(yoffset, height, mImageArray[level].getHeight());
IDirect3DSurface9 *dest = mTexStorage->getSurfaceLevel(level);
if (dest)
{
getBlitter()->copy(renderTarget, sourceRect, mImageArray[0].getFormat(), xoffset, destYOffset, dest);
dest->Release();
}
}
}
renderTarget->Release();
}
void Texture2D::storage(GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height)
{
GLenum format = gl::ExtractFormat(internalformat);
GLenum type = gl::ExtractType(internalformat);
D3DFORMAT d3dfmt = ConvertTextureFormatType(format, type);
const bool renderTarget = IsTextureFormatRenderable(d3dfmt) && (mUsage == GL_FRAMEBUFFER_ATTACHMENT_ANGLE);
delete mTexStorage;
mTexStorage = new TextureStorage2D(levels, d3dfmt, width, height, renderTarget);
mImmutable = true;
for (int level = 0; level < levels; level++)
{
mImageArray[level].redefine(format, width, height, type, true);
width = std::max(1, width >> 1);
height = std::max(1, height >> 1);
}
for (int level = levels; level < IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++)
{
mImageArray[level].redefine(GL_NONE, 0, 0, GL_UNSIGNED_BYTE, true);
}
if (mTexStorage->isManaged())
{
int levels = levelCount();
for (int level = 0; level < levels; level++)
{
IDirect3DSurface9 *surface = mTexStorage->getSurfaceLevel(level);
mImageArray[level].setManagedSurface(surface);
}
}
}
// Tests for 2D texture sampling completeness. [OpenGL ES 2.0.24] section 3.8.2 page 85.
bool Texture2D::isSamplerComplete() const
{
GLsizei width = mImageArray[0].getWidth();
GLsizei height = mImageArray[0].getHeight();
if (width <= 0 || height <= 0)
{
return false;
}
bool mipmapping = false;
switch (mMinFilter)
{
case GL_NEAREST:
case GL_LINEAR:
mipmapping = false;
break;
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_LINEAR:
mipmapping = true;
break;
default: UNREACHABLE();
}
if ((getInternalFormat() == GL_FLOAT && !getContext()->supportsFloat32LinearFilter()) ||
(getInternalFormat() == GL_HALF_FLOAT_OES && !getContext()->supportsFloat16LinearFilter()))
{
if (mMagFilter != GL_NEAREST || (mMinFilter != GL_NEAREST && mMinFilter != GL_NEAREST_MIPMAP_NEAREST))
{
return false;
}
}
bool npotSupport = getContext()->supportsNonPower2Texture();
if (!npotSupport)
{
if ((getWrapS() != GL_CLAMP_TO_EDGE && !isPow2(width)) ||
(getWrapT() != GL_CLAMP_TO_EDGE && !isPow2(height)))
{
return false;
}
}
if (mipmapping)
{
if (!npotSupport)
{
if (!isPow2(width) || !isPow2(height))
{
return false;
}
}
if (!isMipmapComplete())
{
return false;
}
}
return true;
}
// Tests for 2D texture (mipmap) completeness. [OpenGL ES 2.0.24] section 3.7.10 page 81.
bool Texture2D::isMipmapComplete() const
{
if (isImmutable())
{
return true;
}
GLsizei width = mImageArray[0].getWidth();
GLsizei height = mImageArray[0].getHeight();
if (width <= 0 || height <= 0)
{
return false;
}
int q = log2(std::max(width, height));
for (int level = 1; level <= q; level++)
{
if (mImageArray[level].getFormat() != mImageArray[0].getFormat())
{
return false;
}
if (mImageArray[level].getType() != mImageArray[0].getType())
{
return false;
}
if (mImageArray[level].getWidth() != std::max(1, width >> level))
{
return false;
}
if (mImageArray[level].getHeight() != std::max(1, height >> level))
{
return false;
}
}
return true;
}
bool Texture2D::isCompressed() const
{
return IsCompressed(getInternalFormat());
}
IDirect3DBaseTexture9 *Texture2D::getBaseTexture() const
{
return mTexStorage ? mTexStorage->getBaseTexture() : NULL;
}
// Constructs a Direct3D 9 texture resource from the texture images
void Texture2D::createTexture()
{
GLsizei width = mImageArray[0].getWidth();
GLsizei height = mImageArray[0].getHeight();
GLint levels = creationLevels(width, height);
D3DFORMAT format = mImageArray[0].getD3DFormat();
const bool renderTarget = IsTextureFormatRenderable(format) && (mUsage == GL_FRAMEBUFFER_ATTACHMENT_ANGLE);
delete mTexStorage;
mTexStorage = new TextureStorage2D(levels, format, width, height, renderTarget);
if (mTexStorage->isManaged())
{
int levels = levelCount();
for (int level = 0; level < levels; level++)
{
IDirect3DSurface9 *surface = mTexStorage->getSurfaceLevel(level);
mImageArray[level].setManagedSurface(surface);
}
}
mDirtyImages = true;
}
void Texture2D::updateTexture()
{
int levels = levelCount();
for (int level = 0; level < levels; level++)
{
Image *image = &mImageArray[level];
if (image->isDirty())
{
commitRect(level, 0, 0, mImageArray[level].getWidth(), mImageArray[level].getHeight());
}
}
}
void Texture2D::convertToRenderTarget()
{
TextureStorage2D *newTexStorage = NULL;
if (mImageArray[0].getWidth() != 0 && mImageArray[0].getHeight() != 0)
{
GLsizei width = mImageArray[0].getWidth();
GLsizei height = mImageArray[0].getHeight();
GLint levels = creationLevels(width, height);
D3DFORMAT format = mImageArray[0].getD3DFormat();
newTexStorage = new TextureStorage2D(levels, format, width, height, true);
if (mTexStorage != NULL)
{
int levels = levelCount();
for (int i = 0; i < levels; i++)
{
IDirect3DSurface9 *source = mTexStorage->getSurfaceLevel(i);
IDirect3DSurface9 *dest = newTexStorage->getSurfaceLevel(i);
if (!copyToRenderTarget(dest, source, mTexStorage->isManaged()))
{
delete newTexStorage;
source->Release();
dest->Release();
return error(GL_OUT_OF_MEMORY);
}
if (source) source->Release();
if (dest) dest->Release();
}
}
}
delete mTexStorage;
mTexStorage = newTexStorage;
mDirtyImages = true;
}
void Texture2D::generateMipmaps()
{
if (!getContext()->supportsNonPower2Texture())
{
if (!isPow2(mImageArray[0].getWidth()) || !isPow2(mImageArray[0].getHeight()))
{
return error(GL_INVALID_OPERATION);
}
}
// Purge array levels 1 through q and reset them to represent the generated mipmap levels.
unsigned int q = log2(std::max(mImageArray[0].getWidth(), mImageArray[0].getHeight()));
for (unsigned int i = 1; i <= q; i++)
{
redefineImage(i, mImageArray[0].getFormat(),
std::max(mImageArray[0].getWidth() >> i, 1),
std::max(mImageArray[0].getHeight() >> i, 1),
mImageArray[0].getType());
}
if (mTexStorage && mTexStorage->isRenderTarget())
{
for (unsigned int i = 1; i <= q; i++)
{
IDirect3DSurface9 *upper = mTexStorage->getSurfaceLevel(i - 1);
IDirect3DSurface9 *lower = mTexStorage->getSurfaceLevel(i);
if (upper != NULL && lower != NULL)
{
getBlitter()->boxFilter(upper, lower);
}
if (upper != NULL) upper->Release();
if (lower != NULL) lower->Release();
mImageArray[i].markClean();
}
}
else
{
for (unsigned int i = 1; i <= q; i++)
{
if (mImageArray[i].getSurface() == NULL)
{
return error(GL_OUT_OF_MEMORY);
}
if (FAILED(D3DXLoadSurfaceFromSurface(mImageArray[i].getSurface(), NULL, NULL, mImageArray[i - 1].getSurface(), NULL, NULL, D3DX_FILTER_BOX, 0)))
{
ERR(" failed to load filter %d to %d.", i - 1, i);
}
mImageArray[i].markDirty();
}
}
}
Renderbuffer *Texture2D::getRenderbuffer(GLenum target)
{
if (target != GL_TEXTURE_2D)
{
return error(GL_INVALID_OPERATION, (Renderbuffer *)NULL);
}
if (mColorbufferProxy == NULL)
{
mColorbufferProxy = new Renderbuffer(id(), new RenderbufferTexture(this, target));
}
return mColorbufferProxy;
}
IDirect3DSurface9 *Texture2D::getRenderTarget(GLenum target)
{
ASSERT(target == GL_TEXTURE_2D);
// ensure the underlying texture is created
if (getStorage(true) == NULL)
{
return NULL;
}
updateTexture();
return mTexStorage->getSurfaceLevel(0);
}
TextureStorage *Texture2D::getStorage(bool renderTarget)
{
if (!mTexStorage || (renderTarget && !mTexStorage->isRenderTarget()))
{
if (renderTarget)
{
convertToRenderTarget();
}
else
{
createTexture();
}
}
return mTexStorage;
}
TextureStorageCubeMap::TextureStorageCubeMap(int levels, D3DFORMAT format, int size, bool renderTarget)
: TextureStorage(renderTarget), mFirstRenderTargetSerial(RenderbufferStorage::issueCubeSerials())
{
mTexture = NULL;
// if the size is not positive this should be treated as an incomplete texture
// we handle that here by skipping the d3d texture creation
if (size > 0)
{
IDirect3DDevice9 *device = getDevice();
HRESULT result = device->CreateCubeTexture(size, levels, isRenderTarget() ? D3DUSAGE_RENDERTARGET : 0, format, getPool(), &mTexture, NULL);
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY);
error(GL_OUT_OF_MEMORY);
}
}
}
TextureStorageCubeMap::~TextureStorageCubeMap()
{
if (mTexture)
{
mTexture->Release();
}
}
IDirect3DSurface9 *TextureStorageCubeMap::getCubeMapSurface(GLenum faceTarget, int level)
{
IDirect3DSurface9 *surface = NULL;
if (mTexture)
{
HRESULT result = mTexture->GetCubeMapSurface(es2dx::ConvertCubeFace(faceTarget), level, &surface);
ASSERT(SUCCEEDED(result));
}
return surface;
}
IDirect3DBaseTexture9 *TextureStorageCubeMap::getBaseTexture() const
{
return mTexture;
}
unsigned int TextureStorageCubeMap::getRenderTargetSerial(GLenum target) const
{
return mFirstRenderTargetSerial + TextureCubeMap::faceIndex(target);
}
TextureCubeMap::TextureCubeMap(GLuint id) : Texture(id)
{
mTexStorage = NULL;
for (int i = 0; i < 6; i++)
{
mFaceProxies[i] = NULL;
mFaceProxyRefs[i] = 0;
}
}
TextureCubeMap::~TextureCubeMap()
{
for (int i = 0; i < 6; i++)
{
mFaceProxies[i] = NULL;
}
delete mTexStorage;
mTexStorage = NULL;
}
// We need to maintain a count of references to renderbuffers acting as
// proxies for this texture, so that the texture is not deleted while
// proxy references still exist. If the reference count drops to zero,
// we set our proxy pointer NULL, so that a new attempt at referencing
// will cause recreation.
void TextureCubeMap::addProxyRef(const Renderbuffer *proxy)
{
for (int i = 0; i < 6; i++)
{
if (mFaceProxies[i] == proxy)
mFaceProxyRefs[i]++;
}
}
void TextureCubeMap::releaseProxy(const Renderbuffer *proxy)
{
for (int i = 0; i < 6; i++)
{
if (mFaceProxies[i] == proxy)
{
if (mFaceProxyRefs[i] > 0)
mFaceProxyRefs[i]--;
if (mFaceProxyRefs[i] == 0)
mFaceProxies[i] = NULL;
}
}
}
GLenum TextureCubeMap::getTarget() const
{
return GL_TEXTURE_CUBE_MAP;
}
GLsizei TextureCubeMap::getWidth(GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[0][level].getWidth();
else
return 0;
}
GLsizei TextureCubeMap::getHeight(GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[0][level].getHeight();
else
return 0;
}
GLenum TextureCubeMap::getInternalFormat() const
{
return mImageArray[0][0].getFormat();
}
GLenum TextureCubeMap::getType() const
{
return mImageArray[0][0].getType();
}
D3DFORMAT TextureCubeMap::getD3DFormat() const
{
return mImageArray[0][0].getD3DFormat();
}
void TextureCubeMap::setImagePosX(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
setImage(0, level, width, height, format, type, unpackAlignment, pixels);
}
void TextureCubeMap::setImageNegX(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
setImage(1, level, width, height, format, type, unpackAlignment, pixels);
}
void TextureCubeMap::setImagePosY(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
setImage(2, level, width, height, format, type, unpackAlignment, pixels);
}
void TextureCubeMap::setImageNegY(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
setImage(3, level, width, height, format, type, unpackAlignment, pixels);
}
void TextureCubeMap::setImagePosZ(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
setImage(4, level, width, height, format, type, unpackAlignment, pixels);
}
void TextureCubeMap::setImageNegZ(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
setImage(5, level, width, height, format, type, unpackAlignment, pixels);
}
void TextureCubeMap::setCompressedImage(GLenum face, GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei imageSize, const void *pixels)
{
redefineImage(faceIndex(face), level, format, width, height, GL_UNSIGNED_BYTE);
Texture::setCompressedImage(imageSize, pixels, &mImageArray[faceIndex(face)][level]);
}
void TextureCubeMap::commitRect(int face, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height)
{
ASSERT(mImageArray[face][level].getSurface() != NULL);
if (level < levelCount())
{
IDirect3DSurface9 *destLevel = mTexStorage->getCubeMapSurface(GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, level);
ASSERT(destLevel != NULL);
if (destLevel != NULL)
{
Image *image = &mImageArray[face][level];
image->updateSurface(destLevel, xoffset, yoffset, width, height);
destLevel->Release();
image->markClean();
}
}
}
void TextureCubeMap::subImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
if (Texture::subImage(xoffset, yoffset, width, height, format, type, unpackAlignment, pixels, &mImageArray[faceIndex(target)][level]))
{
commitRect(faceIndex(target), level, xoffset, yoffset, width, height);
}
}
void TextureCubeMap::subImageCompressed(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void *pixels)
{
if (Texture::subImageCompressed(xoffset, yoffset, width, height, format, imageSize, pixels, &mImageArray[faceIndex(target)][level]))
{
commitRect(faceIndex(target), level, xoffset, yoffset, width, height);
}
}
// Tests for cube map sampling completeness. [OpenGL ES 2.0.24] section 3.8.2 page 86.
bool TextureCubeMap::isSamplerComplete() const
{
int size = mImageArray[0][0].getWidth();
bool mipmapping;
switch (mMinFilter)
{
case GL_NEAREST:
case GL_LINEAR:
mipmapping = false;
break;
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_LINEAR:
mipmapping = true;
break;
default:
UNREACHABLE();
return false;
}
if ((getInternalFormat() == GL_FLOAT && !getContext()->supportsFloat32LinearFilter()) ||
(getInternalFormat() == GL_HALF_FLOAT_OES && !getContext()->supportsFloat16LinearFilter()))
{
if (mMagFilter != GL_NEAREST || (mMinFilter != GL_NEAREST && mMinFilter != GL_NEAREST_MIPMAP_NEAREST))
{
return false;
}
}
if (!isPow2(size) && !getContext()->supportsNonPower2Texture())
{
if (getWrapS() != GL_CLAMP_TO_EDGE || getWrapT() != GL_CLAMP_TO_EDGE || mipmapping)
{
return false;
}
}
if (!mipmapping)
{
if (!isCubeComplete())
{
return false;
}
}
else
{
if (!isMipmapCubeComplete()) // Also tests for isCubeComplete()
{
return false;
}
}
return true;
}
// Tests for cube texture completeness. [OpenGL ES 2.0.24] section 3.7.10 page 81.
bool TextureCubeMap::isCubeComplete() const
{
if (mImageArray[0][0].getWidth() <= 0 || mImageArray[0][0].getHeight() != mImageArray[0][0].getWidth())
{
return false;
}
for (unsigned int face = 1; face < 6; face++)
{
if (mImageArray[face][0].getWidth() != mImageArray[0][0].getWidth() ||
mImageArray[face][0].getWidth() != mImageArray[0][0].getHeight() ||
mImageArray[face][0].getFormat() != mImageArray[0][0].getFormat() ||
mImageArray[face][0].getType() != mImageArray[0][0].getType())
{
return false;
}
}
return true;
}
bool TextureCubeMap::isMipmapCubeComplete() const
{
if (isImmutable())
{
return true;
}
if (!isCubeComplete())
{
return false;
}
GLsizei size = mImageArray[0][0].getWidth();
int q = log2(size);
for (int face = 0; face < 6; face++)
{
for (int level = 1; level <= q; level++)
{
if (mImageArray[face][level].getFormat() != mImageArray[0][0].getFormat())
{
return false;
}
if (mImageArray[face][level].getType() != mImageArray[0][0].getType())
{
return false;
}
if (mImageArray[face][level].getWidth() != std::max(1, size >> level))
{
return false;
}
}
}
return true;
}
bool TextureCubeMap::isCompressed() const
{
return IsCompressed(getInternalFormat());
}
IDirect3DBaseTexture9 *TextureCubeMap::getBaseTexture() const
{
return mTexStorage ? mTexStorage->getBaseTexture() : NULL;
}
// Constructs a Direct3D 9 texture resource from the texture images, or returns an existing one
void TextureCubeMap::createTexture()
{
GLsizei size = mImageArray[0][0].getWidth();
GLint levels = creationLevels(size, 0);
D3DFORMAT format = mImageArray[0][0].getD3DFormat();
const bool renderTarget = IsTextureFormatRenderable(format) && (mUsage == GL_FRAMEBUFFER_ATTACHMENT_ANGLE);
delete mTexStorage;
mTexStorage = new TextureStorageCubeMap(levels, format, size, renderTarget);
if (mTexStorage->isManaged())
{
int levels = levelCount();
for (int face = 0; face < 6; face++)
{
for (int level = 0; level < levels; level++)
{
IDirect3DSurface9 *surface = mTexStorage->getCubeMapSurface(GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, level);
mImageArray[face][level].setManagedSurface(surface);
}
}
}
mDirtyImages = true;
}
void TextureCubeMap::updateTexture()
{
for (int face = 0; face < 6; face++)
{
int levels = levelCount();
for (int level = 0; level < levels; level++)
{
Image *image = &mImageArray[face][level];
if (image->isDirty())
{
commitRect(face, level, 0, 0, image->getWidth(), image->getHeight());
}
}
}
}
void TextureCubeMap::convertToRenderTarget()
{
TextureStorageCubeMap *newTexStorage = NULL;
if (mImageArray[0][0].getWidth() != 0)
{
GLsizei size = mImageArray[0][0].getWidth();
GLint levels = creationLevels(size, 0);
D3DFORMAT format = mImageArray[0][0].getD3DFormat();
newTexStorage = new TextureStorageCubeMap(levels, format, size, true);
if (mTexStorage != NULL)
{
int levels = levelCount();
for (int f = 0; f < 6; f++)
{
for (int i = 0; i < levels; i++)
{
IDirect3DSurface9 *source = mTexStorage->getCubeMapSurface(GL_TEXTURE_CUBE_MAP_POSITIVE_X + f, i);
IDirect3DSurface9 *dest = newTexStorage->getCubeMapSurface(GL_TEXTURE_CUBE_MAP_POSITIVE_X + f, i);
if (!copyToRenderTarget(dest, source, mTexStorage->isManaged()))
{
delete newTexStorage;
source->Release();
dest->Release();
return error(GL_OUT_OF_MEMORY);
}
if (source) source->Release();
if (dest) dest->Release();
}
}
}
}
delete mTexStorage;
mTexStorage = newTexStorage;
mDirtyImages = true;
}
void TextureCubeMap::setImage(int faceIndex, GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
redefineImage(faceIndex, level, format, width, height, type);
Texture::setImage(unpackAlignment, pixels, &mImageArray[faceIndex][level]);
}
unsigned int TextureCubeMap::faceIndex(GLenum face)
{
META_ASSERT(GL_TEXTURE_CUBE_MAP_NEGATIVE_X - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 1);
META_ASSERT(GL_TEXTURE_CUBE_MAP_POSITIVE_Y - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 2);
META_ASSERT(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 3);
META_ASSERT(GL_TEXTURE_CUBE_MAP_POSITIVE_Z - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 4);
META_ASSERT(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 5);
return face - GL_TEXTURE_CUBE_MAP_POSITIVE_X;
}
void TextureCubeMap::redefineImage(int face, GLint level, GLenum format, GLsizei width, GLsizei height, GLenum type)
{
bool redefined = mImageArray[face][level].redefine(format, width, height, type, false);
if (mTexStorage && redefined)
{
for (int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++)
{
for (int f = 0; f < 6; f++)
{
mImageArray[f][i].markDirty();
}
}
delete mTexStorage;
mTexStorage = NULL;
mDirtyImages = true;
}
}
void TextureCubeMap::copyImage(GLenum target, GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source)
{
IDirect3DSurface9 *renderTarget = source->getRenderTarget();
if (!renderTarget)
{
ERR("Failed to retrieve the render target.");
return error(GL_OUT_OF_MEMORY);
}
unsigned int faceindex = faceIndex(target);
redefineImage(faceindex, level, format, width, height, GL_UNSIGNED_BYTE);
if (!mImageArray[faceindex][level].isRenderableFormat())
{
mImageArray[faceindex][level].copy(0, 0, x, y, width, height, renderTarget);
mDirtyImages = true;
}
else
{
if (!mTexStorage || !mTexStorage->isRenderTarget())
{
convertToRenderTarget();
}
mImageArray[faceindex][level].markClean();
ASSERT(width == height);
if (width > 0 && level < levelCount())
{
RECT sourceRect = transformPixelRect(x, y, width, height, source->getColorbuffer()->getHeight());
sourceRect.left = clamp(sourceRect.left, 0, source->getColorbuffer()->getWidth());
sourceRect.top = clamp(sourceRect.top, 0, source->getColorbuffer()->getHeight());
sourceRect.right = clamp(sourceRect.right, 0, source->getColorbuffer()->getWidth());
sourceRect.bottom = clamp(sourceRect.bottom, 0, source->getColorbuffer()->getHeight());
GLint destYOffset = transformPixelYOffset(0, height, mImageArray[faceindex][level].getWidth());
IDirect3DSurface9 *dest = mTexStorage->getCubeMapSurface(target, level);
if (dest)
{
getBlitter()->copy(renderTarget, sourceRect, format, 0, destYOffset, dest);
dest->Release();
}
}
}
renderTarget->Release();
}
void TextureCubeMap::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source)
{
GLsizei size = mImageArray[faceIndex(target)][level].getWidth();
if (xoffset + width > size || yoffset + height > size)
{
return error(GL_INVALID_VALUE);
}
IDirect3DSurface9 *renderTarget = source->getRenderTarget();
if (!renderTarget)
{
ERR("Failed to retrieve the render target.");
return error(GL_OUT_OF_MEMORY);
}
unsigned int faceindex = faceIndex(target);
if (!mImageArray[faceindex][level].isRenderableFormat() || (!mTexStorage && !isSamplerComplete()))
{
mImageArray[faceindex][level].copy(0, 0, x, y, width, height, renderTarget);
mDirtyImages = true;
}
else
{
if (!mTexStorage || !mTexStorage->isRenderTarget())
{
convertToRenderTarget();
}
updateTexture();
if (level < levelCount())
{
RECT sourceRect = transformPixelRect(x, y, width, height, source->getColorbuffer()->getHeight());
sourceRect.left = clamp(sourceRect.left, 0, source->getColorbuffer()->getWidth());
sourceRect.top = clamp(sourceRect.top, 0, source->getColorbuffer()->getHeight());
sourceRect.right = clamp(sourceRect.right, 0, source->getColorbuffer()->getWidth());
sourceRect.bottom = clamp(sourceRect.bottom, 0, source->getColorbuffer()->getHeight());
GLint destYOffset = transformPixelYOffset(yoffset, height, mImageArray[faceindex][level].getWidth());
IDirect3DSurface9 *dest = mTexStorage->getCubeMapSurface(target, level);
if (dest)
{
getBlitter()->copy(renderTarget, sourceRect, mImageArray[0][0].getFormat(), xoffset, destYOffset, dest);
dest->Release();
}
}
}
renderTarget->Release();
}
void TextureCubeMap::storage(GLsizei levels, GLenum internalformat, GLsizei size)
{
GLenum format = gl::ExtractFormat(internalformat);
GLenum type = gl::ExtractType(internalformat);
D3DFORMAT d3dfmt = ConvertTextureFormatType(format, type);
const bool renderTarget = IsTextureFormatRenderable(d3dfmt) && (mUsage == GL_FRAMEBUFFER_ATTACHMENT_ANGLE);
delete mTexStorage;
mTexStorage = new TextureStorageCubeMap(levels, d3dfmt, size, renderTarget);
mImmutable = true;
for (int level = 0; level < levels; level++)
{
for (int face = 0; face < 6; face++)
{
mImageArray[face][level].redefine(format, size, size, type, true);
size = std::max(1, size >> 1);
}
}
for (int level = levels; level < IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++)
{
for (int face = 0; face < 6; face++)
{
mImageArray[face][level].redefine(GL_NONE, 0, 0, GL_UNSIGNED_BYTE, true);
}
}
if (mTexStorage->isManaged())
{
int levels = levelCount();
for (int face = 0; face < 6; face++)
{
for (int level = 0; level < levels; level++)
{
IDirect3DSurface9 *surface = mTexStorage->getCubeMapSurface(GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, level);
mImageArray[face][level].setManagedSurface(surface);
}
}
}
}
void TextureCubeMap::generateMipmaps()
{
if (!isCubeComplete())
{
return error(GL_INVALID_OPERATION);
}
if (!getContext()->supportsNonPower2Texture())
{
if (!isPow2(mImageArray[0][0].getWidth()))
{
return error(GL_INVALID_OPERATION);
}
}
// Purge array levels 1 through q and reset them to represent the generated mipmap levels.
unsigned int q = log2(mImageArray[0][0].getWidth());
for (unsigned int f = 0; f < 6; f++)
{
for (unsigned int i = 1; i <= q; i++)
{
redefineImage(f, i, mImageArray[f][0].getFormat(),
std::max(mImageArray[f][0].getWidth() >> i, 1),
std::max(mImageArray[f][0].getWidth() >> i, 1),
mImageArray[f][0].getType());
}
}
if (mTexStorage && mTexStorage->isRenderTarget())
{
for (unsigned int f = 0; f < 6; f++)
{
for (unsigned int i = 1; i <= q; i++)
{
IDirect3DSurface9 *upper = mTexStorage->getCubeMapSurface(GL_TEXTURE_CUBE_MAP_POSITIVE_X + f, i-1);
IDirect3DSurface9 *lower = mTexStorage->getCubeMapSurface(GL_TEXTURE_CUBE_MAP_POSITIVE_X + f, i);
if (upper != NULL && lower != NULL)
{
getBlitter()->boxFilter(upper, lower);
}
if (upper != NULL) upper->Release();
if (lower != NULL) lower->Release();
mImageArray[f][i].markClean();
}
}
}
else
{
for (unsigned int f = 0; f < 6; f++)
{
for (unsigned int i = 1; i <= q; i++)
{
if (mImageArray[f][i].getSurface() == NULL)
{
return error(GL_OUT_OF_MEMORY);
}
if (FAILED(D3DXLoadSurfaceFromSurface(mImageArray[f][i].getSurface(), NULL, NULL, mImageArray[f][i - 1].getSurface(), NULL, NULL, D3DX_FILTER_BOX, 0)))
{
ERR(" failed to load filter %d to %d.", i - 1, i);
}
mImageArray[f][i].markDirty();
}
}
}
}
Renderbuffer *TextureCubeMap::getRenderbuffer(GLenum target)
{
if (!IsCubemapTextureTarget(target))
{
return error(GL_INVALID_OPERATION, (Renderbuffer *)NULL);
}
unsigned int face = faceIndex(target);
if (mFaceProxies[face] == NULL)
{
mFaceProxies[face] = new Renderbuffer(id(), new RenderbufferTexture(this, target));
}
return mFaceProxies[face];
}
IDirect3DSurface9 *TextureCubeMap::getRenderTarget(GLenum target)
{
ASSERT(IsCubemapTextureTarget(target));
// ensure the underlying texture is created
if (getStorage(true) == NULL)
{
return NULL;
}
updateTexture();
return mTexStorage->getCubeMapSurface(target, 0);
}
TextureStorage *TextureCubeMap::getStorage(bool renderTarget)
{
if (!mTexStorage || (renderTarget && !mTexStorage->isRenderTarget()))
{
if (renderTarget)
{
convertToRenderTarget();
}
else
{
createTexture();
}
}
return mTexStorage;
}
}