blob: fc2b8ff0dfd88b6c64fe0d9aaf3a9f30aae0021d [file] [log] [blame]
#include "precompiled.h"
//
// Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// VertexDataManager.h: Defines the VertexDataManager, a class that
// runs the Buffer translation process.
#include "libGLESv2/renderer/d3d/VertexDataManager.h"
#include "libGLESv2/renderer/d3d/BufferD3D.h"
#include "libGLESv2/Buffer.h"
#include "libGLESv2/ProgramBinary.h"
#include "libGLESv2/VertexAttribute.h"
#include "libGLESv2/renderer/d3d/VertexBuffer.h"
#include "libGLESv2/renderer/Renderer.h"
namespace
{
enum { INITIAL_STREAM_BUFFER_SIZE = 1024*1024 };
// This has to be at least 4k or else it fails on ATI cards.
enum { CONSTANT_VERTEX_BUFFER_SIZE = 4096 };
}
namespace rx
{
static int ElementsInBuffer(const gl::VertexAttribute &attrib, unsigned int size)
{
// Size cannot be larger than a GLsizei
if (size > static_cast<unsigned int>(std::numeric_limits<int>::max()))
{
size = static_cast<unsigned int>(std::numeric_limits<int>::max());
}
GLsizei stride = ComputeVertexAttributeStride(attrib);
return (size - attrib.offset % stride + (stride - ComputeVertexAttributeTypeSize(attrib))) / stride;
}
static int StreamingBufferElementCount(const gl::VertexAttribute &attrib, int vertexDrawCount, int instanceDrawCount)
{
// For instanced rendering, we draw "instanceDrawCount" sets of "vertexDrawCount" vertices.
//
// A vertex attribute with a positive divisor loads one instanced vertex for every set of
// non-instanced vertices, and the instanced vertex index advances once every "mDivisor" instances.
if (instanceDrawCount > 0 && attrib.divisor > 0)
{
return instanceDrawCount / attrib.divisor;
}
return vertexDrawCount;
}
VertexDataManager::VertexDataManager(Renderer *renderer) : mRenderer(renderer)
{
for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
{
mCurrentValue[i].FloatValues[0] = std::numeric_limits<float>::quiet_NaN();
mCurrentValue[i].FloatValues[1] = std::numeric_limits<float>::quiet_NaN();
mCurrentValue[i].FloatValues[2] = std::numeric_limits<float>::quiet_NaN();
mCurrentValue[i].FloatValues[3] = std::numeric_limits<float>::quiet_NaN();
mCurrentValue[i].Type = GL_FLOAT;
mCurrentValueBuffer[i] = NULL;
mCurrentValueOffsets[i] = 0;
}
mStreamingBuffer = new StreamingVertexBufferInterface(renderer, INITIAL_STREAM_BUFFER_SIZE);
if (!mStreamingBuffer)
{
ERR("Failed to allocate the streaming vertex buffer.");
}
}
VertexDataManager::~VertexDataManager()
{
delete mStreamingBuffer;
for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
{
delete mCurrentValueBuffer[i];
}
}
GLenum VertexDataManager::prepareVertexData(const gl::VertexAttribute attribs[], const gl::VertexAttribCurrentValueData currentValues[],
gl::ProgramBinary *programBinary, GLint start, GLsizei count, TranslatedAttribute *translated, GLsizei instances)
{
if (!mStreamingBuffer)
{
return GL_OUT_OF_MEMORY;
}
for (int attributeIndex = 0; attributeIndex < gl::MAX_VERTEX_ATTRIBS; attributeIndex++)
{
translated[attributeIndex].active = (programBinary->getSemanticIndex(attributeIndex) != -1);
}
// Invalidate static buffers that don't contain matching attributes
for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
{
if (translated[i].active && attribs[i].enabled)
{
gl::Buffer *buffer = attribs[i].buffer.get();
if (buffer)
{
BufferD3D *bufferImpl = BufferD3D::makeBufferD3D(buffer->getImplementation());
StaticVertexBufferInterface *staticBuffer = bufferImpl->getStaticVertexBuffer();
if (staticBuffer && staticBuffer->getBufferSize() > 0 && !staticBuffer->lookupAttribute(attribs[i], NULL) &&
!staticBuffer->directStoragePossible(attribs[i], currentValues[i]))
{
bufferImpl->invalidateStaticData();
}
}
}
}
// Reserve the required space in the buffers
for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
{
if (translated[i].active && attribs[i].enabled)
{
gl::Buffer *buffer = attribs[i].buffer.get();
BufferD3D *bufferImpl = buffer ? BufferD3D::makeBufferD3D(buffer->getImplementation()) : NULL;
StaticVertexBufferInterface *staticBuffer = bufferImpl ? bufferImpl->getStaticVertexBuffer() : NULL;
VertexBufferInterface *vertexBuffer = staticBuffer ? staticBuffer : static_cast<VertexBufferInterface*>(mStreamingBuffer);
if (!vertexBuffer->directStoragePossible(attribs[i], currentValues[i]))
{
if (staticBuffer)
{
if (staticBuffer->getBufferSize() == 0)
{
int totalCount = ElementsInBuffer(attribs[i], bufferImpl->getSize());
if (!staticBuffer->reserveVertexSpace(attribs[i], totalCount, 0))
{
return GL_OUT_OF_MEMORY;
}
}
}
else
{
int totalCount = StreamingBufferElementCount(attribs[i], count, instances);
// [OpenGL ES 3.0.2] section 2.9.4 page 40:
// We can return INVALID_OPERATION if our vertex attribute does not have enough backing data.
if (bufferImpl && ElementsInBuffer(attribs[i], bufferImpl->getSize()) < totalCount)
{
return GL_INVALID_OPERATION;
}
if (!mStreamingBuffer->reserveVertexSpace(attribs[i], totalCount, instances))
{
return GL_OUT_OF_MEMORY;
}
}
}
}
}
// Perform the vertex data translations
for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
{
if (translated[i].active)
{
if (attribs[i].enabled)
{
gl::Buffer *buffer = attribs[i].buffer.get();
if (!buffer && attribs[i].pointer == NULL)
{
// This is an application error that would normally result in a crash, but we catch it and return an error
ERR("An enabled vertex array has no buffer and no pointer.");
return GL_INVALID_OPERATION;
}
BufferD3D *storage = buffer ? BufferD3D::makeBufferD3D(buffer->getImplementation()) : NULL;
StaticVertexBufferInterface *staticBuffer = storage ? storage->getStaticVertexBuffer() : NULL;
VertexBufferInterface *vertexBuffer = staticBuffer ? staticBuffer : static_cast<VertexBufferInterface*>(mStreamingBuffer);
bool directStorage = vertexBuffer->directStoragePossible(attribs[i], currentValues[i]);
unsigned int streamOffset = 0;
unsigned int outputElementSize = 0;
if (directStorage)
{
outputElementSize = ComputeVertexAttributeStride(attribs[i]);
streamOffset = attribs[i].offset + outputElementSize * start;
}
else if (staticBuffer)
{
if (!staticBuffer->getVertexBuffer()->getSpaceRequired(attribs[i], 1, 0, &outputElementSize))
{
return GL_OUT_OF_MEMORY;
}
if (!staticBuffer->lookupAttribute(attribs[i], &streamOffset))
{
// Convert the entire buffer
int totalCount = ElementsInBuffer(attribs[i], storage->getSize());
int startIndex = attribs[i].offset / ComputeVertexAttributeStride(attribs[i]);
if (!staticBuffer->storeVertexAttributes(attribs[i], currentValues[i], -startIndex, totalCount,
0, &streamOffset))
{
return GL_OUT_OF_MEMORY;
}
}
unsigned int firstElementOffset = (attribs[i].offset / ComputeVertexAttributeStride(attribs[i])) * outputElementSize;
unsigned int startOffset = (instances == 0 || attribs[i].divisor == 0) ? start * outputElementSize : 0;
if (streamOffset + firstElementOffset + startOffset < streamOffset)
{
return GL_OUT_OF_MEMORY;
}
streamOffset += firstElementOffset + startOffset;
}
else
{
int totalCount = StreamingBufferElementCount(attribs[i], count, instances);
if (!mStreamingBuffer->getVertexBuffer()->getSpaceRequired(attribs[i], 1, 0, &outputElementSize) ||
!mStreamingBuffer->storeVertexAttributes(attribs[i], currentValues[i], start, totalCount, instances,
&streamOffset))
{
return GL_OUT_OF_MEMORY;
}
}
translated[i].storage = directStorage ? storage : NULL;
translated[i].vertexBuffer = vertexBuffer->getVertexBuffer();
translated[i].serial = directStorage ? storage->getSerial() : vertexBuffer->getSerial();
translated[i].divisor = attribs[i].divisor;
translated[i].attribute = &attribs[i];
translated[i].currentValueType = currentValues[i].Type;
translated[i].stride = outputElementSize;
translated[i].offset = streamOffset;
}
else
{
if (!mCurrentValueBuffer[i])
{
mCurrentValueBuffer[i] = new StreamingVertexBufferInterface(mRenderer, CONSTANT_VERTEX_BUFFER_SIZE);
}
StreamingVertexBufferInterface *buffer = mCurrentValueBuffer[i];
if (mCurrentValue[i] != currentValues[i])
{
if (!buffer->reserveVertexSpace(attribs[i], 1, 0))
{
return GL_OUT_OF_MEMORY;
}
unsigned int streamOffset;
if (!buffer->storeVertexAttributes(attribs[i], currentValues[i], 0, 1, 0, &streamOffset))
{
return GL_OUT_OF_MEMORY;
}
mCurrentValue[i] = currentValues[i];
mCurrentValueOffsets[i] = streamOffset;
}
translated[i].storage = NULL;
translated[i].vertexBuffer = mCurrentValueBuffer[i]->getVertexBuffer();
translated[i].serial = mCurrentValueBuffer[i]->getSerial();
translated[i].divisor = 0;
translated[i].attribute = &attribs[i];
translated[i].currentValueType = currentValues[i].Type;
translated[i].stride = 0;
translated[i].offset = mCurrentValueOffsets[i];
}
}
}
for (int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
{
if (translated[i].active && attribs[i].enabled)
{
gl::Buffer *buffer = attribs[i].buffer.get();
if (buffer)
{
BufferD3D *bufferImpl = BufferD3D::makeBufferD3D(buffer->getImplementation());
bufferImpl->promoteStaticUsage(count * ComputeVertexAttributeTypeSize(attribs[i]));
}
}
}
return GL_NO_ERROR;
}
}