blob: 2c1bcac38fd0647363e74351c436d3e393a1ae1b [file] [log] [blame]
#include "precompiled.h"
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Program.cpp: Implements the gl::Program class. Implements GL program objects
// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
#include "libGLESv2/BinaryStream.h"
#include "libGLESv2/ProgramBinary.h"
#include "libGLESv2/Framebuffer.h"
#include "libGLESv2/Renderbuffer.h"
#include "libGLESv2/renderer/ShaderExecutable.h"
#include "common/debug.h"
#include "common/version.h"
#include "common/utilities.h"
#include "libGLESv2/main.h"
#include "libGLESv2/Shader.h"
#include "libGLESv2/Program.h"
#include "libGLESv2/renderer/Renderer.h"
#include "libGLESv2/renderer/d3d/VertexDataManager.h"
#include "libGLESv2/Context.h"
#include "libGLESv2/Buffer.h"
#include "libGLESv2/DynamicHLSL.h"
#include "common/blocklayout.h"
#undef near
#undef far
namespace gl
{
namespace
{
unsigned int ParseAndStripArrayIndex(std::string* name)
{
unsigned int subscript = GL_INVALID_INDEX;
// Strip any trailing array operator and retrieve the subscript
size_t open = name->find_last_of('[');
size_t close = name->find_last_of(']');
if (open != std::string::npos && close == name->length() - 1)
{
subscript = atoi(name->substr(open + 1).c_str());
name->erase(open);
}
return subscript;
}
void GetInputLayoutFromShader(const std::vector<sh::Attribute> &shaderAttributes, VertexFormat inputLayout[MAX_VERTEX_ATTRIBS])
{
size_t layoutIndex = 0;
for (size_t attributeIndex = 0; attributeIndex < shaderAttributes.size(); attributeIndex++)
{
ASSERT(layoutIndex < MAX_VERTEX_ATTRIBS);
const sh::Attribute &shaderAttr = shaderAttributes[attributeIndex];
if (shaderAttr.type != GL_NONE)
{
GLenum transposedType = TransposeMatrixType(shaderAttr.type);
for (size_t rowIndex = 0; static_cast<int>(rowIndex) < VariableRowCount(transposedType); rowIndex++, layoutIndex++)
{
VertexFormat *defaultFormat = &inputLayout[layoutIndex];
defaultFormat->mType = VariableComponentType(transposedType);
defaultFormat->mNormalized = false;
defaultFormat->mPureInteger = (defaultFormat->mType != GL_FLOAT); // note: inputs can not be bool
defaultFormat->mComponents = VariableColumnCount(transposedType);
}
}
}
}
}
VariableLocation::VariableLocation(const std::string &name, unsigned int element, unsigned int index)
: name(name), element(element), index(index)
{
}
ProgramBinary::VertexExecutable::VertexExecutable(const VertexFormat inputLayout[],
const GLenum signature[],
rx::ShaderExecutable *shaderExecutable)
: mShaderExecutable(shaderExecutable)
{
for (size_t attributeIndex = 0; attributeIndex < gl::MAX_VERTEX_ATTRIBS; attributeIndex++)
{
mInputs[attributeIndex] = inputLayout[attributeIndex];
mSignature[attributeIndex] = signature[attributeIndex];
}
}
ProgramBinary::VertexExecutable::~VertexExecutable()
{
SafeDelete(mShaderExecutable);
}
bool ProgramBinary::VertexExecutable::matchesSignature(const GLenum signature[]) const
{
for (size_t attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
if (mSignature[attributeIndex] != signature[attributeIndex])
{
return false;
}
}
return true;
}
ProgramBinary::PixelExecutable::PixelExecutable(const std::vector<GLenum> &outputSignature, rx::ShaderExecutable *shaderExecutable)
: mOutputSignature(outputSignature),
mShaderExecutable(shaderExecutable)
{
}
ProgramBinary::PixelExecutable::~PixelExecutable()
{
SafeDelete(mShaderExecutable);
}
LinkedVarying::LinkedVarying()
{
}
LinkedVarying::LinkedVarying(const std::string &name, GLenum type, GLsizei size, const std::string &semanticName,
unsigned int semanticIndex, unsigned int semanticIndexCount)
: name(name), type(type), size(size), semanticName(semanticName), semanticIndex(semanticIndex), semanticIndexCount(semanticIndexCount)
{
}
unsigned int ProgramBinary::mCurrentSerial = 1;
ProgramBinary::ProgramBinary(rx::Renderer *renderer)
: RefCountObject(0),
mRenderer(renderer),
mDynamicHLSL(NULL),
mVertexWorkarounds(rx::ANGLE_D3D_WORKAROUND_NONE),
mPixelWorkarounds(rx::ANGLE_D3D_WORKAROUND_NONE),
mGeometryExecutable(NULL),
mUsedVertexSamplerRange(0),
mUsedPixelSamplerRange(0),
mUsesPointSize(false),
mShaderVersion(100),
mDirtySamplerMapping(true),
mVertexUniformStorage(NULL),
mFragmentUniformStorage(NULL),
mValidated(false),
mSerial(issueSerial())
{
for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
{
mSemanticIndex[index] = -1;
}
for (int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++)
{
mSamplersPS[index].active = false;
}
for (int index = 0; index < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; index++)
{
mSamplersVS[index].active = false;
}
mDynamicHLSL = new DynamicHLSL(renderer);
}
ProgramBinary::~ProgramBinary()
{
reset();
SafeDelete(mDynamicHLSL);
}
unsigned int ProgramBinary::getSerial() const
{
return mSerial;
}
int ProgramBinary::getShaderVersion() const
{
return mShaderVersion;
}
unsigned int ProgramBinary::issueSerial()
{
return mCurrentSerial++;
}
rx::ShaderExecutable *ProgramBinary::getPixelExecutableForFramebuffer(const Framebuffer *fbo)
{
std::vector<GLenum> outputs(IMPLEMENTATION_MAX_DRAW_BUFFERS);
for (size_t outputIndex = 0; outputIndex < IMPLEMENTATION_MAX_DRAW_BUFFERS; outputIndex++)
{
if (fbo->getColorbuffer(outputIndex) != NULL)
{
// Always output floats for now
outputs[outputIndex] = GL_FLOAT;
}
else
{
outputs[outputIndex] = GL_NONE;
}
}
return getPixelExecutableForOutputLayout(outputs);
}
rx::ShaderExecutable *ProgramBinary::getPixelExecutableForOutputLayout(const std::vector<GLenum> &outputSignature)
{
for (size_t executableIndex = 0; executableIndex < mPixelExecutables.size(); executableIndex++)
{
if (mPixelExecutables[executableIndex]->matchesSignature(outputSignature))
{
return mPixelExecutables[executableIndex]->shaderExecutable();
}
}
std::string finalPixelHLSL = mDynamicHLSL->generatePixelShaderForOutputSignature(mPixelHLSL, mPixelShaderKey, mUsesFragDepth,
outputSignature);
// Generate new pixel executable
InfoLog tempInfoLog;
rx::ShaderExecutable *pixelExecutable = mRenderer->compileToExecutable(tempInfoLog, finalPixelHLSL.c_str(), rx::SHADER_PIXEL,
mTransformFeedbackLinkedVaryings,
(mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS),
mPixelWorkarounds);
if (!pixelExecutable)
{
std::vector<char> tempCharBuffer(tempInfoLog.getLength() + 3);
tempInfoLog.getLog(tempInfoLog.getLength(), NULL, &tempCharBuffer[0]);
ERR("Error compiling dynamic pixel executable:\n%s\n", &tempCharBuffer[0]);
}
else
{
mPixelExecutables.push_back(new PixelExecutable(outputSignature, pixelExecutable));
}
return pixelExecutable;
}
rx::ShaderExecutable *ProgramBinary::getVertexExecutableForInputLayout(const VertexFormat inputLayout[MAX_VERTEX_ATTRIBS])
{
GLenum signature[MAX_VERTEX_ATTRIBS];
mDynamicHLSL->getInputLayoutSignature(inputLayout, signature);
for (size_t executableIndex = 0; executableIndex < mVertexExecutables.size(); executableIndex++)
{
if (mVertexExecutables[executableIndex]->matchesSignature(signature))
{
return mVertexExecutables[executableIndex]->shaderExecutable();
}
}
// Generate new dynamic layout with attribute conversions
std::string finalVertexHLSL = mDynamicHLSL->generateVertexShaderForInputLayout(mVertexHLSL, inputLayout, mShaderAttributes);
// Generate new vertex executable
InfoLog tempInfoLog;
rx::ShaderExecutable *vertexExecutable = mRenderer->compileToExecutable(tempInfoLog, finalVertexHLSL.c_str(),
rx::SHADER_VERTEX,
mTransformFeedbackLinkedVaryings,
(mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS),
mVertexWorkarounds);
if (!vertexExecutable)
{
std::vector<char> tempCharBuffer(tempInfoLog.getLength()+3);
tempInfoLog.getLog(tempInfoLog.getLength(), NULL, &tempCharBuffer[0]);
ERR("Error compiling dynamic vertex executable:\n%s\n", &tempCharBuffer[0]);
}
else
{
mVertexExecutables.push_back(new VertexExecutable(inputLayout, signature, vertexExecutable));
}
return vertexExecutable;
}
rx::ShaderExecutable *ProgramBinary::getGeometryExecutable() const
{
return mGeometryExecutable;
}
GLuint ProgramBinary::getAttributeLocation(const char *name)
{
if (name)
{
for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
{
if (mLinkedAttribute[index].name == std::string(name))
{
return index;
}
}
}
return -1;
}
int ProgramBinary::getSemanticIndex(int attributeIndex)
{
ASSERT(attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS);
return mSemanticIndex[attributeIndex];
}
// Returns one more than the highest sampler index used.
GLint ProgramBinary::getUsedSamplerRange(SamplerType type)
{
switch (type)
{
case SAMPLER_PIXEL:
return mUsedPixelSamplerRange;
case SAMPLER_VERTEX:
return mUsedVertexSamplerRange;
default:
UNREACHABLE();
return 0;
}
}
bool ProgramBinary::usesPointSize() const
{
return mUsesPointSize;
}
bool ProgramBinary::usesPointSpriteEmulation() const
{
return mUsesPointSize && mRenderer->getMajorShaderModel() >= 4;
}
bool ProgramBinary::usesGeometryShader() const
{
return usesPointSpriteEmulation();
}
// Returns the index of the texture image unit (0-19) corresponding to a Direct3D 9 sampler
// index (0-15 for the pixel shader and 0-3 for the vertex shader).
GLint ProgramBinary::getSamplerMapping(SamplerType type, unsigned int samplerIndex)
{
GLint logicalTextureUnit = -1;
switch (type)
{
case SAMPLER_PIXEL:
ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0]));
if (mSamplersPS[samplerIndex].active)
{
logicalTextureUnit = mSamplersPS[samplerIndex].logicalTextureUnit;
}
break;
case SAMPLER_VERTEX:
ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0]));
if (mSamplersVS[samplerIndex].active)
{
logicalTextureUnit = mSamplersVS[samplerIndex].logicalTextureUnit;
}
break;
default: UNREACHABLE();
}
if (logicalTextureUnit >= 0 && logicalTextureUnit < (GLint)mRenderer->getMaxCombinedTextureImageUnits())
{
return logicalTextureUnit;
}
return -1;
}
// Returns the texture type for a given Direct3D 9 sampler type and
// index (0-15 for the pixel shader and 0-3 for the vertex shader).
TextureType ProgramBinary::getSamplerTextureType(SamplerType type, unsigned int samplerIndex)
{
switch (type)
{
case SAMPLER_PIXEL:
ASSERT(samplerIndex < sizeof(mSamplersPS)/sizeof(mSamplersPS[0]));
ASSERT(mSamplersPS[samplerIndex].active);
return mSamplersPS[samplerIndex].textureType;
case SAMPLER_VERTEX:
ASSERT(samplerIndex < sizeof(mSamplersVS)/sizeof(mSamplersVS[0]));
ASSERT(mSamplersVS[samplerIndex].active);
return mSamplersVS[samplerIndex].textureType;
default: UNREACHABLE();
}
return TEXTURE_2D;
}
GLint ProgramBinary::getUniformLocation(std::string name)
{
unsigned int subscript = ParseAndStripArrayIndex(&name);
unsigned int numUniforms = mUniformIndex.size();
for (unsigned int location = 0; location < numUniforms; location++)
{
if (mUniformIndex[location].name == name)
{
const int index = mUniformIndex[location].index;
const bool isArray = mUniforms[index]->isArray();
if ((isArray && mUniformIndex[location].element == subscript) ||
(subscript == GL_INVALID_INDEX))
{
return location;
}
}
}
return -1;
}
GLuint ProgramBinary::getUniformIndex(std::string name)
{
unsigned int subscript = ParseAndStripArrayIndex(&name);
// The app is not allowed to specify array indices other than 0 for arrays of basic types
if (subscript != 0 && subscript != GL_INVALID_INDEX)
{
return GL_INVALID_INDEX;
}
unsigned int numUniforms = mUniforms.size();
for (unsigned int index = 0; index < numUniforms; index++)
{
if (mUniforms[index]->name == name)
{
if (mUniforms[index]->isArray() || subscript == GL_INVALID_INDEX)
{
return index;
}
}
}
return GL_INVALID_INDEX;
}
GLuint ProgramBinary::getUniformBlockIndex(std::string name)
{
unsigned int subscript = ParseAndStripArrayIndex(&name);
unsigned int numUniformBlocks = mUniformBlocks.size();
for (unsigned int blockIndex = 0; blockIndex < numUniformBlocks; blockIndex++)
{
const UniformBlock &uniformBlock = *mUniformBlocks[blockIndex];
if (uniformBlock.name == name)
{
const bool arrayElementZero = (subscript == GL_INVALID_INDEX && uniformBlock.elementIndex == 0);
if (subscript == uniformBlock.elementIndex || arrayElementZero)
{
return blockIndex;
}
}
}
return GL_INVALID_INDEX;
}
UniformBlock *ProgramBinary::getUniformBlockByIndex(GLuint blockIndex)
{
ASSERT(blockIndex < mUniformBlocks.size());
return mUniformBlocks[blockIndex];
}
GLint ProgramBinary::getFragDataLocation(const char *name) const
{
std::string baseName(name);
unsigned int arrayIndex;
arrayIndex = ParseAndStripArrayIndex(&baseName);
for (auto locationIt = mOutputVariables.begin(); locationIt != mOutputVariables.end(); locationIt++)
{
const VariableLocation &outputVariable = locationIt->second;
if (outputVariable.name == baseName && (arrayIndex == GL_INVALID_INDEX || arrayIndex == outputVariable.element))
{
return static_cast<GLint>(locationIt->first);
}
}
return -1;
}
size_t ProgramBinary::getTransformFeedbackVaryingCount() const
{
return mTransformFeedbackLinkedVaryings.size();
}
const LinkedVarying &ProgramBinary::getTransformFeedbackVarying(size_t idx) const
{
return mTransformFeedbackLinkedVaryings[idx];
}
GLenum ProgramBinary::getTransformFeedbackBufferMode() const
{
return mTransformFeedbackBufferMode;
}
template <typename T>
static inline void SetIfDirty(T *dest, const T& source, bool *dirtyFlag)
{
ASSERT(dest != NULL);
ASSERT(dirtyFlag != NULL);
*dirtyFlag = *dirtyFlag || (memcmp(dest, &source, sizeof(T)) != 0);
*dest = source;
}
template <typename T>
void ProgramBinary::setUniform(GLint location, GLsizei count, const T* v, GLenum targetUniformType)
{
const int components = VariableComponentCount(targetUniformType);
const GLenum targetBoolType = VariableBoolVectorType(targetUniformType);
LinkedUniform *targetUniform = getUniformByLocation(location);
int elementCount = targetUniform->elementCount();
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
if (targetUniform->type == targetUniformType)
{
T *target = (T*)targetUniform->data + mUniformIndex[location].element * 4;
for (int i = 0; i < count; i++)
{
for (int c = 0; c < components; c++)
{
SetIfDirty(target + c, v[c], &targetUniform->dirty);
}
for (int c = components; c < 4; c++)
{
SetIfDirty(target + c, T(0), &targetUniform->dirty);
}
target += 4;
v += components;
}
}
else if (targetUniform->type == targetBoolType)
{
GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
for (int i = 0; i < count; i++)
{
for (int c = 0; c < components; c++)
{
SetIfDirty(boolParams + c, (v[c] == static_cast<T>(0)) ? GL_FALSE : GL_TRUE, &targetUniform->dirty);
}
for (int c = components; c < 4; c++)
{
SetIfDirty(boolParams + c, GL_FALSE, &targetUniform->dirty);
}
boolParams += 4;
v += components;
}
}
else UNREACHABLE();
}
void ProgramBinary::setUniform1fv(GLint location, GLsizei count, const GLfloat* v)
{
setUniform(location, count, v, GL_FLOAT);
}
void ProgramBinary::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniform(location, count, v, GL_FLOAT_VEC2);
}
void ProgramBinary::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniform(location, count, v, GL_FLOAT_VEC3);
}
void ProgramBinary::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniform(location, count, v, GL_FLOAT_VEC4);
}
template<typename T>
bool transposeMatrix(T *target, const GLfloat *value, int targetWidth, int targetHeight, int srcWidth, int srcHeight)
{
bool dirty = false;
int copyWidth = std::min(targetHeight, srcWidth);
int copyHeight = std::min(targetWidth, srcHeight);
for (int x = 0; x < copyWidth; x++)
{
for (int y = 0; y < copyHeight; y++)
{
SetIfDirty(target + (x * targetWidth + y), static_cast<T>(value[y * srcWidth + x]), &dirty);
}
}
// clear unfilled right side
for (int y = 0; y < copyWidth; y++)
{
for (int x = copyHeight; x < targetWidth; x++)
{
SetIfDirty(target + (y * targetWidth + x), static_cast<T>(0), &dirty);
}
}
// clear unfilled bottom.
for (int y = copyWidth; y < targetHeight; y++)
{
for (int x = 0; x < targetWidth; x++)
{
SetIfDirty(target + (y * targetWidth + x), static_cast<T>(0), &dirty);
}
}
return dirty;
}
template<typename T>
bool expandMatrix(T *target, const GLfloat *value, int targetWidth, int targetHeight, int srcWidth, int srcHeight)
{
bool dirty = false;
int copyWidth = std::min(targetWidth, srcWidth);
int copyHeight = std::min(targetHeight, srcHeight);
for (int y = 0; y < copyHeight; y++)
{
for (int x = 0; x < copyWidth; x++)
{
SetIfDirty(target + (y * targetWidth + x), static_cast<T>(value[y * srcWidth + x]), &dirty);
}
}
// clear unfilled right side
for (int y = 0; y < copyHeight; y++)
{
for (int x = copyWidth; x < targetWidth; x++)
{
SetIfDirty(target + (y * targetWidth + x), static_cast<T>(0), &dirty);
}
}
// clear unfilled bottom.
for (int y = copyHeight; y < targetHeight; y++)
{
for (int x = 0; x < targetWidth; x++)
{
SetIfDirty(target + (y * targetWidth + x), static_cast<T>(0), &dirty);
}
}
return dirty;
}
template <int cols, int rows>
void ProgramBinary::setUniformMatrixfv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value, GLenum targetUniformType)
{
LinkedUniform *targetUniform = getUniformByLocation(location);
int elementCount = targetUniform->elementCount();
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
const unsigned int targetMatrixStride = (4 * rows);
GLfloat *target = (GLfloat*)(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * targetMatrixStride);
for (int i = 0; i < count; i++)
{
// Internally store matrices as transposed versions to accomodate HLSL matrix indexing
if (transpose == GL_FALSE)
{
targetUniform->dirty = transposeMatrix<GLfloat>(target, value, 4, rows, rows, cols) || targetUniform->dirty;
}
else
{
targetUniform->dirty = expandMatrix<GLfloat>(target, value, 4, rows, cols, rows) || targetUniform->dirty;
}
target += targetMatrixStride;
value += cols * rows;
}
}
void ProgramBinary::setUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<2, 2>(location, count, transpose, value, GL_FLOAT_MAT2);
}
void ProgramBinary::setUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<3, 3>(location, count, transpose, value, GL_FLOAT_MAT3);
}
void ProgramBinary::setUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<4, 4>(location, count, transpose, value, GL_FLOAT_MAT4);
}
void ProgramBinary::setUniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<2, 3>(location, count, transpose, value, GL_FLOAT_MAT2x3);
}
void ProgramBinary::setUniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<3, 2>(location, count, transpose, value, GL_FLOAT_MAT3x2);
}
void ProgramBinary::setUniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<2, 4>(location, count, transpose, value, GL_FLOAT_MAT2x4);
}
void ProgramBinary::setUniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<4, 2>(location, count, transpose, value, GL_FLOAT_MAT4x2);
}
void ProgramBinary::setUniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<3, 4>(location, count, transpose, value, GL_FLOAT_MAT3x4);
}
void ProgramBinary::setUniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value)
{
setUniformMatrixfv<4, 3>(location, count, transpose, value, GL_FLOAT_MAT4x3);
}
void ProgramBinary::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
LinkedUniform *targetUniform = mUniforms[mUniformIndex[location].index];
int elementCount = targetUniform->elementCount();
count = std::min(elementCount - (int)mUniformIndex[location].element, count);
if (targetUniform->type == GL_INT || IsSampler(targetUniform->type))
{
GLint *target = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
for (int i = 0; i < count; i++)
{
SetIfDirty(target + 0, v[0], &targetUniform->dirty);
SetIfDirty(target + 1, 0, &targetUniform->dirty);
SetIfDirty(target + 2, 0, &targetUniform->dirty);
SetIfDirty(target + 3, 0, &targetUniform->dirty);
target += 4;
v += 1;
}
}
else if (targetUniform->type == GL_BOOL)
{
GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
for (int i = 0; i < count; i++)
{
SetIfDirty(boolParams + 0, (v[0] == 0) ? GL_FALSE : GL_TRUE, &targetUniform->dirty);
SetIfDirty(boolParams + 1, GL_FALSE, &targetUniform->dirty);
SetIfDirty(boolParams + 2, GL_FALSE, &targetUniform->dirty);
SetIfDirty(boolParams + 3, GL_FALSE, &targetUniform->dirty);
boolParams += 4;
v += 1;
}
}
else UNREACHABLE();
// Set a special flag if we change a sampler uniform
if (IsSampler(targetUniform->type) &&
(memcmp(targetUniform->data, v, sizeof(GLint)) != 0))
{
mDirtySamplerMapping = true;
}
}
void ProgramBinary::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
setUniform(location, count, v, GL_INT_VEC2);
}
void ProgramBinary::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
setUniform(location, count, v, GL_INT_VEC3);
}
void ProgramBinary::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
setUniform(location, count, v, GL_INT_VEC4);
}
void ProgramBinary::setUniform1uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniform(location, count, v, GL_UNSIGNED_INT);
}
void ProgramBinary::setUniform2uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniform(location, count, v, GL_UNSIGNED_INT_VEC2);
}
void ProgramBinary::setUniform3uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniform(location, count, v, GL_UNSIGNED_INT_VEC3);
}
void ProgramBinary::setUniform4uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniform(location, count, v, GL_UNSIGNED_INT_VEC4);
}
template <typename T>
bool ProgramBinary::getUniformv(GLint location, GLsizei *bufSize, T *params, GLenum uniformType)
{
LinkedUniform *targetUniform = mUniforms[mUniformIndex[location].index];
// sized queries -- ensure the provided buffer is large enough
if (bufSize)
{
int requiredBytes = VariableExternalSize(targetUniform->type);
if (*bufSize < requiredBytes)
{
return false;
}
}
if (IsMatrixType(targetUniform->type))
{
const int rows = VariableRowCount(targetUniform->type);
const int cols = VariableColumnCount(targetUniform->type);
transposeMatrix(params, (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4 * rows, rows, cols, 4, rows);
}
else if (uniformType == VariableComponentType(targetUniform->type))
{
unsigned int size = VariableComponentCount(targetUniform->type);
memcpy(params, targetUniform->data + mUniformIndex[location].element * 4 * sizeof(T),
size * sizeof(T));
}
else
{
unsigned int size = VariableComponentCount(targetUniform->type);
switch (VariableComponentType(targetUniform->type))
{
case GL_BOOL:
{
GLint *boolParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
for (unsigned int i = 0; i < size; i++)
{
params[i] = (boolParams[i] == GL_FALSE) ? static_cast<T>(0) : static_cast<T>(1);
}
}
break;
case GL_FLOAT:
{
GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * 4;
for (unsigned int i = 0; i < size; i++)
{
params[i] = static_cast<T>(floatParams[i]);
}
}
break;
case GL_INT:
{
GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * 4;
for (unsigned int i = 0; i < size; i++)
{
params[i] = static_cast<T>(intParams[i]);
}
}
break;
case GL_UNSIGNED_INT:
{
GLuint *uintParams = (GLuint*)targetUniform->data + mUniformIndex[location].element * 4;
for (unsigned int i = 0; i < size; i++)
{
params[i] = static_cast<T>(uintParams[i]);
}
}
break;
default: UNREACHABLE();
}
}
return true;
}
bool ProgramBinary::getUniformfv(GLint location, GLsizei *bufSize, GLfloat *params)
{
return getUniformv(location, bufSize, params, GL_FLOAT);
}
bool ProgramBinary::getUniformiv(GLint location, GLsizei *bufSize, GLint *params)
{
return getUniformv(location, bufSize, params, GL_INT);
}
bool ProgramBinary::getUniformuiv(GLint location, GLsizei *bufSize, GLuint *params)
{
return getUniformv(location, bufSize, params, GL_UNSIGNED_INT);
}
void ProgramBinary::dirtyAllUniforms()
{
unsigned int numUniforms = mUniforms.size();
for (unsigned int index = 0; index < numUniforms; index++)
{
mUniforms[index]->dirty = true;
}
}
void ProgramBinary::updateSamplerMapping()
{
if (!mDirtySamplerMapping)
{
return;
}
mDirtySamplerMapping = false;
// Retrieve sampler uniform values
for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); uniformIndex++)
{
LinkedUniform *targetUniform = mUniforms[uniformIndex];
if (targetUniform->dirty)
{
if (IsSampler(targetUniform->type))
{
int count = targetUniform->elementCount();
GLint (*v)[4] = reinterpret_cast<GLint(*)[4]>(targetUniform->data);
if (targetUniform->isReferencedByFragmentShader())
{
unsigned int firstIndex = targetUniform->psRegisterIndex;
for (int i = 0; i < count; i++)
{
unsigned int samplerIndex = firstIndex + i;
if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
{
ASSERT(mSamplersPS[samplerIndex].active);
mSamplersPS[samplerIndex].logicalTextureUnit = v[i][0];
}
}
}
if (targetUniform->isReferencedByVertexShader())
{
unsigned int firstIndex = targetUniform->vsRegisterIndex;
for (int i = 0; i < count; i++)
{
unsigned int samplerIndex = firstIndex + i;
if (samplerIndex < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS)
{
ASSERT(mSamplersVS[samplerIndex].active);
mSamplersVS[samplerIndex].logicalTextureUnit = v[i][0];
}
}
}
}
}
}
}
// Applies all the uniforms set for this program object to the renderer
void ProgramBinary::applyUniforms()
{
updateSamplerMapping();
mRenderer->applyUniforms(*this);
for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); uniformIndex++)
{
mUniforms[uniformIndex]->dirty = false;
}
}
bool ProgramBinary::applyUniformBuffers(const std::vector<gl::Buffer*> boundBuffers)
{
const gl::Buffer *vertexUniformBuffers[gl::IMPLEMENTATION_MAX_VERTEX_SHADER_UNIFORM_BUFFERS] = {NULL};
const gl::Buffer *fragmentUniformBuffers[gl::IMPLEMENTATION_MAX_FRAGMENT_SHADER_UNIFORM_BUFFERS] = {NULL};
const unsigned int reservedBuffersInVS = mRenderer->getReservedVertexUniformBuffers();
const unsigned int reservedBuffersInFS = mRenderer->getReservedFragmentUniformBuffers();
ASSERT(boundBuffers.size() == mUniformBlocks.size());
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < mUniformBlocks.size(); uniformBlockIndex++)
{
UniformBlock *uniformBlock = getUniformBlockByIndex(uniformBlockIndex);
gl::Buffer *uniformBuffer = boundBuffers[uniformBlockIndex];
ASSERT(uniformBlock && uniformBuffer);
if (uniformBuffer->getSize() < uniformBlock->dataSize)
{
// undefined behaviour
return false;
}
ASSERT(uniformBlock->isReferencedByVertexShader() || uniformBlock->isReferencedByFragmentShader());
if (uniformBlock->isReferencedByVertexShader())
{
unsigned int registerIndex = uniformBlock->vsRegisterIndex - reservedBuffersInVS;
ASSERT(vertexUniformBuffers[registerIndex] == NULL);
ASSERT(registerIndex < mRenderer->getMaxVertexShaderUniformBuffers());
vertexUniformBuffers[registerIndex] = uniformBuffer;
}
if (uniformBlock->isReferencedByFragmentShader())
{
unsigned int registerIndex = uniformBlock->psRegisterIndex - reservedBuffersInFS;
ASSERT(fragmentUniformBuffers[registerIndex] == NULL);
ASSERT(registerIndex < mRenderer->getMaxFragmentShaderUniformBuffers());
fragmentUniformBuffers[registerIndex] = uniformBuffer;
}
}
return mRenderer->setUniformBuffers(vertexUniformBuffers, fragmentUniformBuffers);
}
bool ProgramBinary::linkVaryings(InfoLog &infoLog, FragmentShader *fragmentShader, VertexShader *vertexShader)
{
std::vector<PackedVarying> &fragmentVaryings = fragmentShader->getVaryings();
std::vector<PackedVarying> &vertexVaryings = vertexShader->getVaryings();
for (size_t fragVaryingIndex = 0; fragVaryingIndex < fragmentVaryings.size(); fragVaryingIndex++)
{
PackedVarying *input = &fragmentVaryings[fragVaryingIndex];
bool matched = false;
for (size_t vertVaryingIndex = 0; vertVaryingIndex < vertexVaryings.size(); vertVaryingIndex++)
{
PackedVarying *output = &vertexVaryings[vertVaryingIndex];
if (output->name == input->name)
{
if (!linkValidateVariables(infoLog, output->name, *input, *output))
{
return false;
}
output->registerIndex = input->registerIndex;
matched = true;
break;
}
}
if (!matched)
{
infoLog.append("Fragment varying %s does not match any vertex varying", input->name.c_str());
return false;
}
}
return true;
}
bool ProgramBinary::load(InfoLog &infoLog, const void *binary, GLsizei length)
{
#ifdef ANGLE_DISABLE_PROGRAM_BINARY_LOAD
return false;
#else
reset();
BinaryInputStream stream(binary, length);
int format = stream.readInt<int>();
if (format != GL_PROGRAM_BINARY_ANGLE)
{
infoLog.append("Invalid program binary format.");
return false;
}
int majorVersion = stream.readInt<int>();
int minorVersion = stream.readInt<int>();
if (majorVersion != ANGLE_MAJOR_VERSION || minorVersion != ANGLE_MINOR_VERSION)
{
infoLog.append("Invalid program binary version.");
return false;
}
unsigned char commitString[ANGLE_COMMIT_HASH_SIZE];
stream.readBytes(commitString, ANGLE_COMMIT_HASH_SIZE);
if (memcmp(commitString, ANGLE_COMMIT_HASH, sizeof(unsigned char) * ANGLE_COMMIT_HASH_SIZE) != 0)
{
infoLog.append("Invalid program binary version.");
return false;
}
int compileFlags = stream.readInt<int>();
if (compileFlags != ANGLE_COMPILE_OPTIMIZATION_LEVEL)
{
infoLog.append("Mismatched compilation flags.");
return false;
}
for (int i = 0; i < MAX_VERTEX_ATTRIBS; ++i)
{
stream.readInt(&mLinkedAttribute[i].type);
stream.readString(&mLinkedAttribute[i].name);
stream.readInt(&mShaderAttributes[i].type);
stream.readString(&mShaderAttributes[i].name);
stream.readInt(&mSemanticIndex[i]);
}
initAttributesByLayout();
for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i)
{
stream.readBool(&mSamplersPS[i].active);
stream.readInt(&mSamplersPS[i].logicalTextureUnit);
stream.readInt(&mSamplersPS[i].textureType);
}
for (unsigned int i = 0; i < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; ++i)
{
stream.readBool(&mSamplersVS[i].active);
stream.readInt(&mSamplersVS[i].logicalTextureUnit);
stream.readInt(&mSamplersVS[i].textureType);
}
stream.readInt(&mUsedVertexSamplerRange);
stream.readInt(&mUsedPixelSamplerRange);
stream.readBool(&mUsesPointSize);
stream.readInt(&mShaderVersion);
const unsigned int uniformCount = stream.readInt<unsigned int>();
if (stream.error())
{
infoLog.append("Invalid program binary.");
return false;
}
mUniforms.resize(uniformCount);
for (unsigned int uniformIndex = 0; uniformIndex < uniformCount; uniformIndex++)
{
GLenum type = stream.readInt<GLenum>();
GLenum precision = stream.readInt<GLenum>();
std::string name = stream.readString();
unsigned int arraySize = stream.readInt<unsigned int>();
int blockIndex = stream.readInt<int>();
int offset = stream.readInt<int>();
int arrayStride = stream.readInt<int>();
int matrixStride = stream.readInt<int>();
bool isRowMajorMatrix = stream.readBool();
const sh::BlockMemberInfo blockInfo(offset, arrayStride, matrixStride, isRowMajorMatrix);
LinkedUniform *uniform = new LinkedUniform(type, precision, name, arraySize, blockIndex, blockInfo);
stream.readInt(&uniform->psRegisterIndex);
stream.readInt(&uniform->vsRegisterIndex);
stream.readInt(&uniform->registerCount);
stream.readInt(&uniform->registerElement);
mUniforms[uniformIndex] = uniform;
}
unsigned int uniformBlockCount = stream.readInt<unsigned int>();
if (stream.error())
{
infoLog.append("Invalid program binary.");
return false;
}
mUniformBlocks.resize(uniformBlockCount);
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < uniformBlockCount; ++uniformBlockIndex)
{
std::string name = stream.readString();
unsigned int elementIndex = stream.readInt<unsigned int>();
unsigned int dataSize = stream.readInt<unsigned int>();
UniformBlock *uniformBlock = new UniformBlock(name, elementIndex, dataSize);
stream.readInt(&uniformBlock->psRegisterIndex);
stream.readInt(&uniformBlock->vsRegisterIndex);
unsigned int numMembers = stream.readInt<unsigned int>();
uniformBlock->memberUniformIndexes.resize(numMembers);
for (unsigned int blockMemberIndex = 0; blockMemberIndex < numMembers; blockMemberIndex++)
{
stream.readInt(&uniformBlock->memberUniformIndexes[blockMemberIndex]);
}
mUniformBlocks[uniformBlockIndex] = uniformBlock;
}
const unsigned int uniformIndexCount = stream.readInt<unsigned int>();
if (stream.error())
{
infoLog.append("Invalid program binary.");
return false;
}
mUniformIndex.resize(uniformIndexCount);
for (unsigned int uniformIndexIndex = 0; uniformIndexIndex < uniformIndexCount; uniformIndexIndex++)
{
stream.readString(&mUniformIndex[uniformIndexIndex].name);
stream.readInt(&mUniformIndex[uniformIndexIndex].element);
stream.readInt(&mUniformIndex[uniformIndexIndex].index);
}
stream.readInt(&mTransformFeedbackBufferMode);
const unsigned int transformFeedbackVaryingCount = stream.readInt<unsigned int>();
mTransformFeedbackLinkedVaryings.resize(transformFeedbackVaryingCount);
for (unsigned int varyingIndex = 0; varyingIndex < transformFeedbackVaryingCount; varyingIndex++)
{
LinkedVarying &varying = mTransformFeedbackLinkedVaryings[varyingIndex];
stream.readString(&varying.name);
stream.readInt(&varying.type);
stream.readInt(&varying.size);
stream.readString(&varying.semanticName);
stream.readInt(&varying.semanticIndex);
stream.readInt(&varying.semanticIndexCount);
}
stream.readString(&mVertexHLSL);
stream.readInt(&mVertexWorkarounds);
const unsigned int vertexShaderCount = stream.readInt<unsigned int>();
for (unsigned int vertexShaderIndex = 0; vertexShaderIndex < vertexShaderCount; vertexShaderIndex++)
{
VertexFormat inputLayout[MAX_VERTEX_ATTRIBS];
for (size_t inputIndex = 0; inputIndex < MAX_VERTEX_ATTRIBS; inputIndex++)
{
VertexFormat *vertexInput = &inputLayout[inputIndex];
stream.readInt(&vertexInput->mType);
stream.readInt(&vertexInput->mNormalized);
stream.readInt(&vertexInput->mComponents);
stream.readBool(&vertexInput->mPureInteger);
}
unsigned int vertexShaderSize = stream.readInt<unsigned int>();
const unsigned char *vertexShaderFunction = reinterpret_cast<const unsigned char*>(binary) + stream.offset();
rx::ShaderExecutable *shaderExecutable = mRenderer->loadExecutable(reinterpret_cast<const DWORD*>(vertexShaderFunction),
vertexShaderSize, rx::SHADER_VERTEX,
mTransformFeedbackLinkedVaryings,
(mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS));
if (!shaderExecutable)
{
infoLog.append("Could not create vertex shader.");
return false;
}
// generated converted input layout
GLenum signature[MAX_VERTEX_ATTRIBS];
mDynamicHLSL->getInputLayoutSignature(inputLayout, signature);
// add new binary
mVertexExecutables.push_back(new VertexExecutable(inputLayout, signature, shaderExecutable));
stream.skip(vertexShaderSize);
}
stream.readString(&mPixelHLSL);
stream.readInt(&mPixelWorkarounds);
stream.readBool(&mUsesFragDepth);
const size_t pixelShaderKeySize = stream.readInt<unsigned int>();
mPixelShaderKey.resize(pixelShaderKeySize);
for (size_t pixelShaderKeyIndex = 0; pixelShaderKeyIndex < pixelShaderKeySize; pixelShaderKeyIndex++)
{
stream.readInt(&mPixelShaderKey[pixelShaderKeyIndex].type);
stream.readString(&mPixelShaderKey[pixelShaderKeyIndex].name);
stream.readString(&mPixelShaderKey[pixelShaderKeyIndex].source);
stream.readInt(&mPixelShaderKey[pixelShaderKeyIndex].outputIndex);
}
const size_t pixelShaderCount = stream.readInt<unsigned int>();
for (size_t pixelShaderIndex = 0; pixelShaderIndex < pixelShaderCount; pixelShaderIndex++)
{
const size_t outputCount = stream.readInt<unsigned int>();
std::vector<GLenum> outputs(outputCount);
for (size_t outputIndex = 0; outputIndex < outputCount; outputIndex++)
{
stream.readInt(&outputs[outputIndex]);
}
const size_t pixelShaderSize = stream.readInt<unsigned int>();
const unsigned char *pixelShaderFunction = reinterpret_cast<const unsigned char*>(binary) + stream.offset();
rx::ShaderExecutable *shaderExecutable = mRenderer->loadExecutable(pixelShaderFunction, pixelShaderSize,
rx::SHADER_PIXEL,
mTransformFeedbackLinkedVaryings,
(mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS));
if (!shaderExecutable)
{
infoLog.append("Could not create pixel shader.");
return false;
}
// add new binary
mPixelExecutables.push_back(new PixelExecutable(outputs, shaderExecutable));
stream.skip(pixelShaderSize);
}
unsigned int geometryShaderSize = stream.readInt<unsigned int>();
if (geometryShaderSize > 0)
{
const char *geometryShaderFunction = (const char*) binary + stream.offset();
mGeometryExecutable = mRenderer->loadExecutable(reinterpret_cast<const DWORD*>(geometryShaderFunction),
geometryShaderSize, rx::SHADER_GEOMETRY, mTransformFeedbackLinkedVaryings,
(mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS));
if (!mGeometryExecutable)
{
infoLog.append("Could not create geometry shader.");
return false;
}
stream.skip(geometryShaderSize);
}
const char *ptr = (const char*) binary + stream.offset();
const GUID *binaryIdentifier = (const GUID *) ptr;
ptr += sizeof(GUID);
GUID identifier = mRenderer->getAdapterIdentifier();
if (memcmp(&identifier, binaryIdentifier, sizeof(GUID)) != 0)
{
infoLog.append("Invalid program binary.");
return false;
}
initializeUniformStorage();
return true;
#endif // #ifdef ANGLE_DISABLE_PROGRAM_BINARY_LOAD
}
bool ProgramBinary::save(void* binary, GLsizei bufSize, GLsizei *length)
{
BinaryOutputStream stream;
stream.writeInt(GL_PROGRAM_BINARY_ANGLE);
stream.writeInt(ANGLE_MAJOR_VERSION);
stream.writeInt(ANGLE_MINOR_VERSION);
stream.writeBytes(reinterpret_cast<const unsigned char*>(ANGLE_COMMIT_HASH), ANGLE_COMMIT_HASH_SIZE);
stream.writeInt(ANGLE_COMPILE_OPTIMIZATION_LEVEL);
for (unsigned int i = 0; i < MAX_VERTEX_ATTRIBS; ++i)
{
stream.writeInt(mLinkedAttribute[i].type);
stream.writeString(mLinkedAttribute[i].name);
stream.writeInt(mShaderAttributes[i].type);
stream.writeString(mShaderAttributes[i].name);
stream.writeInt(mSemanticIndex[i]);
}
for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i)
{
stream.writeInt(mSamplersPS[i].active);
stream.writeInt(mSamplersPS[i].logicalTextureUnit);
stream.writeInt(mSamplersPS[i].textureType);
}
for (unsigned int i = 0; i < IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; ++i)
{
stream.writeInt(mSamplersVS[i].active);
stream.writeInt(mSamplersVS[i].logicalTextureUnit);
stream.writeInt(mSamplersVS[i].textureType);
}
stream.writeInt(mUsedVertexSamplerRange);
stream.writeInt(mUsedPixelSamplerRange);
stream.writeInt(mUsesPointSize);
stream.writeInt(mShaderVersion);
stream.writeInt(mUniforms.size());
for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); ++uniformIndex)
{
const LinkedUniform &uniform = *mUniforms[uniformIndex];
stream.writeInt(uniform.type);
stream.writeInt(uniform.precision);
stream.writeString(uniform.name);
stream.writeInt(uniform.arraySize);
stream.writeInt(uniform.blockIndex);
stream.writeInt(uniform.blockInfo.offset);
stream.writeInt(uniform.blockInfo.arrayStride);
stream.writeInt(uniform.blockInfo.matrixStride);
stream.writeInt(uniform.blockInfo.isRowMajorMatrix);
stream.writeInt(uniform.psRegisterIndex);
stream.writeInt(uniform.vsRegisterIndex);
stream.writeInt(uniform.registerCount);
stream.writeInt(uniform.registerElement);
}
stream.writeInt(mUniformBlocks.size());
for (size_t uniformBlockIndex = 0; uniformBlockIndex < mUniformBlocks.size(); ++uniformBlockIndex)
{
const UniformBlock& uniformBlock = *mUniformBlocks[uniformBlockIndex];
stream.writeString(uniformBlock.name);
stream.writeInt(uniformBlock.elementIndex);
stream.writeInt(uniformBlock.dataSize);
stream.writeInt(uniformBlock.memberUniformIndexes.size());
for (unsigned int blockMemberIndex = 0; blockMemberIndex < uniformBlock.memberUniformIndexes.size(); blockMemberIndex++)
{
stream.writeInt(uniformBlock.memberUniformIndexes[blockMemberIndex]);
}
stream.writeInt(uniformBlock.psRegisterIndex);
stream.writeInt(uniformBlock.vsRegisterIndex);
}
stream.writeInt(mUniformIndex.size());
for (size_t i = 0; i < mUniformIndex.size(); ++i)
{
stream.writeString(mUniformIndex[i].name);
stream.writeInt(mUniformIndex[i].element);
stream.writeInt(mUniformIndex[i].index);
}
stream.writeInt(mTransformFeedbackBufferMode);
stream.writeInt(mTransformFeedbackLinkedVaryings.size());
for (size_t i = 0; i < mTransformFeedbackLinkedVaryings.size(); i++)
{
const LinkedVarying &varying = mTransformFeedbackLinkedVaryings[i];
stream.writeString(varying.name);
stream.writeInt(varying.type);
stream.writeInt(varying.size);
stream.writeString(varying.semanticName);
stream.writeInt(varying.semanticIndex);
stream.writeInt(varying.semanticIndexCount);
}
stream.writeString(mVertexHLSL);
stream.writeInt(mVertexWorkarounds);
stream.writeInt(mVertexExecutables.size());
for (size_t vertexExecutableIndex = 0; vertexExecutableIndex < mVertexExecutables.size(); vertexExecutableIndex++)
{
VertexExecutable *vertexExecutable = mVertexExecutables[vertexExecutableIndex];
for (size_t inputIndex = 0; inputIndex < gl::MAX_VERTEX_ATTRIBS; inputIndex++)
{
const VertexFormat &vertexInput = vertexExecutable->inputs()[inputIndex];
stream.writeInt(vertexInput.mType);
stream.writeInt(vertexInput.mNormalized);
stream.writeInt(vertexInput.mComponents);
stream.writeInt(vertexInput.mPureInteger);
}
size_t vertexShaderSize = vertexExecutable->shaderExecutable()->getLength();
stream.writeInt(vertexShaderSize);
unsigned char *vertexBlob = static_cast<unsigned char *>(vertexExecutable->shaderExecutable()->getFunction());
stream.writeBytes(vertexBlob, vertexShaderSize);
}
stream.writeString(mPixelHLSL);
stream.writeInt(mPixelWorkarounds);
stream.writeInt(mUsesFragDepth);
stream.writeInt(mPixelShaderKey.size());
for (size_t pixelShaderKeyIndex = 0; pixelShaderKeyIndex < mPixelShaderKey.size(); pixelShaderKeyIndex++)
{
const PixelShaderOuputVariable &variable = mPixelShaderKey[pixelShaderKeyIndex];
stream.writeInt(variable.type);
stream.writeString(variable.name);
stream.writeString(variable.source);
stream.writeInt(variable.outputIndex);
}
stream.writeInt(mPixelExecutables.size());
for (size_t pixelExecutableIndex = 0; pixelExecutableIndex < mPixelExecutables.size(); pixelExecutableIndex++)
{
PixelExecutable *pixelExecutable = mPixelExecutables[pixelExecutableIndex];
const std::vector<GLenum> outputs = pixelExecutable->outputSignature();
stream.writeInt(outputs.size());
for (size_t outputIndex = 0; outputIndex < outputs.size(); outputIndex++)
{
stream.writeInt(outputs[outputIndex]);
}
size_t pixelShaderSize = pixelExecutable->shaderExecutable()->getLength();
stream.writeInt(pixelShaderSize);
unsigned char *pixelBlob = static_cast<unsigned char *>(pixelExecutable->shaderExecutable()->getFunction());
stream.writeBytes(pixelBlob, pixelShaderSize);
}
size_t geometryShaderSize = (mGeometryExecutable != NULL) ? mGeometryExecutable->getLength() : 0;
stream.writeInt(geometryShaderSize);
if (mGeometryExecutable != NULL && geometryShaderSize > 0)
{
unsigned char *geometryBlob = static_cast<unsigned char *>(mGeometryExecutable->getFunction());
stream.writeBytes(geometryBlob, geometryShaderSize);
}
GUID identifier = mRenderer->getAdapterIdentifier();
GLsizei streamLength = stream.length();
const void *streamData = stream.data();
GLsizei totalLength = streamLength + sizeof(GUID);
if (totalLength > bufSize)
{
if (length)
{
*length = 0;
}
return false;
}
if (binary)
{
char *ptr = (char*) binary;
memcpy(ptr, streamData, streamLength);
ptr += streamLength;
memcpy(ptr, &identifier, sizeof(GUID));
ptr += sizeof(GUID);
ASSERT(ptr - totalLength == binary);
}
if (length)
{
*length = totalLength;
}
return true;
}
GLint ProgramBinary::getLength()
{
GLint length;
if (save(NULL, INT_MAX, &length))
{
return length;
}
else
{
return 0;
}
}
bool ProgramBinary::link(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader,
const std::vector<std::string>& transformFeedbackVaryings, GLenum transformFeedbackBufferMode)
{
if (!fragmentShader || !fragmentShader->isCompiled())
{
return false;
}
if (!vertexShader || !vertexShader->isCompiled())
{
return false;
}
reset();
mTransformFeedbackBufferMode = transformFeedbackBufferMode;
mShaderVersion = vertexShader->getShaderVersion();
mPixelHLSL = fragmentShader->getHLSL();
mPixelWorkarounds = fragmentShader->getD3DWorkarounds();
mVertexHLSL = vertexShader->getHLSL();
mVertexWorkarounds = vertexShader->getD3DWorkarounds();
// Map the varyings to the register file
VaryingPacking packing = { NULL };
int registers = mDynamicHLSL->packVaryings(infoLog, packing, fragmentShader, vertexShader, transformFeedbackVaryings);
if (registers < 0)
{
return false;
}
if (!linkVaryings(infoLog, fragmentShader, vertexShader))
{
return false;
}
mUsesPointSize = vertexShader->usesPointSize();
std::vector<LinkedVarying> linkedVaryings;
if (!mDynamicHLSL->generateShaderLinkHLSL(infoLog, registers, packing, mPixelHLSL, mVertexHLSL,
fragmentShader, vertexShader, transformFeedbackVaryings,
&linkedVaryings, &mOutputVariables, &mPixelShaderKey, &mUsesFragDepth))
{
return false;
}
bool success = true;
if (!linkAttributes(infoLog, attributeBindings, fragmentShader, vertexShader))
{
success = false;
}
if (!linkUniforms(infoLog, vertexShader->getUniforms(), fragmentShader->getUniforms()))
{
success = false;
}
// special case for gl_DepthRange, the only built-in uniform (also a struct)
if (vertexShader->usesDepthRange() || fragmentShader->usesDepthRange())
{
mUniforms.push_back(new LinkedUniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.near", 0, -1, sh::BlockMemberInfo::getDefaultBlockInfo()));
mUniforms.push_back(new LinkedUniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.far", 0, -1, sh::BlockMemberInfo::getDefaultBlockInfo()));
mUniforms.push_back(new LinkedUniform(GL_FLOAT, GL_HIGH_FLOAT, "gl_DepthRange.diff", 0, -1, sh::BlockMemberInfo::getDefaultBlockInfo()));
}
if (!linkUniformBlocks(infoLog, *vertexShader, *fragmentShader))
{
success = false;
}
if (!gatherTransformFeedbackLinkedVaryings(infoLog, linkedVaryings, transformFeedbackVaryings,
transformFeedbackBufferMode, &mTransformFeedbackLinkedVaryings))
{
success = false;
}
if (success)
{
VertexFormat defaultInputLayout[MAX_VERTEX_ATTRIBS];
GetInputLayoutFromShader(vertexShader->activeAttributes(), defaultInputLayout);
rx::ShaderExecutable *defaultVertexExecutable = getVertexExecutableForInputLayout(defaultInputLayout);
std::vector<GLenum> defaultPixelOutput(IMPLEMENTATION_MAX_DRAW_BUFFERS);
for (size_t i = 0; i < defaultPixelOutput.size(); i++)
{
defaultPixelOutput[i] = (i == 0) ? GL_FLOAT : GL_NONE;
}
rx::ShaderExecutable *defaultPixelExecutable = getPixelExecutableForOutputLayout(defaultPixelOutput);
if (usesGeometryShader())
{
std::string geometryHLSL = mDynamicHLSL->generateGeometryShaderHLSL(registers, fragmentShader, vertexShader);
mGeometryExecutable = mRenderer->compileToExecutable(infoLog, geometryHLSL.c_str(), rx::SHADER_GEOMETRY,
mTransformFeedbackLinkedVaryings,
(mTransformFeedbackBufferMode == GL_SEPARATE_ATTRIBS),
rx::ANGLE_D3D_WORKAROUND_NONE);
}
if (!defaultVertexExecutable || !defaultPixelExecutable || (usesGeometryShader() && !mGeometryExecutable))
{
infoLog.append("Failed to create D3D shaders.");
success = false;
reset();
}
}
return success;
}
// Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices
bool ProgramBinary::linkAttributes(InfoLog &infoLog, const AttributeBindings &attributeBindings, FragmentShader *fragmentShader, VertexShader *vertexShader)
{
unsigned int usedLocations = 0;
const std::vector<sh::Attribute> &activeAttributes = vertexShader->activeAttributes();
// Link attributes that have a binding location
for (unsigned int attributeIndex = 0; attributeIndex < activeAttributes.size(); attributeIndex++)
{
const sh::Attribute &attribute = activeAttributes[attributeIndex];
const int location = attribute.location == -1 ? attributeBindings.getAttributeBinding(attribute.name) : attribute.location;
mShaderAttributes[attributeIndex] = attribute;
if (location != -1) // Set by glBindAttribLocation or by location layout qualifier
{
const int rows = VariableRegisterCount(attribute.type);
if (rows + location > MAX_VERTEX_ATTRIBS)
{
infoLog.append("Active attribute (%s) at location %d is too big to fit", attribute.name.c_str(), location);
return false;
}
for (int row = 0; row < rows; row++)
{
const int rowLocation = location + row;
sh::ShaderVariable &linkedAttribute = mLinkedAttribute[rowLocation];
// In GLSL 3.00, attribute aliasing produces a link error
// In GLSL 1.00, attribute aliasing is allowed
if (mShaderVersion >= 300)
{
if (!linkedAttribute.name.empty())
{
infoLog.append("Attribute '%s' aliases attribute '%s' at location %d", attribute.name.c_str(), linkedAttribute.name.c_str(), rowLocation);
return false;
}
}
linkedAttribute = attribute;
usedLocations |= 1 << rowLocation;
}
}
}
// Link attributes that don't have a binding location
for (unsigned int attributeIndex = 0; attributeIndex < activeAttributes.size(); attributeIndex++)
{
const sh::Attribute &attribute = activeAttributes[attributeIndex];
const int location = attribute.location == -1 ? attributeBindings.getAttributeBinding(attribute.name) : attribute.location;
if (location == -1) // Not set by glBindAttribLocation or by location layout qualifier
{
int rows = VariableRegisterCount(attribute.type);
int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS);
if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS)
{
infoLog.append("Too many active attributes (%s)", attribute.name.c_str());
return false; // Fail to link
}
mLinkedAttribute[availableIndex] = attribute;
}
}
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; )
{
int index = vertexShader->getSemanticIndex(mLinkedAttribute[attributeIndex].name);
int rows = VariableRegisterCount(mLinkedAttribute[attributeIndex].type);
for (int r = 0; r < rows; r++)
{
mSemanticIndex[attributeIndex++] = index++;
}
}
initAttributesByLayout();
return true;
}
bool ProgramBinary::linkValidateVariablesBase(InfoLog &infoLog, const std::string &variableName, const sh::ShaderVariable &vertexVariable,
const sh::ShaderVariable &fragmentVariable, bool validatePrecision)
{
if (vertexVariable.type != fragmentVariable.type)
{
infoLog.append("Types for %s differ between vertex and fragment shaders", variableName.c_str());
return false;
}
if (vertexVariable.arraySize != fragmentVariable.arraySize)
{
infoLog.append("Array sizes for %s differ between vertex and fragment shaders", variableName.c_str());
return false;
}
if (validatePrecision && vertexVariable.precision != fragmentVariable.precision)
{
infoLog.append("Precisions for %s differ between vertex and fragment shaders", variableName.c_str());
return false;
}
return true;
}
template <class ShaderVarType>
bool ProgramBinary::linkValidateFields(InfoLog &infoLog, const std::string &varName, const ShaderVarType &vertexVar, const ShaderVarType &fragmentVar)
{
if (vertexVar.fields.size() != fragmentVar.fields.size())
{
infoLog.append("Structure lengths for %s differ between vertex and fragment shaders", varName.c_str());
return false;
}
const unsigned int numMembers = vertexVar.fields.size();
for (unsigned int memberIndex = 0; memberIndex < numMembers; memberIndex++)
{
const ShaderVarType &vertexMember = vertexVar.fields[memberIndex];
const ShaderVarType &fragmentMember = fragmentVar.fields[memberIndex];
if (vertexMember.name != fragmentMember.name)
{
infoLog.append("Name mismatch for field '%d' of %s: (in vertex: '%s', in fragment: '%s')",
memberIndex, varName.c_str(), vertexMember.name.c_str(), fragmentMember.name.c_str());
return false;
}
const std::string memberName = varName.substr(0, varName.length()-1) + "." + vertexVar.name + "'";
if (!linkValidateVariables(infoLog, memberName, vertexMember, fragmentMember))
{
return false;
}
}
return true;
}
bool ProgramBinary::linkValidateVariables(InfoLog &infoLog, const std::string &uniformName, const sh::Uniform &vertexUniform, const sh::Uniform &fragmentUniform)
{
if (!linkValidateVariablesBase(infoLog, uniformName, vertexUniform, fragmentUniform, true))
{
return false;
}
if (!linkValidateFields<sh::Uniform>(infoLog, uniformName, vertexUniform, fragmentUniform))
{
return false;
}
return true;
}
bool ProgramBinary::linkValidateVariables(InfoLog &infoLog, const std::string &varyingName, const sh::Varying &vertexVarying, const sh::Varying &fragmentVarying)
{
if (!linkValidateVariablesBase(infoLog, varyingName, vertexVarying, fragmentVarying, false))
{
return false;
}
if (vertexVarying.interpolation != fragmentVarying.interpolation)
{
infoLog.append("Interpolation types for %s differ between vertex and fragment shaders", varyingName.c_str());
return false;
}
if (!linkValidateFields<sh::Varying>(infoLog, varyingName, vertexVarying, fragmentVarying))
{
return false;
}
return true;
}
bool ProgramBinary::linkValidateVariables(InfoLog &infoLog, const std::string &uniformName, const sh::InterfaceBlockField &vertexUniform, const sh::InterfaceBlockField &fragmentUniform)
{
if (!linkValidateVariablesBase(infoLog, uniformName, vertexUniform, fragmentUniform, true))
{
return false;
}
if (vertexUniform.isRowMajorMatrix != fragmentUniform.isRowMajorMatrix)
{
infoLog.append("Matrix packings for %s differ between vertex and fragment shaders", uniformName.c_str());
return false;
}
if (!linkValidateFields<sh::InterfaceBlockField>(infoLog, uniformName, vertexUniform, fragmentUniform))
{
return false;
}
return true;
}
bool ProgramBinary::linkUniforms(InfoLog &infoLog, const std::vector<sh::Uniform> &vertexUniforms, const std::vector<sh::Uniform> &fragmentUniforms)
{
// Check that uniforms defined in the vertex and fragment shaders are identical
typedef std::map<std::string, const sh::Uniform*> UniformMap;
UniformMap linkedUniforms;
for (unsigned int vertexUniformIndex = 0; vertexUniformIndex < vertexUniforms.size(); vertexUniformIndex++)
{
const sh::Uniform &vertexUniform = vertexUniforms[vertexUniformIndex];
linkedUniforms[vertexUniform.name] = &vertexUniform;
}
for (unsigned int fragmentUniformIndex = 0; fragmentUniformIndex < fragmentUniforms.size(); fragmentUniformIndex++)
{
const sh::Uniform &fragmentUniform = fragmentUniforms[fragmentUniformIndex];
UniformMap::const_iterator entry = linkedUniforms.find(fragmentUniform.name);
if (entry != linkedUniforms.end())
{
const sh::Uniform &vertexUniform = *entry->second;
const std::string &uniformName = "uniform '" + vertexUniform.name + "'";
if (!linkValidateVariables(infoLog, uniformName, vertexUniform, fragmentUniform))
{
return false;
}
}
}
for (unsigned int uniformIndex = 0; uniformIndex < vertexUniforms.size(); uniformIndex++)
{
if (!defineUniform(GL_VERTEX_SHADER, vertexUniforms[uniformIndex], infoLog))
{
return false;
}
}
for (unsigned int uniformIndex = 0; uniformIndex < fragmentUniforms.size(); uniformIndex++)
{
if (!defineUniform(GL_FRAGMENT_SHADER, fragmentUniforms[uniformIndex], infoLog))
{
return false;
}
}
initializeUniformStorage();
return true;
}
TextureType ProgramBinary::getTextureType(GLenum samplerType, InfoLog &infoLog)
{
switch(samplerType)
{
case GL_SAMPLER_2D:
case GL_INT_SAMPLER_2D:
case GL_UNSIGNED_INT_SAMPLER_2D:
case GL_SAMPLER_2D_SHADOW:
return TEXTURE_2D;
case GL_SAMPLER_3D:
case GL_INT_SAMPLER_3D:
case GL_UNSIGNED_INT_SAMPLER_3D:
return TEXTURE_3D;
case GL_SAMPLER_CUBE:
case GL_SAMPLER_CUBE_SHADOW:
return TEXTURE_CUBE;
case GL_INT_SAMPLER_CUBE:
case GL_UNSIGNED_INT_SAMPLER_CUBE:
return TEXTURE_CUBE;
case GL_SAMPLER_2D_ARRAY:
case GL_INT_SAMPLER_2D_ARRAY:
case GL_UNSIGNED_INT_SAMPLER_2D_ARRAY:
case GL_SAMPLER_2D_ARRAY_SHADOW:
return TEXTURE_2D_ARRAY;
default: UNREACHABLE();
}
return TEXTURE_2D;
}
bool ProgramBinary::defineUniform(GLenum shader, const sh::Uniform &constant, InfoLog &infoLog)
{
if (constant.isStruct())
{
if (constant.arraySize > 0)
{
ShShaderOutput outputType = Shader::getCompilerOutputType(shader);
const unsigned int elementRegisterCount = HLSLVariableRegisterCount(constant, outputType) / constant.arraySize;
for (unsigned int elementIndex = 0; elementIndex < constant.arraySize; elementIndex++)
{
const unsigned int elementRegisterOffset = elementRegisterCount * elementIndex;
for (size_t fieldIndex = 0; fieldIndex < constant.fields.size(); fieldIndex++)
{
const sh::Uniform &field = constant.fields[fieldIndex];
const std::string &uniformName = constant.name + ArrayString(elementIndex) + "." + field.name;
const unsigned int fieldRegisterIndex = field.registerIndex + elementRegisterOffset;
sh::Uniform fieldUniform(field.type, field.precision, uniformName.c_str(), field.arraySize,
fieldRegisterIndex, field.elementIndex);
fieldUniform.fields = field.fields;
if (!defineUniform(shader, fieldUniform, infoLog))
{
return false;
}
}
}
}
else
{
for (size_t fieldIndex = 0; fieldIndex < constant.fields.size(); fieldIndex++)
{
const sh::Uniform &field = constant.fields[fieldIndex];
const std::string &uniformName = constant.name + "." + field.name;
sh::Uniform fieldUniform(field.type, field.precision, uniformName.c_str(), field.arraySize,
field.registerIndex, field.elementIndex);
fieldUniform.fields = field.fields;
if (!defineUniform(shader, fieldUniform, infoLog))
{
return false;
}
}
}
return true;
}
if (IsSampler(constant.type))
{
unsigned int samplerIndex = constant.registerIndex;
do
{
if (shader == GL_VERTEX_SHADER)
{
if (samplerIndex < mRenderer->getMaxVertexTextureImageUnits())
{
mSamplersVS[samplerIndex].active = true;
mSamplersVS[samplerIndex].textureType = getTextureType(constant.type, infoLog);
mSamplersVS[samplerIndex].logicalTextureUnit = 0;
mUsedVertexSamplerRange = std::max(samplerIndex + 1, mUsedVertexSamplerRange);
}
else
{
infoLog.append("Vertex shader sampler count exceeds the maximum vertex texture units (%d).", mRenderer->getMaxVertexTextureImageUnits());
return false;
}
}
else if (shader == GL_FRAGMENT_SHADER)
{
if (samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
{
mSamplersPS[samplerIndex].active = true;
mSamplersPS[samplerIndex].textureType = getTextureType(constant.type, infoLog);
mSamplersPS[samplerIndex].logicalTextureUnit = 0;
mUsedPixelSamplerRange = std::max(samplerIndex + 1, mUsedPixelSamplerRange);
}
else
{
infoLog.append("Pixel shader sampler count exceeds MAX_TEXTURE_IMAGE_UNITS (%d).", MAX_TEXTURE_IMAGE_UNITS);
return false;
}
}
else UNREACHABLE();
samplerIndex++;
}
while (samplerIndex < constant.registerIndex + constant.arraySize);
}
LinkedUniform *uniform = NULL;
GLint location = getUniformLocation(constant.name);
if (location >= 0) // Previously defined, type and precision must match
{
uniform = mUniforms[mUniformIndex[location].index];
}
else
{
uniform = new LinkedUniform(constant.type, constant.precision, constant.name, constant.arraySize,
-1, sh::BlockMemberInfo::getDefaultBlockInfo());
uniform->registerElement = constant.elementIndex;
}
if (!uniform)
{
return false;
}
if (shader == GL_FRAGMENT_SHADER)
{
uniform->psRegisterIndex = constant.registerIndex;
}
else if (shader == GL_VERTEX_SHADER)
{
uniform->vsRegisterIndex = constant.registerIndex;
}
else UNREACHABLE();
if (location >= 0)
{
return uniform->type == constant.type;
}
mUniforms.push_back(uniform);
unsigned int uniformIndex = mUniforms.size() - 1;
for (unsigned int arrayElementIndex = 0; arrayElementIndex < uniform->elementCount(); arrayElementIndex++)
{
mUniformIndex.push_back(VariableLocation(uniform->name, arrayElementIndex, uniformIndex));
}
if (shader == GL_VERTEX_SHADER)
{
if (constant.registerIndex + uniform->registerCount > mRenderer->getReservedVertexUniformVectors() + mRenderer->getMaxVertexUniformVectors())
{
infoLog.append("Vertex shader active uniforms exceed GL_MAX_VERTEX_UNIFORM_VECTORS (%u)", mRenderer->getMaxVertexUniformVectors());
return false;
}
}
else if (shader == GL_FRAGMENT_SHADER)
{
if (constant.registerIndex + uniform->registerCount > mRenderer->getReservedFragmentUniformVectors() + mRenderer->getMaxFragmentUniformVectors())
{
infoLog.append("Fragment shader active uniforms exceed GL_MAX_FRAGMENT_UNIFORM_VECTORS (%u)", mRenderer->getMaxFragmentUniformVectors());
return false;
}
}
else UNREACHABLE();
return true;
}
bool ProgramBinary::areMatchingInterfaceBlocks(InfoLog &infoLog, const sh::InterfaceBlock &vertexInterfaceBlock, const sh::InterfaceBlock &fragmentInterfaceBlock)
{
const char* blockName = vertexInterfaceBlock.name.c_str();
// validate blocks for the same member types
if (vertexInterfaceBlock.fields.size() != fragmentInterfaceBlock.fields.size())
{
infoLog.append("Types for interface block '%s' differ between vertex and fragment shaders", blockName);
return false;
}
if (vertexInterfaceBlock.arraySize != fragmentInterfaceBlock.arraySize)
{
infoLog.append("Array sizes differ for interface block '%s' between vertex and fragment shaders", blockName);
return false;
}
if (vertexInterfaceBlock.layout != fragmentInterfaceBlock.layout || vertexInterfaceBlock.isRowMajorLayout != fragmentInterfaceBlock.isRowMajorLayout)
{
infoLog.append("Layout qualifiers differ for interface block '%s' between vertex and fragment shaders", blockName);
return false;
}
const unsigned int numBlockMembers = vertexInterfaceBlock.fields.size();
for (unsigned int blockMemberIndex = 0; blockMemberIndex < numBlockMembers; blockMemberIndex++)
{
const sh::InterfaceBlockField &vertexMember = vertexInterfaceBlock.fields[blockMemberIndex];
const sh::InterfaceBlockField &fragmentMember = fragmentInterfaceBlock.fields[blockMemberIndex];
if (vertexMember.name != fragmentMember.name)
{
infoLog.append("Name mismatch for field %d of interface block '%s': (in vertex: '%s', in fragment: '%s')",
blockMemberIndex, blockName, vertexMember.name.c_str(), fragmentMember.name.c_str());
return false;
}
std::string uniformName = "interface block '" + vertexInterfaceBlock.name + "' member '" + vertexMember.name + "'";
if (!linkValidateVariables(infoLog, uniformName, vertexMember, fragmentMember))
{
return false;
}
}
return true;
}
bool ProgramBinary::linkUniformBlocks(InfoLog &infoLog, const VertexShader &vertexShader,
const FragmentShader &fragmentShader)
{
const std::vector<sh::InterfaceBlock> &vertexInterfaceBlocks = vertexShader.getInterfaceBlocks();
const std::vector<sh::InterfaceBlock> &fragmentInterfaceBlocks = fragmentShader.getInterfaceBlocks();
// Check that interface blocks defined in the vertex and fragment shaders are identical
typedef std::map<std::string, const sh::InterfaceBlock*> UniformBlockMap;
UniformBlockMap linkedUniformBlocks;
for (unsigned int blockIndex = 0; blockIndex < vertexInterfaceBlocks.size(); blockIndex++)
{
const sh::InterfaceBlock &vertexInterfaceBlock = vertexInterfaceBlocks[blockIndex];
linkedUniformBlocks[vertexInterfaceBlock.name] = &vertexInterfaceBlock;
}
for (unsigned int blockIndex = 0; blockIndex < fragmentInterfaceBlocks.size(); blockIndex++)
{
const sh::InterfaceBlock &fragmentInterfaceBlock = fragmentInterfaceBlocks[blockIndex];
UniformBlockMap::const_iterator entry = linkedUniformBlocks.find(fragmentInterfaceBlock.name);
if (entry != linkedUniformBlocks.end())
{
const sh::InterfaceBlock &vertexInterfaceBlock = *entry->second;
if (!areMatchingInterfaceBlocks(infoLog, vertexInterfaceBlock, fragmentInterfaceBlock))
{
return false;
}
}
}
for (unsigned int blockIndex = 0; blockIndex < vertexInterfaceBlocks.size(); blockIndex++)
{
if (!defineUniformBlock(infoLog, vertexShader, vertexInterfaceBlocks[blockIndex]))
{
return false;
}
}
for (unsigned int blockIndex = 0; blockIndex < fragmentInterfaceBlocks.size(); blockIndex++)
{
if (!defineUniformBlock(infoLog, fragmentShader, fragmentInterfaceBlocks[blockIndex]))
{
return false;
}
}
return true;
}
bool ProgramBinary::gatherTransformFeedbackLinkedVaryings(InfoLog &infoLog, const std::vector<LinkedVarying> &linkedVaryings,
const std::vector<std::string> &transformFeedbackVaryingNames,
GLenum transformFeedbackBufferMode,
std::vector<LinkedVarying> *outTransformFeedbackLinkedVaryings) const
{
size_t totalComponents = 0;
const size_t maxSeparateComponents = mRenderer->getMaxTransformFeedbackSeparateComponents();
const size_t maxInterleavedComponents = mRenderer->getMaxTransformFeedbackInterleavedComponents();
// Gather the linked varyings that are used for transform feedback, they should all exist.
outTransformFeedbackLinkedVaryings->clear();
for (size_t i = 0; i < transformFeedbackVaryingNames.size(); i++)
{
bool found = false;
for (size_t j = 0; j < linkedVaryings.size(); j++)
{
if (transformFeedbackVaryingNames[i] == linkedVaryings[j].name)
{
for (size_t k = 0; k < outTransformFeedbackLinkedVaryings->size(); k++)
{
if (outTransformFeedbackLinkedVaryings->at(k).name == linkedVaryings[j].name)
{
infoLog.append("Two transform feedback varyings specify the same output variable (%s).", linkedVaryings[j].name.c_str());
return false;
}
}
size_t componentCount = linkedVaryings[j].semanticIndexCount * 4;
if (transformFeedbackBufferMode == GL_SEPARATE_ATTRIBS &&
componentCount > maxSeparateComponents)
{
infoLog.append("Transform feedback varying's %s components (%u) exceed the maximum separate components (%u).",
linkedVaryings[j].name.c_str(), componentCount, maxSeparateComponents);
return false;
}
totalComponents += componentCount;
outTransformFeedbackLinkedVaryings->push_back(linkedVaryings[j]);
found = true;
break;
}
}
// All transform feedback varyings are expected to exist since packVaryings checks for them.
ASSERT(found);
}
if (transformFeedbackBufferMode == GL_INTERLEAVED_ATTRIBS && totalComponents > maxInterleavedComponents)
{
infoLog.append("Transform feedback varying total components (%u) exceed the maximum interleaved components (%u).",
totalComponents, maxInterleavedComponents);
return false;
}
return true;
}
void ProgramBinary::defineUniformBlockMembers(const std::vector<sh::InterfaceBlockField> &fields, const std::string &prefix, int blockIndex, BlockInfoItr *blockInfoItr, std::vector<unsigned int> *blockUniformIndexes)
{
for (unsigned int uniformIndex = 0; uniformIndex < fields.size(); uniformIndex++)
{
const sh::InterfaceBlockField &field = fields[uniformIndex];
const std::string &fieldName = (prefix.empty() ? field.name : prefix + "." + field.name);
if (!field.fields.empty())
{
if (field.arraySize > 0)
{
for (unsigned int arrayElement = 0; arrayElement < field.arraySize; arrayElement++)
{
const std::string uniformElementName = fieldName + ArrayString(arrayElement);
defineUniformBlockMembers(field.fields, uniformElementName, blockIndex, blockInfoItr, blockUniformIndexes);
}
}
else
{
defineUniformBlockMembers(field.fields, fieldName, blockIndex, blockInfoItr, blockUniformIndexes);
}
}
else
{
LinkedUniform *newUniform = new LinkedUniform(field.type, field.precision, fieldName, field.arraySize,
blockIndex, **blockInfoItr);
// add to uniform list, but not index, since uniform block uniforms have no location
blockUniformIndexes->push_back(mUniforms.size());
mUniforms.push_back(newUniform);
(*blockInfoItr)++;
}
}
}
bool ProgramBinary::defineUniformBlock(InfoLog &infoLog, const Shader &shader, const sh::InterfaceBlock &interfaceBlock)
{
// create uniform block entries if they do not exist
if (getUniformBlockIndex(interfaceBlock.name) == GL_INVALID_INDEX)
{
std::vector<unsigned int> blockUniformIndexes;
const unsigned int blockIndex = mUniformBlocks.size();
// define member uniforms
BlockInfoItr blockInfoItr = interfaceBlock.blockInfo.cbegin();
defineUniformBlockMembers(interfaceBlock.fields, "", blockIndex, &blockInfoItr, &blockUniformIndexes);
size_t dataSize = sh::HLSLInterfaceBlockDataSize(interfaceBlock);
// create all the uniform blocks
if (interfaceBlock.arraySize > 0)
{
for (unsigned int uniformBlockElement = 0; uniformBlockElement < interfaceBlock.arraySize; uniformBlockElement++)
{
UniformBlock *newUniformBlock = new UniformBlock(interfaceBlock.name, uniformBlockElement, dataSize);
newUniformBlock->memberUniformIndexes = blockUniformIndexes;
mUniformBlocks.push_back(newUniformBlock);
}
}
else
{
UniformBlock *newUniformBlock = new UniformBlock(interfaceBlock.name, GL_INVALID_INDEX, dataSize);
newUniformBlock->memberUniformIndexes = blockUniformIndexes;
mUniformBlocks.push_back(newUniformBlock);
}
}
// Assign registers to the uniform blocks
const GLuint blockIndex = getUniformBlockIndex(interfaceBlock.name);
const unsigned int elementCount = std::max(1u, interfaceBlock.arraySize);
ASSERT(blockIndex != GL_INVALID_INDEX);
ASSERT(blockIndex + elementCount <= mUniformBlocks.size());
unsigned int interfaceBlockRegister = shader.getInterfaceBlockRegister(interfaceBlock.name);
for (unsigned int uniformBlockElement = 0; uniformBlockElement < elementCount; uniformBlockElement++)
{
UniformBlock *uniformBlock = mUniformBlocks[blockIndex + uniformBlockElement];
ASSERT(uniformBlock->name == interfaceBlock.name);
if (!assignUniformBlockRegister(infoLog, uniformBlock, shader.getType(),
interfaceBlockRegister + uniformBlockElement))
{
return false;
}
}
return true;
}
bool ProgramBinary::assignUniformBlockRegister(InfoLog &infoLog, UniformBlock *uniformBlock, GLenum shader, unsigned int registerIndex)
{
if (shader == GL_VERTEX_SHADER)
{
uniformBlock->vsRegisterIndex = registerIndex;
unsigned int maximumBlocks = mRenderer->getMaxVertexShaderUniformBuffers();
if (registerIndex - mRenderer->getReservedVertexUniformBuffers() >= maximumBlocks)
{
infoLog.append("Vertex shader uniform block count exceed GL_MAX_VERTEX_UNIFORM_BLOCKS (%u)", maximumBlocks);
return false;
}
}
else if (shader == GL_FRAGMENT_SHADER)
{
uniformBlock->psRegisterIndex = registerIndex;
unsigned int maximumBlocks = mRenderer->getMaxFragmentShaderUniformBuffers();
if (registerIndex - mRenderer->getReservedFragmentUniformBuffers() >= maximumBlocks)
{
infoLog.append("Fragment shader uniform block count exceed GL_MAX_FRAGMENT_UNIFORM_BLOCKS (%u)", maximumBlocks);
return false;
}
}
else UNREACHABLE();
return true;
}
bool ProgramBinary::isValidated() const
{
return mValidated;
}
void ProgramBinary::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const
{
// Skip over inactive attributes
unsigned int activeAttribute = 0;
unsigned int attribute;
for (attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
{
if (mLinkedAttribute[attribute].name.empty())
{
continue;
}
if (activeAttribute == index)
{
break;
}
activeAttribute++;
}
if (bufsize > 0)
{
const char *string = mLinkedAttribute[attribute].name.c_str();
strncpy(name, string, bufsize);
name[bufsize - 1] = '\0';
if (length)
{
*length = strlen(name);
}
}
*size = 1; // Always a single 'type' instance
*type = mLinkedAttribute[attribute].type;
}
GLint ProgramBinary::getActiveAttributeCount() const
{
int count = 0;
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
if (!mLinkedAttribute[attributeIndex].name.empty())
{
count++;
}
}
return count;
}
GLint ProgramBinary::getActiveAttributeMaxLength() const
{
int maxLength = 0;
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
if (!mLinkedAttribute[attributeIndex].name.empty())
{
maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength);
}
}
return maxLength;
}
void ProgramBinary::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name) const
{
ASSERT(index < mUniforms.size()); // index must be smaller than getActiveUniformCount()
if (bufsize > 0)
{
std::string string = mUniforms[index]->name;
if (mUniforms[index]->isArray())
{
string += "[0]";
}
strncpy(name, string.c_str(), bufsize);
name[bufsize - 1] = '\0';
if (length)
{
*length = strlen(name);
}
}
*size = mUniforms[index]->elementCount();
*type = mUniforms[index]->type;
}
GLint ProgramBinary::getActiveUniformCount() const
{
return mUniforms.size();
}
GLint ProgramBinary::getActiveUniformMaxLength() const
{
int maxLength = 0;
unsigned int numUniforms = mUniforms.size();
for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++)
{
if (!mUniforms[uniformIndex]->name.empty())
{
int length = (int)(mUniforms[uniformIndex]->name.length() + 1);
if (mUniforms[uniformIndex]->isArray())
{
length += 3; // Counting in "[0]".
}
maxLength = std::max(length, maxLength);
}
}
return maxLength;
}
GLint ProgramBinary::getActiveUniformi(GLuint index, GLenum pname) const
{
const gl::LinkedUniform& uniform = *mUniforms[index];
switch (pname)
{
case GL_UNIFORM_TYPE: return static_cast<GLint>(uniform.type);
case GL_UNIFORM_SIZE: return static_cast<GLint>(uniform.elementCount());
case GL_UNIFORM_NAME_LENGTH: return static_cast<GLint>(uniform.name.size() + 1 + (uniform.isArray() ? 3 : 0));
case GL_UNIFORM_BLOCK_INDEX: return uniform.blockIndex;
case GL_UNIFORM_OFFSET: return uniform.blockInfo.offset;
case GL_UNIFORM_ARRAY_STRIDE: return uniform.blockInfo.arrayStride;
case GL_UNIFORM_MATRIX_STRIDE: return uniform.blockInfo.matrixStride;
case GL_UNIFORM_IS_ROW_MAJOR: return static_cast<GLint>(uniform.blockInfo.isRowMajorMatrix);
default:
UNREACHABLE();
break;
}
return 0;
}
bool ProgramBinary::isValidUniformLocation(GLint location) const
{
ASSERT(rx::IsIntegerCastSafe<GLint>(mUniformIndex.size()));
return (location >= 0 && location < static_cast<GLint>(mUniformIndex.size()));
}
LinkedUniform *ProgramBinary::getUniformByLocation(GLint location) const
{
ASSERT(location >= 0 && static_cast<size_t>(location) < mUniformIndex.size());
return mUniforms[mUniformIndex[location].index];
}
void ProgramBinary::getActiveUniformBlockName(GLuint uniformBlockIndex, GLsizei bufSize, GLsizei *length, GLchar *uniformBlockName) const
{
ASSERT(uniformBlockIndex < mUniformBlocks.size()); // index must be smaller than getActiveUniformBlockCount()
const UniformBlock &uniformBlock = *mUniformBlocks[uniformBlockIndex];
if (bufSize > 0)
{
std::string string = uniformBlock.name;
if (uniformBlock.isArrayElement())
{
string += ArrayString(uniformBlock.elementIndex);
}
strncpy(uniformBlockName, string.c_str(), bufSize);
uniformBlockName[bufSize - 1] = '\0';
if (length)
{
*length = strlen(uniformBlockName);
}
}
}
void ProgramBinary::getActiveUniformBlockiv(GLuint uniformBlockIndex, GLenum pname, GLint *params) const
{
ASSERT(uniformBlockIndex < mUniformBlocks.size()); // index must be smaller than getActiveUniformBlockCount()
const UniformBlock &uniformBlock = *mUniformBlocks[uniformBlockIndex];
switch (pname)
{
case GL_UNIFORM_BLOCK_DATA_SIZE:
*params = static_cast<GLint>(uniformBlock.dataSize);
break;
case GL_UNIFORM_BLOCK_NAME_LENGTH:
*params = static_cast<GLint>(uniformBlock.name.size() + 1 + (uniformBlock.isArrayElement() ? 3 : 0));
break;
case GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS:
*params = static_cast<GLint>(uniformBlock.memberUniformIndexes.size());
break;
case GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES:
{
for (unsigned int blockMemberIndex = 0; blockMemberIndex < uniformBlock.memberUniformIndexes.size(); blockMemberIndex++)
{
params[blockMemberIndex] = static_cast<GLint>(uniformBlock.memberUniformIndexes[blockMemberIndex]);
}
}
break;
case GL_UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER:
*params = static_cast<GLint>(uniformBlock.isReferencedByVertexShader());
break;
case GL_UNIFORM_BLOCK_REFERENCED_BY_FRAGMENT_SHADER:
*params = static_cast<GLint>(uniformBlock.isReferencedByFragmentShader());
break;
default: UNREACHABLE();
}
}
GLuint ProgramBinary::getActiveUniformBlockCount() const
{
return mUniformBlocks.size();
}
GLuint ProgramBinary::getActiveUniformBlockMaxLength() const
{
unsigned int maxLength = 0;
unsigned int numUniformBlocks = mUniformBlocks.size();
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < numUniformBlocks; uniformBlockIndex++)
{
const UniformBlock &uniformBlock = *mUniformBlocks[uniformBlockIndex];
if (!uniformBlock.name.empty())
{
const unsigned int length = uniformBlock.name.length() + 1;
// Counting in "[0]".
const unsigned int arrayLength = (uniformBlock.isArrayElement() ? 3 : 0);
maxLength = std::max(length + arrayLength, maxLength);
}
}
return maxLength;
}
void ProgramBinary::validate(InfoLog &infoLog)
{
applyUniforms();
if (!validateSamplers(&infoLog))
{
mValidated = false;
}
else
{
mValidated = true;
}
}
bool ProgramBinary::validateSamplers(InfoLog *infoLog)
{
// if any two active samplers in a program are of different types, but refer to the same
// texture image unit, and this is the current program, then ValidateProgram will fail, and
// DrawArrays and DrawElements will issue the INVALID_OPERATION error.
updateSamplerMapping();
const unsigned int maxCombinedTextureImageUnits = mRenderer->getMaxCombinedTextureImageUnits();
TextureType textureUnitType[IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS];
for (unsigned int i = 0; i < IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS; ++i)
{
textureUnitType[i] = TEXTURE_UNKNOWN;
}
for (unsigned int i = 0; i < mUsedPixelSamplerRange; ++i)
{
if (mSamplersPS[i].active)
{
unsigned int unit = mSamplersPS[i].logicalTextureUnit;
if (unit >= maxCombinedTextureImageUnits)
{
if (infoLog)
{
infoLog->append("Sampler uniform (%d) exceeds IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits);
}
return false;
}
if (textureUnitType[unit] != TEXTURE_UNKNOWN)
{
if (mSamplersPS[i].textureType != textureUnitType[unit])
{
if (infoLog)
{
infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
}
return false;
}
}
else
{
textureUnitType[unit] = mSamplersPS[i].textureType;
}
}
}
for (unsigned int i = 0; i < mUsedVertexSamplerRange; ++i)
{
if (mSamplersVS[i].active)
{
unsigned int unit = mSamplersVS[i].logicalTextureUnit;
if (unit >= maxCombinedTextureImageUnits)
{
if (infoLog)
{
infoLog->append("Sampler uniform (%d) exceeds IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS (%d)", unit, maxCombinedTextureImageUnits);
}
return false;
}
if (textureUnitType[unit] != TEXTURE_UNKNOWN)
{
if (mSamplersVS[i].textureType != textureUnitType[unit])
{
if (infoLog)
{
infoLog->append("Samplers of conflicting types refer to the same texture image unit (%d).", unit);
}
return false;
}
}
else
{
textureUnitType[unit] = mSamplersVS[i].textureType;
}
}
}
return true;
}
ProgramBinary::Sampler::Sampler() : active(false), logicalTextureUnit(0), textureType(TEXTURE_2D)
{
}
struct AttributeSorter
{
AttributeSorter(const int (&semanticIndices)[MAX_VERTEX_ATTRIBS])
: originalIndices(semanticIndices)
{
}
bool operator()(int a, int b)
{
if (originalIndices[a] == -1) return false;
if (originalIndices[b] == -1) return true;
return (originalIndices[a] < originalIndices[b]);
}
const int (&originalIndices)[MAX_VERTEX_ATTRIBS];
};
void ProgramBinary::initAttributesByLayout()
{
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
mAttributesByLayout[i] = i;
}
std::sort(&mAttributesByLayout[0], &mAttributesByLayout[MAX_VERTEX_ATTRIBS], AttributeSorter(mSemanticIndex));
}
void ProgramBinary::sortAttributesByLayout(rx::TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS], int sortedSemanticIndices[MAX_VERTEX_ATTRIBS]) const
{
rx::TranslatedAttribute oldTranslatedAttributes[MAX_VERTEX_ATTRIBS];
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
oldTranslatedAttributes[i] = attributes[i];
}
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
int oldIndex = mAttributesByLayout[i];
sortedSemanticIndices[i] = mSemanticIndex[oldIndex];
attributes[i] = oldTranslatedAttributes[oldIndex];
}
}
void ProgramBinary::initializeUniformStorage()
{
// Compute total default block size
unsigned int vertexRegisters = 0;
unsigned int fragmentRegisters = 0;
for (size_t uniformIndex = 0; uniformIndex < mUniforms.size(); uniformIndex++)
{
const LinkedUniform &uniform = *mUniforms[uniformIndex];
if (!IsSampler(uniform.type))
{
if (uniform.isReferencedByVertexShader())
{
vertexRegisters = std::max(vertexRegisters, uniform.vsRegisterIndex + uniform.registerCount);
}
if (uniform.isReferencedByFragmentShader())
{
fragmentRegisters = std::max(fragmentRegisters, uniform.psRegisterIndex + uniform.registerCount);
}
}
}
mVertexUniformStorage = mRenderer->createUniformStorage(vertexRegisters * 16u);
mFragmentUniformStorage = mRenderer->createUniformStorage(fragmentRegisters * 16u);
}
void ProgramBinary::reset()
{
mVertexHLSL.clear();
mVertexWorkarounds = rx::ANGLE_D3D_WORKAROUND_NONE;
SafeDeleteContainer(mVertexExecutables);
mPixelHLSL.clear();
mPixelWorkarounds = rx::ANGLE_D3D_WORKAROUND_NONE;
mUsesFragDepth = false;
mPixelShaderKey.clear();
SafeDeleteContainer(mPixelExecutables);
SafeDelete(mGeometryExecutable);
mTransformFeedbackBufferMode = GL_NONE;
mTransformFeedbackLinkedVaryings.clear();
for (size_t i = 0; i < ArraySize(mSamplersPS); i++)
{
mSamplersPS[i] = Sampler();
}
for (size_t i = 0; i < ArraySize(mSamplersVS); i++)
{
mSamplersVS[i] = Sampler();
}
mUsedVertexSamplerRange = 0;
mUsedPixelSamplerRange = 0;
mUsesPointSize = false;
mShaderVersion = 0;
mDirtySamplerMapping = true;
SafeDeleteContainer(mUniforms);
SafeDeleteContainer(mUniformBlocks);
mUniformIndex.clear();
mOutputVariables.clear();
SafeDelete(mVertexUniformStorage);
SafeDelete(mFragmentUniformStorage);
mValidated = false;
}
}