blob: 6f08d9932404ea809edddefd393edd4a1a3e6924 [file] [log] [blame]
#include "precompiled.h"
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Context.cpp: Implements the gl::Context class, managing all GL state and performing
// rendering operations. It is the GLES2 specific implementation of EGLContext.
#include "libGLESv2/Context.h"
#include "libGLESv2/main.h"
#include "common/utilities.h"
#include "libGLESv2/formatutils.h"
#include "libGLESv2/Buffer.h"
#include "libGLESv2/Fence.h"
#include "libGLESv2/Framebuffer.h"
#include "libGLESv2/Renderbuffer.h"
#include "libGLESv2/Program.h"
#include "libGLESv2/ProgramBinary.h"
#include "libGLESv2/Query.h"
#include "libGLESv2/Texture.h"
#include "libGLESv2/ResourceManager.h"
#include "libGLESv2/renderer/IndexDataManager.h"
#include "libGLESv2/renderer/RenderTarget.h"
#include "libGLESv2/renderer/Renderer.h"
#include "libGLESv2/VertexArray.h"
#include "libGLESv2/Sampler.h"
#include "libGLESv2/validationES.h"
#include "libGLESv2/TransformFeedback.h"
#include "libEGL/Surface.h"
#undef near
#undef far
namespace gl
{
Context::Context(int clientVersion, const gl::Context *shareContext, rx::Renderer *renderer, bool notifyResets, bool robustAccess) : mRenderer(renderer)
{
ASSERT(robustAccess == false); // Unimplemented
mFenceNVHandleAllocator.setBaseHandle(0);
setClearColor(0.0f, 0.0f, 0.0f, 0.0f);
mClientVersion = clientVersion;
mState.depthClearValue = 1.0f;
mState.stencilClearValue = 0;
mState.rasterizer.rasterizerDiscard = false;
mState.rasterizer.cullFace = false;
mState.rasterizer.cullMode = GL_BACK;
mState.rasterizer.frontFace = GL_CCW;
mState.rasterizer.polygonOffsetFill = false;
mState.rasterizer.polygonOffsetFactor = 0.0f;
mState.rasterizer.polygonOffsetUnits = 0.0f;
mState.rasterizer.pointDrawMode = false;
mState.rasterizer.multiSample = false;
mState.scissorTest = false;
mState.scissor.x = 0;
mState.scissor.y = 0;
mState.scissor.width = 0;
mState.scissor.height = 0;
mState.blend.blend = false;
mState.blend.sourceBlendRGB = GL_ONE;
mState.blend.sourceBlendAlpha = GL_ONE;
mState.blend.destBlendRGB = GL_ZERO;
mState.blend.destBlendAlpha = GL_ZERO;
mState.blend.blendEquationRGB = GL_FUNC_ADD;
mState.blend.blendEquationAlpha = GL_FUNC_ADD;
mState.blend.sampleAlphaToCoverage = false;
mState.blend.dither = true;
mState.blendColor.red = 0;
mState.blendColor.green = 0;
mState.blendColor.blue = 0;
mState.blendColor.alpha = 0;
mState.depthStencil.depthTest = false;
mState.depthStencil.depthFunc = GL_LESS;
mState.depthStencil.depthMask = true;
mState.depthStencil.stencilTest = false;
mState.depthStencil.stencilFunc = GL_ALWAYS;
mState.depthStencil.stencilMask = -1;
mState.depthStencil.stencilWritemask = -1;
mState.depthStencil.stencilBackFunc = GL_ALWAYS;
mState.depthStencil.stencilBackMask = - 1;
mState.depthStencil.stencilBackWritemask = -1;
mState.depthStencil.stencilFail = GL_KEEP;
mState.depthStencil.stencilPassDepthFail = GL_KEEP;
mState.depthStencil.stencilPassDepthPass = GL_KEEP;
mState.depthStencil.stencilBackFail = GL_KEEP;
mState.depthStencil.stencilBackPassDepthFail = GL_KEEP;
mState.depthStencil.stencilBackPassDepthPass = GL_KEEP;
mState.stencilRef = 0;
mState.stencilBackRef = 0;
mState.sampleCoverage = false;
mState.sampleCoverageValue = 1.0f;
mState.sampleCoverageInvert = false;
mState.generateMipmapHint = GL_DONT_CARE;
mState.fragmentShaderDerivativeHint = GL_DONT_CARE;
mState.lineWidth = 1.0f;
mState.viewport.x = 0;
mState.viewport.y = 0;
mState.viewport.width = 0;
mState.viewport.height = 0;
mState.zNear = 0.0f;
mState.zFar = 1.0f;
mState.blend.colorMaskRed = true;
mState.blend.colorMaskGreen = true;
mState.blend.colorMaskBlue = true;
mState.blend.colorMaskAlpha = true;
const GLfloat defaultFloatValues[] = { 0.0f, 0.0f, 0.0f, 1.0f };
for (int attribIndex = 0; attribIndex < MAX_VERTEX_ATTRIBS; attribIndex++)
{
mState.vertexAttribCurrentValues[attribIndex].setFloatValues(defaultFloatValues);
}
if (shareContext != NULL)
{
mResourceManager = shareContext->mResourceManager;
mResourceManager->addRef();
}
else
{
mResourceManager = new ResourceManager(mRenderer);
}
// [OpenGL ES 2.0.24] section 3.7 page 83:
// In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional
// and cube map texture state vectors respectively associated with them.
// In order that access to these initial textures not be lost, they are treated as texture
// objects all of whose names are 0.
mTexture2DZero.set(new Texture2D(mRenderer, 0));
mTextureCubeMapZero.set(new TextureCubeMap(mRenderer, 0));
mTexture3DZero.set(new Texture3D(mRenderer, 0));
mTexture2DArrayZero.set(new Texture2DArray(mRenderer, 0));
for (unsigned int textureUnit = 0; textureUnit < ArraySize(mState.samplers); textureUnit++)
{
mState.samplers[textureUnit] = 0;
}
mState.activeSampler = 0;
bindVertexArray(0);
bindArrayBuffer(0);
bindElementArrayBuffer(0);
bindTextureCubeMap(0);
bindTexture2D(0);
bindReadFramebuffer(0);
bindDrawFramebuffer(0);
bindRenderbuffer(0);
mState.activeQueries[GL_ANY_SAMPLES_PASSED].set(NULL);
mState.activeQueries[GL_ANY_SAMPLES_PASSED_CONSERVATIVE].set(NULL);
mState.activeQueries[GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN].set(NULL);
bindGenericUniformBuffer(0);
for (int i = 0; i < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS; i++)
{
bindIndexedUniformBuffer(0, i, 0, -1);
}
bindGenericTransformFeedbackBuffer(0);
for (int i = 0; i < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS; i++)
{
bindIndexedTransformFeedbackBuffer(0, i, 0, -1);
}
bindCopyReadBuffer(0);
bindCopyWriteBuffer(0);
bindPixelPackBuffer(0);
bindPixelUnpackBuffer(0);
// [OpenGL ES 3.0.2] section 2.14.1 pg 85:
// In the initial state, a default transform feedback object is bound and treated as
// a transform feedback object with a name of zero. That object is bound any time
// BindTransformFeedback is called with id of zero
mTransformFeedbackZero.set(new TransformFeedback(0));
bindTransformFeedback(0);
mState.currentProgram = 0;
mCurrentProgramBinary.set(NULL);
mRendererString = NULL;
mInvalidEnum = false;
mInvalidValue = false;
mInvalidOperation = false;
mOutOfMemory = false;
mInvalidFramebufferOperation = false;
mHasBeenCurrent = false;
mContextLost = false;
mResetStatus = GL_NO_ERROR;
mResetStrategy = (notifyResets ? GL_LOSE_CONTEXT_ON_RESET_EXT : GL_NO_RESET_NOTIFICATION_EXT);
mRobustAccess = robustAccess;
mNumCompressedTextureFormats = 0;
}
Context::~Context()
{
if (mState.currentProgram != 0)
{
Program *programObject = mResourceManager->getProgram(mState.currentProgram);
if (programObject)
{
programObject->release();
}
mState.currentProgram = 0;
}
mCurrentProgramBinary.set(NULL);
while (!mFramebufferMap.empty())
{
deleteFramebuffer(mFramebufferMap.begin()->first);
}
while (!mFenceNVMap.empty())
{
deleteFenceNV(mFenceNVMap.begin()->first);
}
while (!mQueryMap.empty())
{
deleteQuery(mQueryMap.begin()->first);
}
while (!mVertexArrayMap.empty())
{
deleteVertexArray(mVertexArrayMap.begin()->first);
}
mTransformFeedbackZero.set(NULL);
while (!mTransformFeedbackMap.empty())
{
deleteTransformFeedback(mTransformFeedbackMap.begin()->first);
}
for (int type = 0; type < TEXTURE_TYPE_COUNT; type++)
{
for (int sampler = 0; sampler < IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++)
{
mState.samplerTexture[type][sampler].set(NULL);
}
}
for (int type = 0; type < TEXTURE_TYPE_COUNT; type++)
{
mIncompleteTextures[type].set(NULL);
}
const GLfloat defaultFloatValues[] = { 0.0f, 0.0f, 0.0f, 1.0f };
for (int attribIndex = 0; attribIndex < MAX_VERTEX_ATTRIBS; attribIndex++)
{
mState.vertexAttribCurrentValues[attribIndex].setFloatValues(defaultFloatValues);
}
mState.arrayBuffer.set(NULL);
mState.renderbuffer.set(NULL);
mState.transformFeedback.set(NULL);
mTexture2DZero.set(NULL);
mTextureCubeMapZero.set(NULL);
mTexture3DZero.set(NULL);
mTexture2DArrayZero.set(NULL);
for (State::ActiveQueryMap::iterator i = mState.activeQueries.begin(); i != mState.activeQueries.end(); i++)
{
i->second.set(NULL);
}
mState.genericUniformBuffer.set(NULL);
for (int i = 0; i < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS; i++)
{
mState.uniformBuffers[i].set(NULL);
}
mState.genericTransformFeedbackBuffer.set(NULL);
for (int i = 0; i < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS; i++)
{
mState.transformFeedbackBuffers[i].set(NULL);
}
mState.copyReadBuffer.set(NULL);
mState.copyWriteBuffer.set(NULL);
mState.pack.pixelBuffer.set(NULL);
mState.unpack.pixelBuffer.set(NULL);
mResourceManager->release();
}
void Context::makeCurrent(egl::Surface *surface)
{
if (!mHasBeenCurrent)
{
mMajorShaderModel = mRenderer->getMajorShaderModel();
mMaximumPointSize = mRenderer->getMaxPointSize();
mSupportsVertexTexture = mRenderer->getVertexTextureSupport();
mMaxViewportDimension = mRenderer->getMaxViewportDimension();
mMax2DTextureDimension = std::min(std::min(mRenderer->getMaxTextureWidth(), mRenderer->getMaxTextureHeight()),
(int)gl::IMPLEMENTATION_MAX_2D_TEXTURE_SIZE);
mMaxCubeTextureDimension = std::min(mMax2DTextureDimension, (int)gl::IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE);
mMax3DTextureDimension = std::min(std::min(mMax2DTextureDimension, mRenderer->getMaxTextureDepth()),
(int)gl::IMPLEMENTATION_MAX_3D_TEXTURE_SIZE);
mMax2DArrayTextureLayers = mRenderer->getMaxTextureArrayLayers();
mMaxRenderbufferDimension = mMax2DTextureDimension;
mMax2DTextureLevel = log2(mMax2DTextureDimension) + 1;
mMaxCubeTextureLevel = log2(mMaxCubeTextureDimension) + 1;
mMax3DTextureLevel = log2(mMax3DTextureDimension) + 1;
mMax2DArrayTextureLevel = log2(mMax2DTextureDimension) + 1;
TRACE("Max2DTextureDimension=%d, MaxCubeTextureDimension=%d, Max3DTextureDimension=%d, Max2DArrayTextureLayers = %d, "
"Max2DTextureLevel=%d, MaxCubeTextureLevel=%d, Max3DTextureLevel=%d, Max2DArrayTextureLevel=%d, "
"MaxRenderbufferDimension=%d",
mMax2DTextureDimension, mMaxCubeTextureDimension, mMax3DTextureDimension, mMax2DArrayTextureLayers,
mMax2DTextureLevel, mMaxCubeTextureLevel, mMax3DTextureLevel, mMax2DArrayTextureLevel,
mMaxRenderbufferDimension);
mNumCompressedTextureFormats = 0;
if (getCaps().extensions.textureCompressionDXT1)
{
mNumCompressedTextureFormats += 2;
}
if (getCaps().extensions.textureCompressionDXT3)
{
mNumCompressedTextureFormats += 1;
}
if (getCaps().extensions.textureCompressionDXT5)
{
mNumCompressedTextureFormats += 1;
}
initRendererString();
initExtensionStrings();
mState.viewport.x = 0;
mState.viewport.y = 0;
mState.viewport.width = surface->getWidth();
mState.viewport.height = surface->getHeight();
mState.scissor.x = 0;
mState.scissor.y = 0;
mState.scissor.width = surface->getWidth();
mState.scissor.height = surface->getHeight();
mHasBeenCurrent = true;
}
// Wrap the existing swapchain resources into GL objects and assign them to the '0' names
rx::SwapChain *swapchain = surface->getSwapChain();
Colorbuffer *colorbufferZero = new Colorbuffer(mRenderer, swapchain);
DepthStencilbuffer *depthStencilbufferZero = new DepthStencilbuffer(mRenderer, swapchain);
Framebuffer *framebufferZero = new DefaultFramebuffer(mRenderer, colorbufferZero, depthStencilbufferZero);
setFramebufferZero(framebufferZero);
// Store the current client version in the renderer
mRenderer->setCurrentClientVersion(mClientVersion);
}
// NOTE: this function should not assume that this context is current!
void Context::markContextLost()
{
if (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT)
mResetStatus = GL_UNKNOWN_CONTEXT_RESET_EXT;
mContextLost = true;
}
bool Context::isContextLost()
{
return mContextLost;
}
void Context::setCap(GLenum cap, bool enabled)
{
switch (cap)
{
case GL_CULL_FACE: setCullFace(enabled); break;
case GL_POLYGON_OFFSET_FILL: setPolygonOffsetFill(enabled); break;
case GL_SAMPLE_ALPHA_TO_COVERAGE: setSampleAlphaToCoverage(enabled); break;
case GL_SAMPLE_COVERAGE: setSampleCoverage(enabled); break;
case GL_SCISSOR_TEST: setScissorTest(enabled); break;
case GL_STENCIL_TEST: setStencilTest(enabled); break;
case GL_DEPTH_TEST: setDepthTest(enabled); break;
case GL_BLEND: setBlend(enabled); break;
case GL_DITHER: setDither(enabled); break;
case GL_PRIMITIVE_RESTART_FIXED_INDEX: UNIMPLEMENTED(); break;
case GL_RASTERIZER_DISCARD: setRasterizerDiscard(enabled); break;
default: UNREACHABLE();
}
}
bool Context::getCap(GLenum cap)
{
switch (cap)
{
case GL_CULL_FACE: return isCullFaceEnabled();
case GL_POLYGON_OFFSET_FILL: return isPolygonOffsetFillEnabled();
case GL_SAMPLE_ALPHA_TO_COVERAGE: return isSampleAlphaToCoverageEnabled();
case GL_SAMPLE_COVERAGE: return isSampleCoverageEnabled();
case GL_SCISSOR_TEST: return isScissorTestEnabled();
case GL_STENCIL_TEST: return isStencilTestEnabled();
case GL_DEPTH_TEST: return isDepthTestEnabled();
case GL_BLEND: return isBlendEnabled();
case GL_DITHER: return isDitherEnabled();
case GL_PRIMITIVE_RESTART_FIXED_INDEX: UNIMPLEMENTED(); return false;
case GL_RASTERIZER_DISCARD: return isRasterizerDiscardEnabled();
default: UNREACHABLE(); return false;
}
}
void Context::setClearColor(float red, float green, float blue, float alpha)
{
mState.colorClearValue.red = red;
mState.colorClearValue.green = green;
mState.colorClearValue.blue = blue;
mState.colorClearValue.alpha = alpha;
}
void Context::setClearDepth(float depth)
{
mState.depthClearValue = depth;
}
void Context::setClearStencil(int stencil)
{
mState.stencilClearValue = stencil;
}
void Context::setRasterizerDiscard(bool enabled)
{
mState.rasterizer.rasterizerDiscard = enabled;
}
bool Context::isRasterizerDiscardEnabled() const
{
return mState.rasterizer.rasterizerDiscard;
}
void Context::setCullFace(bool enabled)
{
mState.rasterizer.cullFace = enabled;
}
bool Context::isCullFaceEnabled() const
{
return mState.rasterizer.cullFace;
}
void Context::setCullMode(GLenum mode)
{
mState.rasterizer.cullMode = mode;
}
void Context::setFrontFace(GLenum front)
{
mState.rasterizer.frontFace = front;
}
void Context::setDepthTest(bool enabled)
{
mState.depthStencil.depthTest = enabled;
}
bool Context::isDepthTestEnabled() const
{
return mState.depthStencil.depthTest;
}
void Context::setDepthFunc(GLenum depthFunc)
{
mState.depthStencil.depthFunc = depthFunc;
}
void Context::setDepthRange(float zNear, float zFar)
{
mState.zNear = zNear;
mState.zFar = zFar;
}
void Context::setBlend(bool enabled)
{
mState.blend.blend = enabled;
}
bool Context::isBlendEnabled() const
{
return mState.blend.blend;
}
void Context::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha)
{
mState.blend.sourceBlendRGB = sourceRGB;
mState.blend.destBlendRGB = destRGB;
mState.blend.sourceBlendAlpha = sourceAlpha;
mState.blend.destBlendAlpha = destAlpha;
}
void Context::setBlendColor(float red, float green, float blue, float alpha)
{
mState.blendColor.red = red;
mState.blendColor.green = green;
mState.blendColor.blue = blue;
mState.blendColor.alpha = alpha;
}
void Context::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation)
{
mState.blend.blendEquationRGB = rgbEquation;
mState.blend.blendEquationAlpha = alphaEquation;
}
void Context::setStencilTest(bool enabled)
{
mState.depthStencil.stencilTest = enabled;
}
bool Context::isStencilTestEnabled() const
{
return mState.depthStencil.stencilTest;
}
void Context::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask)
{
mState.depthStencil.stencilFunc = stencilFunc;
mState.stencilRef = (stencilRef > 0) ? stencilRef : 0;
mState.depthStencil.stencilMask = stencilMask;
}
void Context::setStencilBackParams(GLenum stencilBackFunc, GLint stencilBackRef, GLuint stencilBackMask)
{
mState.depthStencil.stencilBackFunc = stencilBackFunc;
mState.stencilBackRef = (stencilBackRef > 0) ? stencilBackRef : 0;
mState.depthStencil.stencilBackMask = stencilBackMask;
}
void Context::setStencilWritemask(GLuint stencilWritemask)
{
mState.depthStencil.stencilWritemask = stencilWritemask;
}
void Context::setStencilBackWritemask(GLuint stencilBackWritemask)
{
mState.depthStencil.stencilBackWritemask = stencilBackWritemask;
}
void Context::setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass)
{
mState.depthStencil.stencilFail = stencilFail;
mState.depthStencil.stencilPassDepthFail = stencilPassDepthFail;
mState.depthStencil.stencilPassDepthPass = stencilPassDepthPass;
}
void Context::setStencilBackOperations(GLenum stencilBackFail, GLenum stencilBackPassDepthFail, GLenum stencilBackPassDepthPass)
{
mState.depthStencil.stencilBackFail = stencilBackFail;
mState.depthStencil.stencilBackPassDepthFail = stencilBackPassDepthFail;
mState.depthStencil.stencilBackPassDepthPass = stencilBackPassDepthPass;
}
const gl::DepthStencilState &Context::getDepthStencilState() const
{
return mState.depthStencil;
}
GLint Context::getStencilRef() const
{
return mState.stencilRef;
}
GLint Context::getStencilBackRef() const
{
return mState.stencilBackRef;
}
void Context::setPolygonOffsetFill(bool enabled)
{
mState.rasterizer.polygonOffsetFill = enabled;
}
bool Context::isPolygonOffsetFillEnabled() const
{
return mState.rasterizer.polygonOffsetFill;
}
void Context::setPolygonOffsetParams(GLfloat factor, GLfloat units)
{
// An application can pass NaN values here, so handle this gracefully
mState.rasterizer.polygonOffsetFactor = factor != factor ? 0.0f : factor;
mState.rasterizer.polygonOffsetUnits = units != units ? 0.0f : units;
}
void Context::setSampleAlphaToCoverage(bool enabled)
{
mState.blend.sampleAlphaToCoverage = enabled;
}
bool Context::isSampleAlphaToCoverageEnabled() const
{
return mState.blend.sampleAlphaToCoverage;
}
void Context::setSampleCoverage(bool enabled)
{
mState.sampleCoverage = enabled;
}
bool Context::isSampleCoverageEnabled() const
{
return mState.sampleCoverage;
}
void Context::setSampleCoverageParams(GLclampf value, bool invert)
{
mState.sampleCoverageValue = value;
mState.sampleCoverageInvert = invert;
}
void Context::setScissorTest(bool enabled)
{
mState.scissorTest = enabled;
}
bool Context::isScissorTestEnabled() const
{
return mState.scissorTest;
}
void Context::setDither(bool enabled)
{
mState.blend.dither = enabled;
}
bool Context::isDitherEnabled() const
{
return mState.blend.dither;
}
void Context::setLineWidth(GLfloat width)
{
mState.lineWidth = width;
}
void Context::setGenerateMipmapHint(GLenum hint)
{
mState.generateMipmapHint = hint;
}
void Context::setFragmentShaderDerivativeHint(GLenum hint)
{
mState.fragmentShaderDerivativeHint = hint;
// TODO: Propagate the hint to shader translator so we can write
// ddx, ddx_coarse, or ddx_fine depending on the hint.
// Ignore for now. It is valid for implementations to ignore hint.
}
void Context::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
mState.viewport.x = x;
mState.viewport.y = y;
mState.viewport.width = width;
mState.viewport.height = height;
}
void Context::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height)
{
mState.scissor.x = x;
mState.scissor.y = y;
mState.scissor.width = width;
mState.scissor.height = height;
}
void Context::getScissorParams(GLint *x, GLint *y, GLsizei *width, GLsizei *height)
{
*x = mState.scissor.x;
*y = mState.scissor.y;
*width = mState.scissor.width;
*height = mState.scissor.height;
}
void Context::setColorMask(bool red, bool green, bool blue, bool alpha)
{
mState.blend.colorMaskRed = red;
mState.blend.colorMaskGreen = green;
mState.blend.colorMaskBlue = blue;
mState.blend.colorMaskAlpha = alpha;
}
void Context::setDepthMask(bool mask)
{
mState.depthStencil.depthMask = mask;
}
void Context::setActiveSampler(unsigned int active)
{
mState.activeSampler = active;
}
GLuint Context::getReadFramebufferHandle() const
{
return mState.readFramebuffer;
}
GLuint Context::getDrawFramebufferHandle() const
{
return mState.drawFramebuffer;
}
GLuint Context::getRenderbufferHandle() const
{
return mState.renderbuffer.id();
}
GLuint Context::getVertexArrayHandle() const
{
return mState.vertexArray;
}
GLuint Context::getSamplerHandle(GLuint textureUnit) const
{
ASSERT(textureUnit < ArraySize(mState.samplers));
return mState.samplers[textureUnit];
}
unsigned int Context::getActiveSampler() const
{
return mState.activeSampler;
}
GLuint Context::getArrayBufferHandle() const
{
return mState.arrayBuffer.id();
}
bool Context::isQueryActive() const
{
for (State::ActiveQueryMap::const_iterator i = mState.activeQueries.begin();
i != mState.activeQueries.end(); i++)
{
if (i->second.get() != NULL)
{
return true;
}
}
return false;
}
const Query *Context::getActiveQuery(GLenum target) const
{
// All query types should already exist in the activeQueries map
ASSERT(mState.activeQueries.find(target) != mState.activeQueries.end());
return mState.activeQueries.at(target).get();
}
GLuint Context::getActiveQueryId(GLenum target) const
{
const Query *query = getActiveQuery(target);
return (query ? query->id() : 0u);
}
void Context::setEnableVertexAttribArray(unsigned int attribNum, bool enabled)
{
getCurrentVertexArray()->enableAttribute(attribNum, enabled);
}
const VertexAttribute &Context::getVertexAttribState(unsigned int attribNum) const
{
return getCurrentVertexArray()->getVertexAttribute(attribNum);
}
const VertexAttribCurrentValueData &Context::getVertexAttribCurrentValue(unsigned int attribNum) const
{
ASSERT(attribNum < MAX_VERTEX_ATTRIBS);
return mState.vertexAttribCurrentValues[attribNum];
}
void Context::setVertexAttribState(unsigned int attribNum, Buffer *boundBuffer, GLint size, GLenum type, bool normalized,
bool pureInteger, GLsizei stride, const void *pointer)
{
getCurrentVertexArray()->setAttributeState(attribNum, boundBuffer, size, type, normalized, pureInteger, stride, pointer);
}
const void *Context::getVertexAttribPointer(unsigned int attribNum) const
{
return getCurrentVertexArray()->getVertexAttribute(attribNum).pointer;
}
void Context::setPackAlignment(GLint alignment)
{
mState.pack.alignment = alignment;
}
GLint Context::getPackAlignment() const
{
return mState.pack.alignment;
}
void Context::setUnpackAlignment(GLint alignment)
{
mState.unpack.alignment = alignment;
}
GLint Context::getUnpackAlignment() const
{
return mState.unpack.alignment;
}
void Context::setPackReverseRowOrder(bool reverseRowOrder)
{
mState.pack.reverseRowOrder = reverseRowOrder;
}
bool Context::getPackReverseRowOrder() const
{
return mState.pack.reverseRowOrder;
}
const PixelUnpackState &Context::getUnpackState() const
{
return mState.unpack;
}
const PixelPackState &Context::getPackState() const
{
return mState.pack;
}
GLuint Context::createBuffer()
{
return mResourceManager->createBuffer();
}
GLuint Context::createProgram()
{
return mResourceManager->createProgram();
}
GLuint Context::createShader(GLenum type)
{
return mResourceManager->createShader(type);
}
GLuint Context::createTexture()
{
return mResourceManager->createTexture();
}
GLuint Context::createRenderbuffer()
{
return mResourceManager->createRenderbuffer();
}
GLsync Context::createFenceSync(GLenum condition)
{
GLuint handle = mResourceManager->createFenceSync();
gl::FenceSync *fenceSync = mResourceManager->getFenceSync(handle);
ASSERT(fenceSync);
fenceSync->set(condition);
return reinterpret_cast<GLsync>(handle);
}
GLuint Context::createVertexArray()
{
GLuint handle = mVertexArrayHandleAllocator.allocate();
// Although the spec states VAO state is not initialized until the object is bound,
// we create it immediately. The resulting behaviour is transparent to the application,
// since it's not currently possible to access the state until the object is bound.
mVertexArrayMap[handle] = new VertexArray(mRenderer->createVertexArray(), handle, MAX_VERTEX_ATTRIBS);
return handle;
}
GLuint Context::createSampler()
{
return mResourceManager->createSampler();
}
GLuint Context::createTransformFeedback()
{
GLuint handle = mTransformFeedbackAllocator.allocate();
TransformFeedback *transformFeedback = new TransformFeedback(handle);
transformFeedback->addRef();
mTransformFeedbackMap[handle] = transformFeedback;
return handle;
}
// Returns an unused framebuffer name
GLuint Context::createFramebuffer()
{
GLuint handle = mFramebufferHandleAllocator.allocate();
mFramebufferMap[handle] = NULL;
return handle;
}
GLuint Context::createFenceNV()
{
GLuint handle = mFenceNVHandleAllocator.allocate();
mFenceNVMap[handle] = new FenceNV(mRenderer);
return handle;
}
// Returns an unused query name
GLuint Context::createQuery()
{
GLuint handle = mQueryHandleAllocator.allocate();
mQueryMap[handle] = NULL;
return handle;
}
void Context::deleteBuffer(GLuint buffer)
{
if (mResourceManager->getBuffer(buffer))
{
detachBuffer(buffer);
}
mResourceManager->deleteBuffer(buffer);
}
void Context::deleteShader(GLuint shader)
{
mResourceManager->deleteShader(shader);
}
void Context::deleteProgram(GLuint program)
{
mResourceManager->deleteProgram(program);
}
void Context::deleteTexture(GLuint texture)
{
if (mResourceManager->getTexture(texture))
{
detachTexture(texture);
}
mResourceManager->deleteTexture(texture);
}
void Context::deleteRenderbuffer(GLuint renderbuffer)
{
if (mResourceManager->getRenderbuffer(renderbuffer))
{
detachRenderbuffer(renderbuffer);
}
mResourceManager->deleteRenderbuffer(renderbuffer);
}
void Context::deleteFenceSync(GLsync fenceSync)
{
// The spec specifies the underlying Fence object is not deleted until all current
// wait commands finish. However, since the name becomes invalid, we cannot query the fence,
// and since our API is currently designed for being called from a single thread, we can delete
// the fence immediately.
mResourceManager->deleteFenceSync(reinterpret_cast<GLuint>(fenceSync));
}
void Context::deleteVertexArray(GLuint vertexArray)
{
auto vertexArrayObject = mVertexArrayMap.find(vertexArray);
if (vertexArrayObject != mVertexArrayMap.end())
{
detachVertexArray(vertexArray);
mVertexArrayHandleAllocator.release(vertexArrayObject->first);
delete vertexArrayObject->second;
mVertexArrayMap.erase(vertexArrayObject);
}
}
void Context::deleteSampler(GLuint sampler)
{
if (mResourceManager->getSampler(sampler))
{
detachSampler(sampler);
}
mResourceManager->deleteSampler(sampler);
}
void Context::deleteTransformFeedback(GLuint transformFeedback)
{
TransformFeedbackMap::const_iterator iter = mTransformFeedbackMap.find(transformFeedback);
if (iter != mTransformFeedbackMap.end())
{
detachTransformFeedback(transformFeedback);
mTransformFeedbackAllocator.release(transformFeedback);
iter->second->release();
mTransformFeedbackMap.erase(iter);
}
}
void Context::deleteFramebuffer(GLuint framebuffer)
{
FramebufferMap::iterator framebufferObject = mFramebufferMap.find(framebuffer);
if (framebufferObject != mFramebufferMap.end())
{
detachFramebuffer(framebuffer);
mFramebufferHandleAllocator.release(framebufferObject->first);
delete framebufferObject->second;
mFramebufferMap.erase(framebufferObject);
}
}
void Context::deleteFenceNV(GLuint fence)
{
FenceNVMap::iterator fenceObject = mFenceNVMap.find(fence);
if (fenceObject != mFenceNVMap.end())
{
mFenceNVHandleAllocator.release(fenceObject->first);
delete fenceObject->second;
mFenceNVMap.erase(fenceObject);
}
}
void Context::deleteQuery(GLuint query)
{
QueryMap::iterator queryObject = mQueryMap.find(query);
if (queryObject != mQueryMap.end())
{
mQueryHandleAllocator.release(queryObject->first);
if (queryObject->second)
{
queryObject->second->release();
}
mQueryMap.erase(queryObject);
}
}
Buffer *Context::getBuffer(GLuint handle)
{
return mResourceManager->getBuffer(handle);
}
Shader *Context::getShader(GLuint handle) const
{
return mResourceManager->getShader(handle);
}
Program *Context::getProgram(GLuint handle) const
{
return mResourceManager->getProgram(handle);
}
Texture *Context::getTexture(GLuint handle)
{
return mResourceManager->getTexture(handle);
}
Renderbuffer *Context::getRenderbuffer(GLuint handle)
{
return mResourceManager->getRenderbuffer(handle);
}
FenceSync *Context::getFenceSync(GLsync handle) const
{
return mResourceManager->getFenceSync(reinterpret_cast<GLuint>(handle));
}
VertexArray *Context::getVertexArray(GLuint handle) const
{
auto vertexArray = mVertexArrayMap.find(handle);
if (vertexArray == mVertexArrayMap.end())
{
return NULL;
}
else
{
return vertexArray->second;
}
}
Sampler *Context::getSampler(GLuint handle) const
{
return mResourceManager->getSampler(handle);
}
TransformFeedback *Context::getTransformFeedback(GLuint handle) const
{
if (handle == 0)
{
return mTransformFeedbackZero.get();
}
else
{
TransformFeedbackMap::const_iterator iter = mTransformFeedbackMap.find(handle);
return (iter != mTransformFeedbackMap.end()) ? iter->second : NULL;
}
}
Framebuffer *Context::getReadFramebuffer()
{
return getFramebuffer(mState.readFramebuffer);
}
Framebuffer *Context::getDrawFramebuffer()
{
return mBoundDrawFramebuffer;
}
VertexArray *Context::getCurrentVertexArray() const
{
VertexArray *vao = getVertexArray(mState.vertexArray);
ASSERT(vao != NULL);
return vao;
}
TransformFeedback *Context::getCurrentTransformFeedback() const
{
return mState.transformFeedback.get();
}
bool Context::isSampler(GLuint samplerName) const
{
return mResourceManager->isSampler(samplerName);
}
void Context::bindArrayBuffer(unsigned int buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.arrayBuffer.set(getBuffer(buffer));
}
void Context::bindElementArrayBuffer(unsigned int buffer)
{
mResourceManager->checkBufferAllocation(buffer);
getCurrentVertexArray()->setElementArrayBuffer(getBuffer(buffer));
}
void Context::bindTexture2D(GLuint texture)
{
mResourceManager->checkTextureAllocation(texture, TEXTURE_2D);
mState.samplerTexture[TEXTURE_2D][mState.activeSampler].set(getTexture(texture));
}
void Context::bindTextureCubeMap(GLuint texture)
{
mResourceManager->checkTextureAllocation(texture, TEXTURE_CUBE);
mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler].set(getTexture(texture));
}
void Context::bindTexture3D(GLuint texture)
{
mResourceManager->checkTextureAllocation(texture, TEXTURE_3D);
mState.samplerTexture[TEXTURE_3D][mState.activeSampler].set(getTexture(texture));
}
void Context::bindTexture2DArray(GLuint texture)
{
mResourceManager->checkTextureAllocation(texture, TEXTURE_2D_ARRAY);
mState.samplerTexture[TEXTURE_2D_ARRAY][mState.activeSampler].set(getTexture(texture));
}
void Context::bindReadFramebuffer(GLuint framebuffer)
{
if (!getFramebuffer(framebuffer))
{
mFramebufferMap[framebuffer] = new Framebuffer(mRenderer);
}
mState.readFramebuffer = framebuffer;
}
void Context::bindDrawFramebuffer(GLuint framebuffer)
{
if (!getFramebuffer(framebuffer))
{
mFramebufferMap[framebuffer] = new Framebuffer(mRenderer);
}
mState.drawFramebuffer = framebuffer;
mBoundDrawFramebuffer = getFramebuffer(framebuffer);
}
void Context::bindRenderbuffer(GLuint renderbuffer)
{
mResourceManager->checkRenderbufferAllocation(renderbuffer);
mState.renderbuffer.set(getRenderbuffer(renderbuffer));
}
void Context::bindVertexArray(GLuint vertexArray)
{
if (!getVertexArray(vertexArray))
{
mVertexArrayMap[vertexArray] = new VertexArray(mRenderer->createVertexArray(), vertexArray, MAX_VERTEX_ATTRIBS);
}
mState.vertexArray = vertexArray;
}
void Context::bindSampler(GLuint textureUnit, GLuint sampler)
{
ASSERT(textureUnit < ArraySize(mState.samplers));
mResourceManager->checkSamplerAllocation(sampler);
mState.samplers[textureUnit] = sampler;
}
void Context::bindGenericUniformBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.genericUniformBuffer.set(getBuffer(buffer));
}
void Context::bindIndexedUniformBuffer(GLuint buffer, GLuint index, GLintptr offset, GLsizeiptr size)
{
mResourceManager->checkBufferAllocation(buffer);
mState.uniformBuffers[index].set(getBuffer(buffer), offset, size);
}
void Context::bindGenericTransformFeedbackBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.genericTransformFeedbackBuffer.set(getBuffer(buffer));
}
void Context::bindIndexedTransformFeedbackBuffer(GLuint buffer, GLuint index, GLintptr offset, GLsizeiptr size)
{
mResourceManager->checkBufferAllocation(buffer);
mState.transformFeedbackBuffers[index].set(getBuffer(buffer), offset, size);
}
void Context::bindCopyReadBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.copyReadBuffer.set(getBuffer(buffer));
}
void Context::bindCopyWriteBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.copyWriteBuffer.set(getBuffer(buffer));
}
void Context::bindPixelPackBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.pack.pixelBuffer.set(getBuffer(buffer));
}
void Context::bindPixelUnpackBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.unpack.pixelBuffer.set(getBuffer(buffer));
}
void Context::useProgram(GLuint program)
{
GLuint priorProgram = mState.currentProgram;
mState.currentProgram = program; // Must switch before trying to delete, otherwise it only gets flagged.
if (priorProgram != program)
{
Program *newProgram = mResourceManager->getProgram(program);
Program *oldProgram = mResourceManager->getProgram(priorProgram);
mCurrentProgramBinary.set(NULL);
if (newProgram)
{
newProgram->addRef();
mCurrentProgramBinary.set(newProgram->getProgramBinary());
}
if (oldProgram)
{
oldProgram->release();
}
}
}
void Context::linkProgram(GLuint program)
{
Program *programObject = mResourceManager->getProgram(program);
bool linked = programObject->link();
// if the current program was relinked successfully we
// need to install the new executables
if (linked && program == mState.currentProgram)
{
mCurrentProgramBinary.set(programObject->getProgramBinary());
}
}
void Context::setProgramBinary(GLuint program, const void *binary, GLint length)
{
Program *programObject = mResourceManager->getProgram(program);
bool loaded = programObject->setProgramBinary(binary, length);
// if the current program was reloaded successfully we
// need to install the new executables
if (loaded && program == mState.currentProgram)
{
mCurrentProgramBinary.set(programObject->getProgramBinary());
}
}
GLuint Context::getCurrentProgram() const
{
return mState.currentProgram;
}
void Context::bindTransformFeedback(GLuint transformFeedback)
{
TransformFeedback *transformFeedbackObject = getTransformFeedback(transformFeedback);
mState.transformFeedback.set(transformFeedbackObject);
}
void Context::beginQuery(GLenum target, GLuint query)
{
Query *queryObject = getQuery(query, true, target);
ASSERT(queryObject);
// set query as active for specified target
mState.activeQueries[target].set(queryObject);
// begin query
queryObject->begin();
}
void Context::endQuery(GLenum target)
{
Query *queryObject = mState.activeQueries[target].get();
ASSERT(queryObject);
queryObject->end();
mState.activeQueries[target].set(NULL);
}
void Context::setFramebufferZero(Framebuffer *buffer)
{
delete mFramebufferMap[0];
mFramebufferMap[0] = buffer;
if (mState.drawFramebuffer == 0)
{
mBoundDrawFramebuffer = buffer;
}
}
void Context::setRenderbufferStorage(GLsizei width, GLsizei height, GLenum internalformat, GLsizei samples)
{
const TextureCaps &formatCaps = getCaps().textureCaps.get(internalformat);
RenderbufferStorage *renderbuffer = NULL;
if (formatCaps.colorRendering)
{
renderbuffer = new gl::Colorbuffer(mRenderer,width, height, internalformat, samples);
}
else if (formatCaps.depthRendering && formatCaps.stencilRendering)
{
renderbuffer = new gl::DepthStencilbuffer(mRenderer, width, height, samples);
}
else if (formatCaps.depthRendering)
{
renderbuffer = new gl::Depthbuffer(mRenderer, width, height, samples);
}
else if (formatCaps.stencilRendering)
{
renderbuffer = new gl::Stencilbuffer(mRenderer, width, height, samples);
}
else
{
UNREACHABLE();
return;
}
Renderbuffer *renderbufferObject = mState.renderbuffer.get();
renderbufferObject->setStorage(renderbuffer);
}
Framebuffer *Context::getFramebuffer(unsigned int handle) const
{
FramebufferMap::const_iterator framebuffer = mFramebufferMap.find(handle);
if (framebuffer == mFramebufferMap.end())
{
return NULL;
}
else
{
return framebuffer->second;
}
}
FenceNV *Context::getFenceNV(unsigned int handle)
{
FenceNVMap::iterator fence = mFenceNVMap.find(handle);
if (fence == mFenceNVMap.end())
{
return NULL;
}
else
{
return fence->second;
}
}
Query *Context::getQuery(unsigned int handle, bool create, GLenum type)
{
QueryMap::iterator query = mQueryMap.find(handle);
if (query == mQueryMap.end())
{
return NULL;
}
else
{
if (!query->second && create)
{
query->second = new Query(mRenderer, type, handle);
query->second->addRef();
}
return query->second;
}
}
Buffer *Context::getTargetBuffer(GLenum target) const
{
switch (target)
{
case GL_ARRAY_BUFFER: return mState.arrayBuffer.get();
case GL_COPY_READ_BUFFER: return mState.copyReadBuffer.get();
case GL_COPY_WRITE_BUFFER: return mState.copyWriteBuffer.get();
case GL_ELEMENT_ARRAY_BUFFER: return getCurrentVertexArray()->getElementArrayBuffer();
case GL_PIXEL_PACK_BUFFER: return mState.pack.pixelBuffer.get();
case GL_PIXEL_UNPACK_BUFFER: return mState.unpack.pixelBuffer.get();
case GL_TRANSFORM_FEEDBACK_BUFFER: return mState.genericTransformFeedbackBuffer.get();
case GL_UNIFORM_BUFFER: return mState.genericUniformBuffer.get();
default: UNREACHABLE(); return NULL;
}
}
Buffer *Context::getArrayBuffer()
{
return mState.arrayBuffer.get();
}
Buffer *Context::getElementArrayBuffer() const
{
return getCurrentVertexArray()->getElementArrayBuffer();
}
ProgramBinary *Context::getCurrentProgramBinary() const
{
return mCurrentProgramBinary.get();
}
Texture *Context::getTargetTexture(GLenum target) const
{
if (!ValidTextureTarget(this, target))
{
return NULL;
}
switch (target)
{
case GL_TEXTURE_2D: return getTexture2D();
case GL_TEXTURE_CUBE_MAP: return getTextureCubeMap();
case GL_TEXTURE_3D: return getTexture3D();
case GL_TEXTURE_2D_ARRAY: return getTexture2DArray();
default: return NULL;
}
}
GLuint Context::getTargetFramebufferHandle(GLenum target) const
{
if (!ValidFramebufferTarget(target))
{
return GL_INVALID_INDEX;
}
if (target == GL_READ_FRAMEBUFFER_ANGLE)
{
return mState.readFramebuffer;
}
else
{
return mState.drawFramebuffer;
}
}
Framebuffer *Context::getTargetFramebuffer(GLenum target) const
{
GLuint framebufferHandle = getTargetFramebufferHandle(target);
return (framebufferHandle == GL_INVALID_INDEX ? NULL : getFramebuffer(framebufferHandle));
}
Texture2D *Context::getTexture2D() const
{
return static_cast<Texture2D*>(getSamplerTexture(mState.activeSampler, TEXTURE_2D));
}
TextureCubeMap *Context::getTextureCubeMap() const
{
return static_cast<TextureCubeMap*>(getSamplerTexture(mState.activeSampler, TEXTURE_CUBE));
}
Texture3D *Context::getTexture3D() const
{
return static_cast<Texture3D*>(getSamplerTexture(mState.activeSampler, TEXTURE_3D));
}
Texture2DArray *Context::getTexture2DArray() const
{
return static_cast<Texture2DArray*>(getSamplerTexture(mState.activeSampler, TEXTURE_2D_ARRAY));
}
Buffer *Context::getGenericUniformBuffer()
{
return mState.genericUniformBuffer.get();
}
Buffer *Context::getGenericTransformFeedbackBuffer()
{
return mState.genericTransformFeedbackBuffer.get();
}
Buffer *Context::getCopyReadBuffer()
{
return mState.copyReadBuffer.get();
}
Buffer *Context::getCopyWriteBuffer()
{
return mState.copyWriteBuffer.get();
}
Buffer *Context::getPixelPackBuffer()
{
return mState.pack.pixelBuffer.get();
}
Buffer *Context::getPixelUnpackBuffer()
{
return mState.unpack.pixelBuffer.get();
}
Texture *Context::getSamplerTexture(unsigned int sampler, TextureType type) const
{
GLuint texid = mState.samplerTexture[type][sampler].id();
if (texid == 0) // Special case: 0 refers to different initial textures based on the target
{
switch (type)
{
default: UNREACHABLE();
case TEXTURE_2D: return mTexture2DZero.get();
case TEXTURE_CUBE: return mTextureCubeMapZero.get();
case TEXTURE_3D: return mTexture3DZero.get();
case TEXTURE_2D_ARRAY: return mTexture2DArrayZero.get();
}
}
return mState.samplerTexture[type][sampler].get();
}
void Context::getBooleanv(GLenum pname, GLboolean *params)
{
switch (pname)
{
case GL_SHADER_COMPILER: *params = GL_TRUE; break;
case GL_SAMPLE_COVERAGE_INVERT: *params = mState.sampleCoverageInvert; break;
case GL_DEPTH_WRITEMASK: *params = mState.depthStencil.depthMask; break;
case GL_COLOR_WRITEMASK:
params[0] = mState.blend.colorMaskRed;
params[1] = mState.blend.colorMaskGreen;
params[2] = mState.blend.colorMaskBlue;
params[3] = mState.blend.colorMaskAlpha;
break;
case GL_CULL_FACE: *params = mState.rasterizer.cullFace; break;
case GL_POLYGON_OFFSET_FILL: *params = mState.rasterizer.polygonOffsetFill; break;
case GL_SAMPLE_ALPHA_TO_COVERAGE: *params = mState.blend.sampleAlphaToCoverage; break;
case GL_SAMPLE_COVERAGE: *params = mState.sampleCoverage; break;
case GL_SCISSOR_TEST: *params = mState.scissorTest; break;
case GL_STENCIL_TEST: *params = mState.depthStencil.stencilTest; break;
case GL_DEPTH_TEST: *params = mState.depthStencil.depthTest; break;
case GL_BLEND: *params = mState.blend.blend; break;
case GL_DITHER: *params = mState.blend.dither; break;
case GL_CONTEXT_ROBUST_ACCESS_EXT: *params = mRobustAccess ? GL_TRUE : GL_FALSE; break;
case GL_TRANSFORM_FEEDBACK_ACTIVE: *params = getCurrentTransformFeedback()->isStarted(); break;
case GL_TRANSFORM_FEEDBACK_PAUSED: *params = getCurrentTransformFeedback()->isPaused(); break;
default:
UNREACHABLE();
break;
}
}
void Context::getFloatv(GLenum pname, GLfloat *params)
{
// Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
// GetIntegerv as its native query function. As it would require conversion in any
// case, this should make no difference to the calling application.
switch (pname)
{
case GL_LINE_WIDTH: *params = mState.lineWidth; break;
case GL_SAMPLE_COVERAGE_VALUE: *params = mState.sampleCoverageValue; break;
case GL_DEPTH_CLEAR_VALUE: *params = mState.depthClearValue; break;
case GL_POLYGON_OFFSET_FACTOR: *params = mState.rasterizer.polygonOffsetFactor; break;
case GL_POLYGON_OFFSET_UNITS: *params = mState.rasterizer.polygonOffsetUnits; break;
case GL_ALIASED_LINE_WIDTH_RANGE:
params[0] = gl::ALIASED_LINE_WIDTH_RANGE_MIN;
params[1] = gl::ALIASED_LINE_WIDTH_RANGE_MAX;
break;
case GL_ALIASED_POINT_SIZE_RANGE:
params[0] = gl::ALIASED_POINT_SIZE_RANGE_MIN;
params[1] = getMaximumPointSize();
break;
case GL_DEPTH_RANGE:
params[0] = mState.zNear;
params[1] = mState.zFar;
break;
case GL_COLOR_CLEAR_VALUE:
params[0] = mState.colorClearValue.red;
params[1] = mState.colorClearValue.green;
params[2] = mState.colorClearValue.blue;
params[3] = mState.colorClearValue.alpha;
break;
case GL_BLEND_COLOR:
params[0] = mState.blendColor.red;
params[1] = mState.blendColor.green;
params[2] = mState.blendColor.blue;
params[3] = mState.blendColor.alpha;
break;
case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
ASSERT(getCaps().extensions.textureFilterAnisotropic);
*params = getCaps().extensions.maxTextureAnisotropy;
break;
default:
UNREACHABLE();
break;
}
}
void Context::getIntegerv(GLenum pname, GLint *params)
{
if (pname >= GL_DRAW_BUFFER0_EXT && pname <= GL_DRAW_BUFFER15_EXT)
{
unsigned int colorAttachment = (pname - GL_DRAW_BUFFER0_EXT);
ASSERT(colorAttachment < mRenderer->getMaxRenderTargets());
Framebuffer *framebuffer = getDrawFramebuffer();
*params = framebuffer->getDrawBufferState(colorAttachment);
return;
}
// Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
// GetIntegerv as its native query function. As it would require conversion in any
// case, this should make no difference to the calling application. You may find it in
// Context::getFloatv.
switch (pname)
{
case GL_MAX_VERTEX_ATTRIBS: *params = gl::MAX_VERTEX_ATTRIBS; break;
case GL_MAX_VERTEX_UNIFORM_VECTORS: *params = mRenderer->getMaxVertexUniformVectors(); break;
case GL_MAX_VERTEX_UNIFORM_COMPONENTS: *params = mRenderer->getMaxVertexUniformVectors() * 4; break;
case GL_MAX_VARYING_VECTORS: *params = mRenderer->getMaxVaryingVectors(); break;
case GL_MAX_VARYING_COMPONENTS: *params = mRenderer->getMaxVaryingVectors() * 4; break;
case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: *params = mRenderer->getMaxCombinedTextureImageUnits(); break;
case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: *params = mRenderer->getMaxVertexTextureImageUnits(); break;
case GL_MAX_TEXTURE_IMAGE_UNITS: *params = gl::MAX_TEXTURE_IMAGE_UNITS; break;
case GL_MAX_FRAGMENT_UNIFORM_VECTORS: *params = mRenderer->getMaxFragmentUniformVectors(); break;
case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS: *params = mRenderer->getMaxFragmentUniformVectors() * 4; break;
case GL_MAX_RENDERBUFFER_SIZE: *params = getMaximumRenderbufferDimension(); break;
case GL_MAX_COLOR_ATTACHMENTS_EXT: *params = mRenderer->getMaxRenderTargets(); break;
case GL_MAX_DRAW_BUFFERS_EXT: *params = mRenderer->getMaxRenderTargets(); break;
case GL_NUM_SHADER_BINARY_FORMATS: *params = 0; break;
case GL_SHADER_BINARY_FORMATS: /* no shader binary formats are supported */ break;
case GL_ARRAY_BUFFER_BINDING: *params = mState.arrayBuffer.id(); break;
case GL_ELEMENT_ARRAY_BUFFER_BINDING: *params = getCurrentVertexArray()->getElementArrayBufferId(); break;
//case GL_FRAMEBUFFER_BINDING: // now equivalent to GL_DRAW_FRAMEBUFFER_BINDING_ANGLE
case GL_DRAW_FRAMEBUFFER_BINDING_ANGLE: *params = mState.drawFramebuffer; break;
case GL_READ_FRAMEBUFFER_BINDING_ANGLE: *params = mState.readFramebuffer; break;
case GL_RENDERBUFFER_BINDING: *params = mState.renderbuffer.id(); break;
case GL_VERTEX_ARRAY_BINDING: *params = mState.vertexArray; break;
case GL_CURRENT_PROGRAM: *params = mState.currentProgram; break;
case GL_PACK_ALIGNMENT: *params = mState.pack.alignment; break;
case GL_PACK_REVERSE_ROW_ORDER_ANGLE: *params = mState.pack.reverseRowOrder; break;
case GL_UNPACK_ALIGNMENT: *params = mState.unpack.alignment; break;
case GL_GENERATE_MIPMAP_HINT: *params = mState.generateMipmapHint; break;
case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES: *params = mState.fragmentShaderDerivativeHint; break;
case GL_ACTIVE_TEXTURE: *params = (mState.activeSampler + GL_TEXTURE0); break;
case GL_STENCIL_FUNC: *params = mState.depthStencil.stencilFunc; break;
case GL_STENCIL_REF: *params = mState.stencilRef; break;
case GL_STENCIL_VALUE_MASK: *params = clampToInt(mState.depthStencil.stencilMask); break;
case GL_STENCIL_BACK_FUNC: *params = mState.depthStencil.stencilBackFunc; break;
case GL_STENCIL_BACK_REF: *params = mState.stencilBackRef; break;
case GL_STENCIL_BACK_VALUE_MASK: *params = clampToInt(mState.depthStencil.stencilBackMask); break;
case GL_STENCIL_FAIL: *params = mState.depthStencil.stencilFail; break;
case GL_STENCIL_PASS_DEPTH_FAIL: *params = mState.depthStencil.stencilPassDepthFail; break;
case GL_STENCIL_PASS_DEPTH_PASS: *params = mState.depthStencil.stencilPassDepthPass; break;
case GL_STENCIL_BACK_FAIL: *params = mState.depthStencil.stencilBackFail; break;
case GL_STENCIL_BACK_PASS_DEPTH_FAIL: *params = mState.depthStencil.stencilBackPassDepthFail; break;
case GL_STENCIL_BACK_PASS_DEPTH_PASS: *params = mState.depthStencil.stencilBackPassDepthPass; break;
case GL_DEPTH_FUNC: *params = mState.depthStencil.depthFunc; break;
case GL_BLEND_SRC_RGB: *params = mState.blend.sourceBlendRGB; break;
case GL_BLEND_SRC_ALPHA: *params = mState.blend.sourceBlendAlpha; break;
case GL_BLEND_DST_RGB: *params = mState.blend.destBlendRGB; break;
case GL_BLEND_DST_ALPHA: *params = mState.blend.destBlendAlpha; break;
case GL_BLEND_EQUATION_RGB: *params = mState.blend.blendEquationRGB; break;
case GL_BLEND_EQUATION_ALPHA: *params = mState.blend.blendEquationAlpha; break;
case GL_STENCIL_WRITEMASK: *params = clampToInt(mState.depthStencil.stencilWritemask); break;
case GL_STENCIL_BACK_WRITEMASK: *params = clampToInt(mState.depthStencil.stencilBackWritemask); break;
case GL_STENCIL_CLEAR_VALUE: *params = mState.stencilClearValue; break;
case GL_SUBPIXEL_BITS: *params = 4; break;
case GL_MAX_TEXTURE_SIZE: *params = getMaximum2DTextureDimension(); break;
case GL_MAX_CUBE_MAP_TEXTURE_SIZE: *params = getMaximumCubeTextureDimension(); break;
case GL_MAX_3D_TEXTURE_SIZE: *params = getMaximum3DTextureDimension(); break;
case GL_MAX_ARRAY_TEXTURE_LAYERS: *params = getMaximum2DArrayTextureLayers(); break;
case GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT: *params = getUniformBufferOffsetAlignment(); break;
case GL_MAX_UNIFORM_BUFFER_BINDINGS: *params = getMaximumCombinedUniformBufferBindings(); break;
case GL_MAX_VERTEX_UNIFORM_BLOCKS: *params = mRenderer->getMaxVertexShaderUniformBuffers(); break;
case GL_MAX_FRAGMENT_UNIFORM_BLOCKS: *params = mRenderer->getMaxFragmentShaderUniformBuffers(); break;
case GL_MAX_COMBINED_UNIFORM_BLOCKS: *params = getMaximumCombinedUniformBufferBindings(); break;
case GL_MAJOR_VERSION: *params = mClientVersion; break;
case GL_MINOR_VERSION: *params = 0; break;
case GL_MAX_ELEMENTS_INDICES: *params = mRenderer->getMaxRecommendedElementsIndices(); break;
case GL_MAX_ELEMENTS_VERTICES: *params = mRenderer->getMaxRecommendedElementsVertices(); break;
case GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS: *params = mRenderer->getMaxTransformFeedbackInterleavedComponents(); break;
case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS: *params = mRenderer->getMaxTransformFeedbackBuffers(); break;
case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS: *params = mRenderer->getMaxTransformFeedbackSeparateComponents(); break;
case GL_NUM_COMPRESSED_TEXTURE_FORMATS:
params[0] = mNumCompressedTextureFormats;
break;
case GL_MAX_SAMPLES_ANGLE:
*params = static_cast<GLint>(getMaxSupportedSamples());
break;
case GL_SAMPLE_BUFFERS:
case GL_SAMPLES:
{
gl::Framebuffer *framebuffer = getDrawFramebuffer();
if (framebuffer->completeness() == GL_FRAMEBUFFER_COMPLETE)
{
switch (pname)
{
case GL_SAMPLE_BUFFERS:
if (framebuffer->getSamples() != 0)
{
*params = 1;
}
else
{
*params = 0;
}
break;
case GL_SAMPLES:
*params = framebuffer->getSamples();
break;
}
}
else
{
*params = 0;
}
}
break;
case GL_IMPLEMENTATION_COLOR_READ_TYPE:
case GL_IMPLEMENTATION_COLOR_READ_FORMAT:
{
GLenum internalFormat, format, type;
getCurrentReadFormatType(&internalFormat, &format, &type);
if (pname == GL_IMPLEMENTATION_COLOR_READ_FORMAT)
*params = format;
else
*params = type;
}
break;
case GL_MAX_VIEWPORT_DIMS:
{
params[0] = mMaxViewportDimension;
params[1] = mMaxViewportDimension;
}
break;
case GL_COMPRESSED_TEXTURE_FORMATS:
{
if (getCaps().extensions.textureCompressionDXT1)
{
*params++ = GL_COMPRESSED_RGB_S3TC_DXT1_EXT;
*params++ = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
}
if (getCaps().extensions.textureCompressionDXT3)
{
*params++ = GL_COMPRESSED_RGBA_S3TC_DXT3_ANGLE;
}
if (getCaps().extensions.textureCompressionDXT5)
{
*params++ = GL_COMPRESSED_RGBA_S3TC_DXT5_ANGLE;
}
}
break;
case GL_VIEWPORT:
params[0] = mState.viewport.x;
params[1] = mState.viewport.y;
params[2] = mState.viewport.width;
params[3] = mState.viewport.height;
break;
case GL_SCISSOR_BOX:
params[0] = mState.scissor.x;
params[1] = mState.scissor.y;
params[2] = mState.scissor.width;
params[3] = mState.scissor.height;
break;
case GL_CULL_FACE_MODE: *params = mState.rasterizer.cullMode; break;
case GL_FRONT_FACE: *params = mState.rasterizer.frontFace; break;
case GL_RED_BITS:
case GL_GREEN_BITS:
case GL_BLUE_BITS:
case GL_ALPHA_BITS:
{
gl::Framebuffer *framebuffer = getDrawFramebuffer();
gl::FramebufferAttachment *colorbuffer = framebuffer->getFirstColorbuffer();
if (colorbuffer)
{
switch (pname)
{
case GL_RED_BITS: *params = colorbuffer->getRedSize(mClientVersion); break;
case GL_GREEN_BITS: *params = colorbuffer->getGreenSize(mClientVersion); break;
case GL_BLUE_BITS: *params = colorbuffer->getBlueSize(mClientVersion); break;
case GL_ALPHA_BITS: *params = colorbuffer->getAlphaSize(mClientVersion); break;
}
}
else
{
*params = 0;
}
}
break;
case GL_DEPTH_BITS:
{
gl::Framebuffer *framebuffer = getDrawFramebuffer();
gl::FramebufferAttachment *depthbuffer = framebuffer->getDepthbuffer();
if (depthbuffer)
{
*params = depthbuffer->getDepthSize(mClientVersion);
}
else
{
*params = 0;
}
}
break;
case GL_STENCIL_BITS:
{
gl::Framebuffer *framebuffer = getDrawFramebuffer();
gl::FramebufferAttachment *stencilbuffer = framebuffer->getStencilbuffer();
if (stencilbuffer)
{
*params = stencilbuffer->getStencilSize(mClientVersion);
}
else
{
*params = 0;
}
}
break;
case GL_TEXTURE_BINDING_2D:
ASSERT(mState.activeSampler < mRenderer->getMaxCombinedTextureImageUnits());
*params = mState.samplerTexture[TEXTURE_2D][mState.activeSampler].id();
break;
case GL_TEXTURE_BINDING_CUBE_MAP:
ASSERT(mState.activeSampler < mRenderer->getMaxCombinedTextureImageUnits());
*params = mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler].id();
break;
case GL_TEXTURE_BINDING_3D:
ASSERT(mState.activeSampler < mRenderer->getMaxCombinedTextureImageUnits());
*params = mState.samplerTexture[TEXTURE_3D][mState.activeSampler].id();
break;
case GL_TEXTURE_BINDING_2D_ARRAY:
ASSERT(mState.activeSampler < mRenderer->getMaxCombinedTextureImageUnits());
*params = mState.samplerTexture[TEXTURE_2D_ARRAY][mState.activeSampler].id();
break;
case GL_RESET_NOTIFICATION_STRATEGY_EXT:
*params = mResetStrategy;
break;
case GL_NUM_PROGRAM_BINARY_FORMATS_OES:
*params = 1;
break;
case GL_PROGRAM_BINARY_FORMATS_OES:
*params = GL_PROGRAM_BINARY_ANGLE;
break;
case GL_UNIFORM_BUFFER_BINDING:
*params = mState.genericUniformBuffer.id();
break;
case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING:
*params = mState.genericTransformFeedbackBuffer.id();
break;
case GL_COPY_READ_BUFFER_BINDING:
*params = mState.copyReadBuffer.id();
break;
case GL_COPY_WRITE_BUFFER_BINDING:
*params = mState.copyWriteBuffer.id();
break;
case GL_PIXEL_PACK_BUFFER_BINDING:
*params = mState.pack.pixelBuffer.id();
break;
case GL_PIXEL_UNPACK_BUFFER_BINDING:
*params = mState.unpack.pixelBuffer.id();
break;
case GL_NUM_EXTENSIONS:
*params = static_cast<GLint>(mExtensionStrings.size());
break;
default:
UNREACHABLE();
break;
}
}
void Context::getInteger64v(GLenum pname, GLint64 *params)
{
switch (pname)
{
case GL_MAX_ELEMENT_INDEX:
*params = static_cast<GLint64>(std::numeric_limits<unsigned int>::max());
break;
case GL_MAX_UNIFORM_BLOCK_SIZE:
*params = static_cast<GLint64>(mRenderer->getMaxUniformBufferSize());
break;
case GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS:
{
GLint64 uniformBufferComponents = static_cast<GLint64>(mRenderer->getMaxVertexShaderUniformBuffers()) * static_cast<GLint64>(mRenderer->getMaxUniformBufferSize() / 4);
GLint64 defaultBufferComponents = static_cast<GLint64>(mRenderer->getMaxVertexUniformVectors() * 4);
*params = uniformBufferComponents + defaultBufferComponents;
}
break;
case GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS:
{
GLint64 uniformBufferComponents = static_cast<GLint64>(mRenderer->getMaxFragmentShaderUniformBuffers()) * static_cast<GLint64>(mRenderer->getMaxUniformBufferSize() / 4);
GLint64 defaultBufferComponents = static_cast<GLint64>(mRenderer->getMaxVertexUniformVectors() * 4);
*params = uniformBufferComponents + defaultBufferComponents;
}
break;
case GL_MAX_SERVER_WAIT_TIMEOUT:
// We do not wait for server fence objects internally, so report a max timeout of zero.
*params = 0;
break;
default:
UNREACHABLE();
break;
}
}
bool Context::getIndexedIntegerv(GLenum target, GLuint index, GLint *data)
{
switch (target)
{
case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING:
if (index < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS)
{
*data = mState.transformFeedbackBuffers[index].id();
}
break;
case GL_UNIFORM_BUFFER_BINDING:
if (index < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS)
{
*data = mState.uniformBuffers[index].id();
}
break;
default:
return false;
}
return true;
}
bool Context::getIndexedInteger64v(GLenum target, GLuint index, GLint64 *data)
{
switch (target)
{
case GL_TRANSFORM_FEEDBACK_BUFFER_START:
if (index < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS)
{
*data = mState.transformFeedbackBuffers[index].getOffset();
}
break;
case GL_TRANSFORM_FEEDBACK_BUFFER_SIZE:
if (index < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS)
{
*data = mState.transformFeedbackBuffers[index].getSize();
}
break;
case GL_UNIFORM_BUFFER_START:
if (index < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS)
{
*data = mState.uniformBuffers[index].getOffset();
}
break;
case GL_UNIFORM_BUFFER_SIZE:
if (index < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS)
{
*data = mState.uniformBuffers[index].getSize();
}
break;
default:
return false;
}
return true;
}
bool Context::getQueryParameterInfo(GLenum pname, GLenum *type, unsigned int *numParams)
{
if (pname >= GL_DRAW_BUFFER0_EXT && pname <= GL_DRAW_BUFFER15_EXT)
{
*type = GL_INT;
*numParams = 1;
return true;
}
// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation
// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due
// to the fact that it is stored internally as a float, and so would require conversion
// if returned from Context::getIntegerv. Since this conversion is already implemented
// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we
// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling
// application.
switch (pname)
{
case GL_COMPRESSED_TEXTURE_FORMATS:
{
*type = GL_INT;
*numParams = mNumCompressedTextureFormats;
}
return true;
case GL_SHADER_BINARY_FORMATS:
{
*type = GL_INT;
*numParams = 0;
}
return true;
case GL_MAX_VERTEX_ATTRIBS:
case GL_MAX_VERTEX_UNIFORM_VECTORS:
case GL_MAX_VARYING_VECTORS:
case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS:
case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS:
case GL_MAX_TEXTURE_IMAGE_UNITS:
case GL_MAX_FRAGMENT_UNIFORM_VECTORS:
case GL_MAX_RENDERBUFFER_SIZE:
case GL_MAX_COLOR_ATTACHMENTS_EXT:
case GL_MAX_DRAW_BUFFERS_EXT:
case GL_NUM_SHADER_BINARY_FORMATS:
case GL_NUM_COMPRESSED_TEXTURE_FORMATS:
case GL_ARRAY_BUFFER_BINDING:
//case GL_FRAMEBUFFER_BINDING: // equivalent to DRAW_FRAMEBUFFER_BINDING_ANGLE
case GL_DRAW_FRAMEBUFFER_BINDING_ANGLE:
case GL_READ_FRAMEBUFFER_BINDING_ANGLE:
case GL_RENDERBUFFER_BINDING:
case GL_CURRENT_PROGRAM:
case GL_PACK_ALIGNMENT:
case GL_PACK_REVERSE_ROW_ORDER_ANGLE:
case GL_UNPACK_ALIGNMENT:
case GL_GENERATE_MIPMAP_HINT:
case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES:
case GL_RED_BITS:
case GL_GREEN_BITS:
case GL_BLUE_BITS:
case GL_ALPHA_BITS:
case GL_DEPTH_BITS:
case GL_STENCIL_BITS:
case GL_ELEMENT_ARRAY_BUFFER_BINDING:
case GL_CULL_FACE_MODE:
case GL_FRONT_FACE:
case GL_ACTIVE_TEXTURE:
case GL_STENCIL_FUNC:
case GL_STENCIL_VALUE_MASK:
case GL_STENCIL_REF:
case GL_STENCIL_FAIL:
case GL_STENCIL_PASS_DEPTH_FAIL:
case GL_STENCIL_PASS_DEPTH_PASS:
case GL_STENCIL_BACK_FUNC:
case GL_STENCIL_BACK_VALUE_MASK:
case GL_STENCIL_BACK_REF:
case GL_STENCIL_BACK_FAIL:
case GL_STENCIL_BACK_PASS_DEPTH_FAIL:
case GL_STENCIL_BACK_PASS_DEPTH_PASS:
case GL_DEPTH_FUNC:
case GL_BLEND_SRC_RGB:
case GL_BLEND_SRC_ALPHA:
case GL_BLEND_DST_RGB:
case GL_BLEND_DST_ALPHA:
case GL_BLEND_EQUATION_RGB:
case GL_BLEND_EQUATION_ALPHA:
case GL_STENCIL_WRITEMASK:
case GL_STENCIL_BACK_WRITEMASK:
case GL_STENCIL_CLEAR_VALUE:
case GL_SUBPIXEL_BITS:
case GL_MAX_TEXTURE_SIZE:
case GL_MAX_CUBE_MAP_TEXTURE_SIZE:
case GL_SAMPLE_BUFFERS:
case GL_SAMPLES:
case GL_IMPLEMENTATION_COLOR_READ_TYPE:
case GL_IMPLEMENTATION_COLOR_READ_FORMAT:
case GL_TEXTURE_BINDING_2D:
case GL_TEXTURE_BINDING_CUBE_MAP:
case GL_RESET_NOTIFICATION_STRATEGY_EXT:
case GL_NUM_PROGRAM_BINARY_FORMATS_OES:
case GL_PROGRAM_BINARY_FORMATS_OES:
{
*type = GL_INT;
*numParams = 1;
}
return true;
case GL_MAX_SAMPLES_ANGLE:
{
if (getCaps().extensions.framebufferMultisample)
{
*type = GL_INT;
*numParams = 1;
}
else
{
return false;
}
}
return true;
case GL_PIXEL_PACK_BUFFER_BINDING:
case GL_PIXEL_UNPACK_BUFFER_BINDING:
{
if (getCaps().extensions.pixelBufferObject)
{
*type = GL_INT;
*numParams = 1;
}
else
{
return false;
}
}
return true;
case GL_MAX_VIEWPORT_DIMS:
{
*type = GL_INT;
*numParams = 2;
}
return true;
case GL_VIEWPORT:
case GL_SCISSOR_BOX:
{
*type = GL_INT;
*numParams = 4;
}
return true;
case GL_SHADER_COMPILER:
case GL_SAMPLE_COVERAGE_INVERT:
case GL_DEPTH_WRITEMASK:
case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled,
case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries.
case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural
case GL_SAMPLE_COVERAGE:
case GL_SCISSOR_TEST:
case GL_STENCIL_TEST:
case GL_DEPTH_TEST:
case GL_BLEND:
case GL_DITHER:
case GL_CONTEXT_ROBUST_ACCESS_EXT:
{
*type = GL_BOOL;
*numParams = 1;
}
return true;
case GL_COLOR_WRITEMASK:
{
*type = GL_BOOL;
*numParams = 4;
}
return true;
case GL_POLYGON_OFFSET_FACTOR:
case GL_POLYGON_OFFSET_UNITS:
case GL_SAMPLE_COVERAGE_VALUE:
case GL_DEPTH_CLEAR_VALUE:
case GL_LINE_WIDTH:
{
*type = GL_FLOAT;
*numParams = 1;
}
return true;
case GL_ALIASED_LINE_WIDTH_RANGE:
case GL_ALIASED_POINT_SIZE_RANGE:
case GL_DEPTH_RANGE:
{
*type = GL_FLOAT;
*numParams = 2;
}
return true;
case GL_COLOR_CLEAR_VALUE:
case GL_BLEND_COLOR:
{
*type = GL_FLOAT;
*numParams = 4;
}
return true;
case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
if (!getCaps().extensions.maxTextureAnisotropy)
{
return false;
}
*type = GL_FLOAT;
*numParams = 1;
return true;
}
if (mClientVersion < 3)
{
return false;
}
// Check for ES3.0+ parameter names
switch (pname)
{
case GL_MAX_UNIFORM_BUFFER_BINDINGS:
case GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT:
case GL_UNIFORM_BUFFER_BINDING:
case GL_TRANSFORM_FEEDBACK_BINDING:
case GL_COPY_READ_BUFFER_BINDING:
case GL_COPY_WRITE_BUFFER_BINDING:
case GL_TEXTURE_BINDING_3D:
case GL_TEXTURE_BINDING_2D_ARRAY:
case GL_MAX_3D_TEXTURE_SIZE:
case GL_MAX_ARRAY_TEXTURE_LAYERS:
case GL_MAX_VERTEX_UNIFORM_BLOCKS:
case GL_MAX_FRAGMENT_UNIFORM_BLOCKS:
case GL_MAX_COMBINED_UNIFORM_BLOCKS:
case GL_MAX_VARYING_COMPONENTS:
case GL_VERTEX_ARRAY_BINDING:
case GL_MAX_VERTEX_UNIFORM_COMPONENTS:
case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS:
case GL_NUM_EXTENSIONS:
case GL_MAJOR_VERSION:
case GL_MINOR_VERSION:
case GL_MAX_ELEMENTS_INDICES:
case GL_MAX_ELEMENTS_VERTICES:
case GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS:
case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS:
case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS:
{
*type = GL_INT;
*numParams = 1;
}
return true;
case GL_MAX_ELEMENT_INDEX:
case GL_MAX_UNIFORM_BLOCK_SIZE:
case GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS:
case GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS:
case GL_MAX_SERVER_WAIT_TIMEOUT:
{
*type = GL_INT_64_ANGLEX;
*numParams = 1;
}
return true;
case GL_TRANSFORM_FEEDBACK_ACTIVE:
case GL_TRANSFORM_FEEDBACK_PAUSED:
{
*type = GL_BOOL;
*numParams = 1;
}
return true;
}
return false;
}
bool Context::getIndexedQueryParameterInfo(GLenum target, GLenum *type, unsigned int *numParams)
{
if (mClientVersion < 3)
{
return false;
}
switch (target)
{
case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING:
case GL_UNIFORM_BUFFER_BINDING:
{
*type = GL_INT;
*numParams = 1;
}
return true;
case GL_TRANSFORM_FEEDBACK_BUFFER_START:
case GL_TRANSFORM_FEEDBACK_BUFFER_SIZE:
case GL_UNIFORM_BUFFER_START:
case GL_UNIFORM_BUFFER_SIZE:
{
*type = GL_INT_64_ANGLEX;
*numParams = 1;
}
}
return false;
}
// Applies the render target surface, depth stencil surface, viewport rectangle and
// scissor rectangle to the renderer
bool Context::applyRenderTarget(GLenum drawMode, bool ignoreViewport)
{
Framebuffer *framebufferObject = getDrawFramebuffer();
if (!framebufferObject || framebufferObject->completeness() != GL_FRAMEBUFFER_COMPLETE)
{
return gl::error(GL_INVALID_FRAMEBUFFER_OPERATION, false);
}
mRenderer->applyRenderTarget(framebufferObject);
if (!mRenderer->setViewport(mState.viewport, mState.zNear, mState.zFar, drawMode, mState.rasterizer.frontFace,
ignoreViewport))
{
return false;
}
mRenderer->setScissorRectangle(mState.scissor, mState.scissorTest);
return true;
}
// Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc) to the Direct3D 9 device
void Context::applyState(GLenum drawMode)
{
Framebuffer *framebufferObject = getDrawFramebuffer();
int samples = framebufferObject->getSamples();
mState.rasterizer.pointDrawMode = (drawMode == GL_POINTS);
mState.rasterizer.multiSample = (samples != 0);
mRenderer->setRasterizerState(mState.rasterizer);
unsigned int mask = 0;
if (mState.sampleCoverage)
{
if (mState.sampleCoverageValue != 0)
{
float threshold = 0.5f;
for (int i = 0; i < samples; ++i)
{
mask <<= 1;
if ((i + 1) * mState.sampleCoverageValue >= threshold)
{
threshold += 1.0f;
mask |= 1;
}
}
}
if (mState.sampleCoverageInvert)
{
mask = ~mask;
}
}
else
{
mask = 0xFFFFFFFF;
}
mRenderer->setBlendState(framebufferObject, mState.blend, mState.blendColor, mask);
mRenderer->setDepthStencilState(mState.depthStencil, mState.stencilRef, mState.stencilBackRef,
mState.rasterizer.frontFace == GL_CCW);
}
// Applies the shaders and shader constants to the Direct3D 9 device
void Context::applyShaders(ProgramBinary *programBinary, bool transformFeedbackActive)
{
const VertexAttribute *vertexAttributes = getCurrentVertexArray()->getVertexAttributes();
VertexFormat inputLayout[gl::MAX_VERTEX_ATTRIBS];
VertexFormat::GetInputLayout(inputLayout, programBinary, vertexAttributes, mState.vertexAttribCurrentValues);
const Framebuffer *fbo = getDrawFramebuffer();
mRenderer->applyShaders(programBinary, inputLayout, fbo, mState.rasterizer.rasterizerDiscard, transformFeedbackActive);
programBinary->applyUniforms();
}
size_t Context::getCurrentTexturesAndSamplerStates(ProgramBinary *programBinary, SamplerType type, Texture **outTextures,
TextureType *outTextureTypes, SamplerState *outSamplers)
{
size_t samplerRange = programBinary->getUsedSamplerRange(type);
for (size_t i = 0; i < samplerRange; i++)
{
outTextureTypes[i] = programBinary->getSamplerTextureType(type, i);
GLint textureUnit = programBinary->getSamplerMapping(type, i); // OpenGL texture image unit index
if (textureUnit != -1)
{
outTextures[i] = getSamplerTexture(textureUnit, outTextureTypes[i]);
outTextures[i]->getSamplerState(&outSamplers[i]);
if (mState.samplers[textureUnit] != 0)
{
Sampler *samplerObject = getSampler(mState.samplers[textureUnit]);
samplerObject->getState(&outSamplers[i]);
}
}
else
{
outTextures[i] = NULL;
}
}
return samplerRange;
}
void Context::generateSwizzles(Texture *textures[], size_t count)
{
for (size_t i = 0; i < count; i++)
{
if (textures[i] && textures[i]->isSwizzled())
{
mRenderer->generateSwizzle(textures[i]);
}
}
}
// For each Direct3D sampler of either the pixel or vertex stage,
// looks up the corresponding OpenGL texture image unit and texture type,
// and sets the texture and its addressing/filtering state (or NULL when inactive).
void Context::applyTextures(SamplerType shaderType, Texture *textures[], TextureType *textureTypes, SamplerState *samplers,
size_t textureCount, const FramebufferTextureSerialArray& framebufferSerials,
size_t framebufferSerialCount)
{
// Range of Direct3D samplers of given sampler type
size_t samplerCount = (shaderType == SAMPLER_PIXEL) ? MAX_TEXTURE_IMAGE_UNITS
: mRenderer->getMaxVertexTextureImageUnits();
for (size_t samplerIndex = 0; samplerIndex < textureCount; samplerIndex++)
{
Texture *texture = textures[samplerIndex];
const SamplerState &sampler = samplers[samplerIndex];
TextureType textureType = textureTypes[samplerIndex];
if (texture)
{
// TODO: std::binary_search may become unavailable using older versions of GCC
if (texture->isSamplerComplete(sampler) &&
!std::binary_search(framebufferSerials.begin(), framebufferSerials.begin() + framebufferSerialCount, texture->getTextureSerial()))
{
mRenderer->setSamplerState(shaderType, samplerIndex, sampler);
mRenderer->setTexture(shaderType, samplerIndex, texture);
texture->resetDirty();
}
else
{
Texture *incompleteTexture = getIncompleteTexture(textureType);
mRenderer->setTexture(shaderType, samplerIndex, incompleteTexture);
incompleteTexture->resetDirty();
}
}
else
{
mRenderer->setTexture(shaderType, samplerIndex, NULL);
}
}
for (size_t samplerIndex = textureCount; samplerIndex < samplerCount; samplerIndex++)
{
mRenderer->setTexture(shaderType, samplerIndex, NULL);
}
}
bool Context::applyUniformBuffers()
{
Program *programObject = getProgram(mState.currentProgram);
ProgramBinary *programBinary = programObject->getProgramBinary();
std::vector<gl::Buffer*> boundBuffers;
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < programBinary->getActiveUniformBlockCount(); uniformBlockIndex++)
{
GLuint blockBinding = programObject->getUniformBlockBinding(uniformBlockIndex);
const OffsetBindingPointer<Buffer>& boundBuffer = mState.uniformBuffers[blockBinding];
if (boundBuffer.id() == 0)
{
// undefined behaviour
return false;
}
else
{
gl::Buffer *uniformBuffer = boundBuffer.get();
ASSERT(uniformBuffer);
boundBuffers.push_back(uniformBuffer);
}
}
return programBinary->applyUniformBuffers(boundBuffers);
}
bool Context::applyTransformFeedbackBuffers()
{
TransformFeedback *curTransformFeedback = getCurrentTransformFeedback();
if (curTransformFeedback && curTransformFeedback->isStarted() && !curTransformFeedback->isPaused())
{
Buffer *transformFeedbackBuffers[IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS];
GLintptr transformFeedbackOffsets[IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS];
for (size_t i = 0; i < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS; i++)
{
transformFeedbackBuffers[i] = mState.transformFeedbackBuffers[i].get();
transformFeedbackOffsets[i] = mState.transformFeedbackBuffers[i].getOffset();
}
mRenderer->applyTransformFeedbackBuffers(transformFeedbackBuffers, transformFeedbackOffsets);
return true;
}
else
{
return false;
}
}
void Context::markTransformFeedbackUsage()
{
for (size_t i = 0; i < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS; i++)
{
Buffer *buffer = mState.transformFeedbackBuffers[i].get();
if (buffer)
{
buffer->markTransformFeedbackUsage();
}
}
}
void Context::clear(GLbitfield mask)
{
if (isRasterizerDiscardEnabled())
{
return;
}
ClearParameters clearParams = { 0 };
for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++)
{
clearParams.clearColor[i] = false;
}
clearParams.colorFClearValue = mState.colorClearValue;
clearParams.colorClearType = GL_FLOAT;
clearParams.colorMaskRed = mState.blend.colorMaskRed;
clearParams.colorMaskGreen = mState.blend.colorMaskGreen;
clearParams.colorMaskBlue = mState.blend.colorMaskBlue;
clearParams.colorMaskAlpha = mState.blend.colorMaskAlpha;
clearParams.clearDepth = false;
clearParams.depthClearValue = mState.depthClearValue;
clearParams.clearStencil = false;
clearParams.stencilClearValue = mState.stencilClearValue;
clearParams.stencilWriteMask = mState.depthStencil.stencilWritemask;
clearParams.scissorEnabled = mState.scissorTest;
clearParams.scissor = mState.scissor;
Framebuffer *framebufferObject = getDrawFramebuffer();
if (mask & GL_COLOR_BUFFER_BIT)
{
if (framebufferObject->hasEnabledColorAttachment())
{
for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++)
{
clearParams.clearColor[i] = true;
}
}
}
if (mask & GL_DEPTH_BUFFER_BIT)
{
if (mState.depthStencil.depthMask && framebufferObject->getDepthbufferType() != GL_NONE)
{
clearParams.clearDepth = true;
}
}
if (mask & GL_STENCIL_BUFFER_BIT)
{
if (framebufferObject->getStencilbufferType() != GL_NONE)
{
rx::RenderTarget *depthStencil = framebufferObject->getStencilbuffer()->getDepthStencil();
if (!depthStencil)
{
ERR("Depth stencil pointer unexpectedly null.");
return;
}
if (gl::GetStencilBits(depthStencil->getActualFormat(), mClientVersion) > 0)
{
clearParams.clearStencil = true;
}
}
}
if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport
{
return;
}
mRenderer->clear(clearParams, framebufferObject);
}
void Context::clearBufferfv(GLenum buffer, int drawbuffer, const float *values)
{
if (isRasterizerDiscardEnabled())
{
return;
}
// glClearBufferfv can be called to clear the color buffer or depth buffer
ClearParameters clearParams = { 0 };
if (buffer == GL_COLOR)
{
for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++)
{
clearParams.clearColor[i] = (drawbuffer == static_cast<int>(i));
}
clearParams.colorFClearValue = ColorF(values[0], values[1], values[2], values[3]);
clearParams.colorClearType = GL_FLOAT;
}
else
{
for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++)
{
clearParams.clearColor[i] = false;
}
clearParams.colorFClearValue = mState.colorClearValue;
clearParams.colorClearType = GL_FLOAT;
}
clearParams.colorMaskRed = mState.blend.colorMaskRed;
clearParams.colorMaskGreen = mState.blend.colorMaskGreen;
clearParams.colorMaskBlue = mState.blend.colorMaskBlue;
clearParams.colorMaskAlpha = mState.blend.colorMaskAlpha;
if (buffer == GL_DEPTH)
{
clearParams.clearDepth = true;
clearParams.depthClearValue = values[0];
}
else
{
clearParams.clearDepth = false;
clearParams.depthClearValue = mState.depthClearValue;
}
clearParams.clearStencil = false;
clearParams.stencilClearValue = mState.stencilClearValue;
clearParams.stencilWriteMask = mState.depthStencil.stencilWritemask;
clearParams.scissorEnabled = mState.scissorTest;
clearParams.scissor = mState.scissor;
if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport
{
return;
}
mRenderer->clear(clearParams, getDrawFramebuffer());
}
void Context::clearBufferuiv(GLenum buffer, int drawbuffer, const unsigned int *values)
{
if (isRasterizerDiscardEnabled())
{
return;
}
// glClearBufferuv can only be called to clear a color buffer
ClearParameters clearParams = { 0 };
for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++)
{
clearParams.clearColor[i] = (drawbuffer == static_cast<int>(i));
}
clearParams.colorUIClearValue = ColorUI(values[0], values[1], values[2], values[3]);
clearParams.colorClearType = GL_UNSIGNED_INT;
clearParams.colorMaskRed = mState.blend.colorMaskRed;
clearParams.colorMaskGreen = mState.blend.colorMaskGreen;
clearParams.colorMaskBlue = mState.blend.colorMaskBlue;
clearParams.colorMaskAlpha = mState.blend.colorMaskAlpha;
clearParams.clearDepth = false;
clearParams.depthClearValue = mState.depthClearValue;
clearParams.clearStencil = false;
clearParams.stencilClearValue = mState.stencilClearValue;
clearParams.stencilWriteMask = mState.depthStencil.stencilWritemask;
clearParams.scissorEnabled = mState.scissorTest;
clearParams.scissor = mState.scissor;
if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport
{
return;
}
mRenderer->clear(clearParams, getDrawFramebuffer());
}
void Context::clearBufferiv(GLenum buffer, int drawbuffer, const int *values)
{
if (isRasterizerDiscardEnabled())
{
return;
}
// glClearBufferfv can be called to clear the color buffer or stencil buffer
ClearParameters clearParams = { 0 };
if (buffer == GL_COLOR)
{
for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++)
{
clearParams.clearColor[i] = (drawbuffer == static_cast<int>(i));
}
clearParams.colorIClearValue = ColorI(values[0], values[1], values[2], values[3]);
clearParams.colorClearType = GL_INT;
}
else
{
for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++)
{
clearParams.clearColor[i] = false;
}
clearParams.colorFClearValue = mState.colorClearValue;
clearParams.colorClearType = GL_FLOAT;
}
clearParams.colorMaskRed = mState.blend.colorMaskRed;
clearParams.colorMaskGreen = mState.blend.colorMaskGreen;
clearParams.colorMaskBlue = mState.blend.colorMaskBlue;
clearParams.colorMaskAlpha = mState.blend.colorMaskAlpha;
clearParams.clearDepth = false;
clearParams.depthClearValue = mState.depthClearValue;
if (buffer == GL_STENCIL)
{
clearParams.clearStencil = true;
clearParams.stencilClearValue = values[1];
}
else
{
clearParams.clearStencil = false;
clearParams.stencilClearValue = mState.stencilClearValue;
}
clearParams.stencilWriteMask = mState.depthStencil.stencilWritemask;
clearParams.scissorEnabled = mState.scissorTest;
clearParams.scissor = mState.scissor;
if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport
{
return;
}
mRenderer->clear(clearParams, getDrawFramebuffer());
}
void Context::clearBufferfi(GLenum buffer, int drawbuffer, float depth, int stencil)
{
if (isRasterizerDiscardEnabled())
{
return;
}
// glClearBufferfi can only be called to clear a depth stencil buffer
ClearParameters clearParams = { 0 };
for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++)
{
clearParams.clearColor[i] = false;
}
clearParams.colorFClearValue = mState.colorClearValue;
clearParams.colorClearType = GL_FLOAT;
clearParams.colorMaskRed = mState.blend.colorMaskRed;
clearParams.colorMaskGreen = mState.blend.colorMaskGreen;
clearParams.colorMaskBlue = mState.blend.colorMaskBlue;
clearParams.colorMaskAlpha = mState.blend.colorMaskAlpha;
clearParams.clearDepth = true;
clearParams.depthClearValue = depth;
clearParams.clearStencil = true;
clearParams.stencilClearValue = stencil;
clearParams.stencilWriteMask = mState.depthStencil.stencilWritemask;
clearParams.scissorEnabled = mState.scissorTest;
clearParams.scissor = mState.scissor;
if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport
{
return;
}
mRenderer->clear(clearParams, getDrawFramebuffer());
}
void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height,
GLenum format, GLenum type, GLsizei *bufSize, void* pixels)
{
gl::Framebuffer *framebuffer = getReadFramebuffer();
bool isSized = IsSizedInternalFormat(format, mClientVersion);
GLenum sizedInternalFormat = (isSized ? format : GetSizedInternalFormat(format, type, mClientVersion));
GLuint outputPitch = GetRowPitch(sizedInternalFormat, type, mClientVersion, width, mState.pack.alignment);
mRenderer->readPixels(framebuffer, x, y, width, height, format, type, outputPitch, mState.pack, pixels);
}
void Context::drawArrays(GLenum mode, GLint first, GLsizei count, GLsizei instances)
{
ASSERT(mState.currentProgram);
ProgramBinary *programBinary = getCurrentProgramBinary();
programBinary->applyUniforms();
Texture *vsTextures[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS];
TextureType vsTextureTypes[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS];
SamplerState vsSamplers[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS];
size_t vsTextureCount = getCurrentTexturesAndSamplerStates(programBinary, SAMPLER_VERTEX, vsTextures, vsTextureTypes, vsSamplers);
Texture *psTextures[MAX_TEXTURE_IMAGE_UNITS];
TextureType psTextureTypes[MAX_TEXTURE_IMAGE_UNITS];
SamplerState psSamplers[MAX_TEXTURE_IMAGE_UNITS];
size_t psTextureCount = getCurrentTexturesAndSamplerStates(programBinary, SAMPLER_PIXEL, psTextures, psTextureTypes, psSamplers);
generateSwizzles(vsTextures, vsTextureCount);
generateSwizzles(psTextures, psTextureCount);
if (!mRenderer->applyPrimitiveType(mode, count))
{
return;
}
if (!applyRenderTarget(mode, false))
{
return;
}
applyState(mode);
GLenum err = mRenderer->applyVertexBuffer(programBinary, getCurrentVertexArray()->getVertexAttributes(), mState.vertexAttribCurrentValues, first, count, instances);
if (err != GL_NO_ERROR)
{
return gl::error(err);
}
bool transformFeedbackActive = applyTransformFeedbackBuffers();
applyShaders(programBinary, transformFeedbackActive);
FramebufferTextureSerialArray frameBufferSerials;
size_t framebufferSerialCount = getBoundFramebufferTextureSerials(&frameBufferSerials);
applyTextures(SAMPLER_VERTEX, vsTextures, vsTextureTypes, vsSamplers, vsTextureCount, frameBufferSerials, framebufferSerialCount);
applyTextures(SAMPLER_PIXEL, psTextures, psTextureTypes, psSamplers, psTextureCount, frameBufferSerials, framebufferSerialCount);
if (!applyUniformBuffers())
{
return;
}
if (!skipDraw(mode))
{
mRenderer->drawArrays(mode, count, instances, transformFeedbackActive);
if (transformFeedbackActive)
{
markTransformFeedbackUsage();
}
}
}
void Context::drawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, GLsizei instances)
{
ASSERT(mState.currentProgram);
ProgramBinary *programBinary = getCurrentProgramBinary();
programBinary->applyUniforms();
Texture *vsTextures[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS];
TextureType vsTextureTypes[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS];
SamplerState vsSamplers[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS];
size_t vsTextureCount = getCurrentTexturesAndSamplerStates(programBinary, SAMPLER_VERTEX, vsTextures, vsTextureTypes, vsSamplers);
Texture *psTextures[MAX_TEXTURE_IMAGE_UNITS];
TextureType psTextureTypes[MAX_TEXTURE_IMAGE_UNITS];
SamplerState psSamplers[MAX_TEXTURE_IMAGE_UNITS];
size_t psTextureCount = getCurrentTexturesAndSamplerStates(programBinary, SAMPLER_PIXEL, psTextures, psTextureTypes, psSamplers);
generateSwizzles(vsTextures, vsTextureCount);
generateSwizzles(psTextures, psTextureCount);
if (!mRenderer->applyPrimitiveType(mode, count))
{
return;
}
if (!applyRenderTarget(mode, false))
{
return;
}
applyState(mode);
VertexArray *vao = getCurrentVertexArray();
rx::TranslatedIndexData indexInfo;
GLenum err = mRenderer->applyIndexBuffer(indices, vao->getElementArrayBuffer(), count, mode, type, &indexInfo);
if (err != GL_NO_ERROR)
{
return gl::error(err);
}
GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1;
err = mRenderer->applyVertexBuffer(programBinary, vao->getVertexAttributes(), mState.vertexAttribCurrentValues, indexInfo.minIndex, vertexCount, instances);
if (err != GL_NO_ERROR)
{
return gl::error(err);
}
bool transformFeedbackActive = applyTransformFeedbackBuffers();
// Transform feedback is not allowed for DrawElements, this error should have been caught at the API validation
// layer.
ASSERT(!transformFeedbackActive);
applyShaders(programBinary, transformFeedbackActive);
FramebufferTextureSerialArray frameBufferSerials;
size_t framebufferSerialCount = getBoundFramebufferTextureSerials(&frameBufferSerials);
applyTextures(SAMPLER_VERTEX, vsTextures, vsTextureTypes, vsSamplers, vsTextureCount, frameBufferSerials, framebufferSerialCount);
applyTextures(SAMPLER_PIXEL, psTextures, psTextureTypes, psSamplers, psTextureCount, frameBufferSerials, framebufferSerialCount);
if (!applyUniformBuffers())
{
return;
}
if (!skipDraw(mode))
{
mRenderer->drawElements(mode, count, type, indices, vao->getElementArrayBuffer(), indexInfo, instances);
}
}
// Implements glFlush when block is false, glFinish when block is true
void Context::sync(bool block)
{
mRenderer->sync(block);
}
void Context::recordInvalidEnum()
{
mInvalidEnum = true;
}
void Context::recordInvalidValue()
{
mInvalidValue = true;
}
void Context::recordInvalidOperation()
{
mInvalidOperation = true;
}
void Context::recordOutOfMemory()
{
mOutOfMemory = true;
}
void Context::recordInvalidFramebufferOperation()
{
mInvalidFramebufferOperation = true;
}
// Get one of the recorded errors and clear its flag, if any.
// [OpenGL ES 2.0.24] section 2.5 page 13.
GLenum Context::getError()
{
if (mInvalidEnum)
{
mInvalidEnum = false;
return GL_INVALID_ENUM;
}
if (mInvalidValue)
{
mInvalidValue = false;
return GL_INVALID_VALUE;
}
if (mInvalidOperation)
{
mInvalidOperation = false;
return GL_INVALID_OPERATION;
}
if (mOutOfMemory)
{
mOutOfMemory = false;
return GL_OUT_OF_MEMORY;
}
if (mInvalidFramebufferOperation)
{
mInvalidFramebufferOperation = false;
return GL_INVALID_FRAMEBUFFER_OPERATION;
}
return GL_NO_ERROR;
}
GLenum Context::getResetStatus()
{
if (mResetStatus == GL_NO_ERROR && !mContextLost)
{
// mResetStatus will be set by the markContextLost callback
// in the case a notification is sent
mRenderer->testDeviceLost(true);
}
GLenum status = mResetStatus;
if (mResetStatus != GL_NO_ERROR)
{
ASSERT(mContextLost);
if (mRenderer->testDeviceResettable())
{
mResetStatus = GL_NO_ERROR;
}
}
return status;
}
bool Context::isResetNotificationEnabled()
{
return (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT);
}
int Context::getClientVersion() const
{
return mClientVersion;
}
const Caps &Context::getCaps() const
{
return mRenderer->getCaps();
}
int Context::getMajorShaderModel() const
{
return mMajorShaderModel;
}
float Context::getMaximumPointSize() const
{
return mMaximumPointSize;
}
unsigned int Context::getMaximumCombinedTextureImageUnits() const
{
return mRenderer->getMaxCombinedTextureImageUnits();
}
unsigned int Context::getMaximumCombinedUniformBufferBindings() const
{
return mRenderer->getMaxVertexShaderUniformBuffers() +
mRenderer->getMaxFragmentShaderUniformBuffers();
}
int Context::getMaxSupportedSamples() const
{
return mRenderer->getMaxSupportedSamples();
}
GLsizei Context::getMaxSupportedFormatSamples(GLenum internalFormat) const
{
return mRenderer->getMaxSupportedFormatSamples(internalFormat);
}
GLsizei Context::getNumSampleCounts(GLenum internalFormat) const
{
return mRenderer->getNumSampleCounts(internalFormat);
}
void Context::getSampleCounts(GLenum internalFormat, GLsizei bufSize, GLint *params) const
{
mRenderer->getSampleCounts(internalFormat, bufSize, params);
}
unsigned int Context::getMaxTransformFeedbackBufferBindings() const
{
return mRenderer->getMaxTransformFeedbackBuffers();
}
GLintptr Context::getUniformBufferOffsetAlignment() const
{
// setting a large alignment forces uniform buffers to bind with zero offset
return static_cast<GLintptr>(std::numeric_limits<GLint>::max());
}
unsigned int Context::getMaximumRenderTargets() const
{
return mRenderer->getMaxRenderTargets();
}
int Context::getMaximumRenderbufferDimension() const
{
return mMaxRenderbufferDimension;
}
int Context::getMaximum2DTextureDimension() const
{
return mMax2DTextureDimension;
}
int Context::getMaximumCubeTextureDimension() const
{
return mMaxCubeTextureDimension;
}
int Context::getMaximum3DTextureDimension() const
{
return mMax3DTextureDimension;
}
int Context::getMaximum2DArrayTextureLayers() const
{
return mMax2DArrayTextureLayers;
}
int Context::getMaximum2DTextureLevel() const
{
return mMax2DTextureLevel;
}
int Context::getMaximumCubeTextureLevel() const
{
return mMaxCubeTextureLevel;
}
int Context::getMaximum3DTextureLevel() const
{
return mMax3DTextureLevel;
}
int Context::getMaximum2DArrayTextureLevel() const
{
return mMax2DArrayTextureLevel;
}
void Context::getCurrentReadFormatType(GLenum *internalFormat, GLenum *format, GLenum *type)
{
Framebuffer *framebuffer = getReadFramebuffer();
ASSERT(framebuffer && framebuffer->completeness() == GL_FRAMEBUFFER_COMPLETE);
FramebufferAttachment *attachment = framebuffer->getReadColorbuffer();
ASSERT(attachment);
*internalFormat = attachment->getActualFormat();
*format = gl::GetFormat(attachment->getActualFormat(), mClientVersion);
*type = gl::GetType(attachment->getActualFormat(), mClientVersion);
}
void Context::detachBuffer(GLuint buffer)
{
// [OpenGL ES 2.0.24] section 2.9 page 22:
// If a buffer object is deleted while it is bound, all bindings to that object in the current context
// (i.e. in the thread that called Delete-Buffers) are reset to zero.
if (mState.arrayBuffer.id() == buffer)
{
mState.arrayBuffer.set(NULL);
}
// mark as freed among the vertex array objects
for (auto vaoIt = mVertexArrayMap.begin(); vaoIt != mVertexArrayMap.end(); vaoIt++)
{
vaoIt->second->detachBuffer(buffer);
}
}
void Context::detachTexture(GLuint texture)
{
// [OpenGL ES 2.0.24] section 3.8 page 84:
// If a texture object is deleted, it is as if all texture units which are bound to that texture object are
// rebound to texture object zero
for (int type = 0; type < TEXTURE_TYPE_COUNT; type++)
{
for (int sampler = 0; sampler < IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS; sampler++)
{
if (mState.samplerTexture[type][sampler].id() == texture)
{
mState.samplerTexture[type][sampler].set(NULL);
}
}
}
// [OpenGL ES 2.0.24] section 4.4 page 112:
// If a texture object is deleted while its image is attached to the currently bound framebuffer, then it is
// as if Texture2DAttachment had been called, with a texture of 0, for each attachment point to which this
// image was attached in the currently bound framebuffer.
Framebuffer *readFramebuffer = getReadFramebuffer();
Framebuffer *drawFramebuffer = getDrawFramebuffer();
if (readFramebuffer)
{
readFramebuffer->detachTexture(texture);
}
if (drawFramebuffer && drawFramebuffer != readFramebuffer)
{
drawFramebuffer->detachTexture(texture);
}
}
void Context::detachFramebuffer(GLuint framebuffer)
{
// [OpenGL ES 2.0.24] section 4.4 page 107:
// If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though
// BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero.
if (mState.readFramebuffer == framebuffer)
{
bindReadFramebuffer(0);
}
if (mState.drawFramebuffer == framebuffer)
{
bindDrawFramebuffer(0);
}
}
void Context::detachRenderbuffer(GLuint renderbuffer)
{
// [OpenGL ES 2.0.24] section 4.4 page 109:
// If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer
// had been executed with the target RENDERBUFFER and name of zero.
if (mState.renderbuffer.id() == renderbuffer)
{
bindRenderbuffer(0);
}
// [OpenGL ES 2.0.24] section 4.4 page 111:
// If a renderbuffer object is deleted while its image is attached to the currently bound framebuffer,
// then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of 0, for each attachment
// point to which this image was attached in the currently bound framebuffer.
Framebuffer *readFramebuffer = getReadFramebuffer();
Framebuffer *drawFramebuffer = getDrawFramebuffer();
if (readFramebuffer)
{
readFramebuffer->detachRenderbuffer(renderbuffer);
}
if (drawFramebuffer && drawFramebuffer != readFramebuffer)
{
drawFramebuffer->detachRenderbuffer(renderbuffer);
}
}
void Context::detachVertexArray(GLuint vertexArray)
{
// [OpenGL ES 3.0.2] section 2.10 page 43:
// If a vertex array object that is currently bound is deleted, the binding
// for that object reverts to zero and the default vertex array becomes current.
if (mState.vertexArray == vertexArray)
{
bindVertexArray(0);
}
}
void Context::detachTransformFeedback(GLuint transformFeedback)
{
if (mState.transformFeedback.id() == transformFeedback)
{
bindTransformFeedback(0);
}
}
void Context::detachSampler(GLuint sampler)
{
// [OpenGL ES 3.0.2] section 3.8.2 pages 123-124:
// If a sampler object that is currently bound to one or more texture units is
// deleted, it is as though BindSampler is called once for each texture unit to
// which the sampler is bound, with unit set to the texture unit and sampler set to zero.
for (unsigned int textureUnit = 0; textureUnit < ArraySize(mState.samplers); textureUnit++)
{
if (mState.samplers[textureUnit] == sampler)
{
mState.samplers[textureUnit] = 0;
}
}
}
Texture *Context::getIncompleteTexture(TextureType type)
{
Texture *t = mIncompleteTextures[type].get();
if (t == NULL)
{
const GLubyte color[] = { 0, 0, 0, 255 };
const PixelUnpackState incompleteUnpackState(1);
switch (type)
{
default:
UNREACHABLE();
// default falls through to TEXTURE_2D
case TEXTURE_2D:
{
Texture2D *incomplete2d = new Texture2D(mRenderer, Texture::INCOMPLETE_TEXTURE_ID);
incomplete2d->setImage(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color);
t = incomplete2d;
}
break;
case TEXTURE_CUBE:
{
TextureCubeMap *incompleteCube = new TextureCubeMap(mRenderer, Texture::INCOMPLETE_TEXTURE_ID);
incompleteCube->setImagePosX(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color);
incompleteCube->setImageNegX(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color);
incompleteCube->setImagePosY(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color);
incompleteCube->setImageNegY(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color);
incompleteCube->setImagePosZ(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color);
incompleteCube->setImageNegZ(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color);
t = incompleteCube;
}
break;
case TEXTURE_3D:
{
Texture3D *incomplete3d = new Texture3D(mRenderer, Texture::INCOMPLETE_TEXTURE_ID);
incomplete3d->setImage(0, 1, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color);
t = incomplete3d;
}
break;
case TEXTURE_2D_ARRAY:
{
Texture2DArray *incomplete2darray = new Texture2DArray(mRenderer, Texture::INCOMPLETE_TEXTURE_ID);
incomplete2darray->setImage(0, 1, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color);
t = incomplete2darray;
}
break;
}
mIncompleteTextures[type].set(t);
}
return t;
}
bool Context::skipDraw(GLenum drawMode)
{
if (drawMode == GL_POINTS)
{
// ProgramBinary assumes non-point rendering if gl_PointSize isn't written,
// which affects varying interpolation. Since the value of gl_PointSize is
// undefined when not written, just skip drawing to avoid unexpected results.
if (!getCurrentProgramBinary()->usesPointSize())
{
// This is stictly speaking not an error, but developers should be
// notified of risking undefined behavior.
ERR("Point rendering without writing to gl_PointSize.");
return true;
}
}
else if (IsTriangleMode(drawMode))
{
if (mState.rasterizer.cullFace && mState.rasterizer.cullMode == GL_FRONT_AND_BACK)
{
return true;
}
}
return false;
}
void Context::setVertexAttribf(GLuint index, const GLfloat values[4])
{
ASSERT(index < gl::MAX_VERTEX_ATTRIBS);
mState.vertexAttribCurrentValues[index].setFloatValues(values);
}
void Context::setVertexAttribu(GLuint index, const GLuint values[4])
{
ASSERT(index < gl::MAX_VERTEX_ATTRIBS);
mState.vertexAttribCurrentValues[index].setUnsignedIntValues(values);
}
void Context::setVertexAttribi(GLuint index, const GLint values[4])
{
ASSERT(index < gl::MAX_VERTEX_ATTRIBS);
mState.vertexAttribCurrentValues[index].setIntValues(values);
}
void Context::setVertexAttribDivisor(GLuint index, GLuint divisor)
{
getCurrentVertexArray()->setVertexAttribDivisor(index, divisor);
}
void Context::samplerParameteri(GLuint sampler, GLenum pname, GLint param)
{
mResourceManager->checkSamplerAllocation(sampler);
Sampler *samplerObject = getSampler(sampler);
ASSERT(samplerObject);
switch (pname)
{
case GL_TEXTURE_MIN_FILTER: samplerObject->setMinFilter(static_cast<GLenum>(param)); break;
case GL_TEXTURE_MAG_FILTER: samplerObject->setMagFilter(static_cast<GLenum>(param)); break;
case GL_TEXTURE_WRAP_S: samplerObject->setWrapS(static_cast<GLenum>(param)); break;
case GL_TEXTURE_WRAP_T: samplerObject->setWrapT(static_cast<GLenum>(param)); break;
case GL_TEXTURE_WRAP_R: samplerObject->setWrapR(static_cast<GLenum>(param)); break;
case GL_TEXTURE_MIN_LOD: samplerObject->setMinLod(static_cast<GLfloat>(param)); break;
case GL_TEXTURE_MAX_LOD: samplerObject->setMaxLod(static_cast<GLfloat>(param)); break;
case GL_TEXTURE_COMPARE_MODE: samplerObject->setComparisonMode(static_cast<GLenum>(param)); break;
case GL_TEXTURE_COMPARE_FUNC: samplerObject->setComparisonFunc(static_cast<GLenum>(param)); break;
default: UNREACHABLE(); break;
}
}
void Context::samplerParameterf(GLuint sampler, GLenum pname, GLfloat param)
{
mResourceManager->checkSamplerAllocation(sampler);
Sampler *samplerObject = getSampler(sampler);
ASSERT(samplerObject);
switch (pname)
{
case GL_TEXTURE_MIN_FILTER: samplerObject->setMinFilter(uiround<GLenum>(param)); break;
case GL_TEXTURE_MAG_FILTER: samplerObject->setMagFilter(uiround<GLenum>(param)); break;
case GL_TEXTURE_WRAP_S: samplerObject->setWrapS(uiround<GLenum>(param)); break;
case GL_TEXTURE_WRAP_T: samplerObject->setWrapT(uiround<GLenum>(param)); break;
case GL_TEXTURE_WRAP_R: samplerObject->setWrapR(uiround<GLenum>(param)); break;
case GL_TEXTURE_MIN_LOD: samplerObject->setMinLod(param); break;
case GL_TEXTURE_MAX_LOD: samplerObject->setMaxLod(param); break;
case GL_TEXTURE_COMPARE_MODE: samplerObject->setComparisonMode(uiround<GLenum>(param)); break;
case GL_TEXTURE_COMPARE_FUNC: samplerObject->setComparisonFunc(uiround<GLenum>(param)); break;
default: UNREACHABLE(); break;
}
}
GLint Context::getSamplerParameteri(GLuint sampler, GLenum pname)
{
mResourceManager->checkSamplerAllocation(sampler);
Sampler *samplerObject = getSampler(sampler);
ASSERT(samplerObject);
switch (pname)
{
case GL_TEXTURE_MIN_FILTER: return static_cast<GLint>(samplerObject->getMinFilter());
case GL_TEXTURE_MAG_FILTER: return static_cast<GLint>(samplerObject->getMagFilter());
case GL_TEXTURE_WRAP_S: return static_cast<GLint>(samplerObject->getWrapS());
case GL_TEXTURE_WRAP_T: return static_cast<GLint>(samplerObject->getWrapT());
case GL_TEXTURE_WRAP_R: return static_cast<GLint>(samplerObject->getWrapR());
case GL_TEXTURE_MIN_LOD: return uiround<GLint>(samplerObject->getMinLod());
case GL_TEXTURE_MAX_LOD: return uiround<GLint>(samplerObject->getMaxLod());
case GL_TEXTURE_COMPARE_MODE: return static_cast<GLint>(samplerObject->getComparisonMode());
case GL_TEXTURE_COMPARE_FUNC: return static_cast<GLint>(samplerObject->getComparisonFunc());
default: UNREACHABLE(); return 0;
}
}
GLfloat Context::getSamplerParameterf(GLuint sampler, GLenum pname)
{
mResourceManager->checkSamplerAllocation(sampler);
Sampler *samplerObject = getSampler(sampler);
ASSERT(samplerObject);
switch (pname)
{
case GL_TEXTURE_MIN_FILTER: return static_cast<GLfloat>(samplerObject->getMinFilter());
case GL_TEXTURE_MAG_FILTER: return static_cast<GLfloat>(samplerObject->getMagFilter());
case GL_TEXTURE_WRAP_S: return static_cast<GLfloat>(samplerObject->getWrapS());
case GL_TEXTURE_WRAP_T: return static_cast<GLfloat>(samplerObject->getWrapT());
case GL_TEXTURE_WRAP_R: return static_cast<GLfloat>(samplerObject->getWrapR());
case GL_TEXTURE_MIN_LOD: return samplerObject->getMinLod();
case GL_TEXTURE_MAX_LOD: return samplerObject->getMaxLod();
case GL_TEXTURE_COMPARE_MODE: return static_cast<GLfloat>(samplerObject->getComparisonMode());
case GL_TEXTURE_COMPARE_FUNC: return static_cast<GLfloat>(samplerObject->getComparisonFunc());
default: UNREACHABLE(); return 0;
}
}
void Context::initRendererString()
{
std::ostringstream rendererString;
rendererString << "ANGLE (";
rendererString << mRenderer->getRendererDescription();
rendererString << ")";
mRendererString = MakeStaticString(rendererString.str());
}
const char *Context::getRendererString() const
{
return mRendererString;
}
void Context::initExtensionStrings()
{
std::ostringstream combinedStringStream;
std::vector<std::string> extensions = getCaps().extensions.getStrings(mClientVersion);
for (size_t i = 0; i < extensions.size(); i++)
{
combinedStringStream << extensions[i] << " ";
mExtensionStrings.push_back(MakeStaticString(extensions[i]));
}
mExtensionString = MakeStaticString(combinedStringStream.str());
}
const char *Context::getExtensionString() const
{
return mExtensionString;
}
const char *Context::getExtensionString(size_t idx) const
{
return mExtensionStrings[idx];
}
size_t Context::getExtensionStringCount() const
{
return mExtensionStrings.size();
}
size_t Context::getBoundFramebufferTextureSerials(FramebufferTextureSerialArray *outSerialArray)
{
size_t serialCount = 0;
Framebuffer *drawFramebuffer = getDrawFramebuffer();
for (unsigned int i = 0; i < IMPLEMENTATION_MAX_DRAW_BUFFERS; i++)
{
FramebufferAttachment *attachment = drawFramebuffer->getColorbuffer(i);
if (attachment && attachment->isTexture())
{
(*outSerialArray)[serialCount++] = attachment->getTextureSerial();
}
}
FramebufferAttachment *depthStencilAttachment = drawFramebuffer->getDepthOrStencilbuffer();
if (depthStencilAttachment && depthStencilAttachment->isTexture())
{
(*outSerialArray)[serialCount++] = depthStencilAttachment->getTextureSerial();
}
std::sort(outSerialArray->begin(), outSerialArray->begin() + serialCount);
return serialCount;
}
void Context::blitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
GLbitfield mask, GLenum filter)
{
Framebuffer *readFramebuffer = getReadFramebuffer();
Framebuffer *drawFramebuffer = getDrawFramebuffer();
bool blitRenderTarget = false;
bool blitDepth = false;
bool blitStencil = false;
if ((mask & GL_COLOR_BUFFER_BIT) && readFramebuffer->getReadColorbuffer() && drawFramebuffer->getFirstColorbuffer())
{
blitRenderTarget = true;
}
if ((mask & GL_STENCIL_BUFFER_BIT) && readFramebuffer->getStencilbuffer() && drawFramebuffer->getStencilbuffer())
{
blitStencil = true;
}
if ((mask & GL_DEPTH_BUFFER_BIT) && readFramebuffer->getDepthbuffer() && drawFramebuffer->getDepthbuffer())
{
blitDepth = true;
}
gl::Rectangle srcRect(srcX0, srcY0, srcX1 - srcX0, srcY1 - srcY0);
gl::Rectangle dstRect(dstX0, dstY0, dstX1 - dstX0, dstY1 - dstY0);
if (blitRenderTarget || blitDepth || blitStencil)
{
const gl::Rectangle *scissor = mState.scissorTest ? &mState.scissor : NULL;
mRenderer->blitRect(readFramebuffer, srcRect, drawFramebuffer, dstRect, scissor,
blitRenderTarget, blitDepth, blitStencil, filter);
}
}
void Context::invalidateFrameBuffer(GLenum target, GLsizei numAttachments, const GLenum* attachments,
GLint x, GLint y, GLsizei width, GLsizei height)
{
Framebuffer *frameBuffer = NULL;
switch (target)
{
case GL_FRAMEBUFFER:
case GL_DRAW_FRAMEBUFFER:
frameBuffer = getDrawFramebuffer();
break;
case GL_READ_FRAMEBUFFER:
frameBuffer = getReadFramebuffer();
break;
default:
UNREACHABLE();
}
if (frameBuffer && frameBuffer->completeness() == GL_FRAMEBUFFER_COMPLETE)
{
for (int i = 0; i < numAttachments; ++i)
{
rx::RenderTarget *renderTarget = NULL;
if (attachments[i] >= GL_COLOR_ATTACHMENT0 && attachments[i] <= GL_COLOR_ATTACHMENT15)
{
gl::FramebufferAttachment *attachment = frameBuffer->getColorbuffer(attachments[i] - GL_COLOR_ATTACHMENT0);
if (attachment)
{
renderTarget = attachment->getRenderTarget();
}
}
else if (attachments[i] == GL_COLOR)
{
gl::FramebufferAttachment *attachment = frameBuffer->getColorbuffer(0);
if (attachment)
{
renderTarget = attachment->getRenderTarget();
}
}
else
{
gl::FramebufferAttachment *attachment = NULL;
switch (attachments[i])
{
case GL_DEPTH_ATTACHMENT:
case GL_DEPTH:
attachment = frameBuffer->getDepthbuffer();
break;
case GL_STENCIL_ATTACHMENT:
case GL_STENCIL:
attachment = frameBuffer->getStencilbuffer();
break;
case GL_DEPTH_STENCIL_ATTACHMENT:
attachment = frameBuffer->getDepthOrStencilbuffer();
break;
default:
UNREACHABLE();
}
if (attachment)
{
renderTarget = attachment->getDepthStencil();
}
}
if (renderTarget)
{
renderTarget->invalidate(x, y, width, height);
}
}
}
}
bool Context::hasMappedBuffer(GLenum target) const
{
if (target == GL_ARRAY_BUFFER)
{
for (unsigned int attribIndex = 0; attribIndex < gl::MAX_VERTEX_ATTRIBS; attribIndex++)
{
const gl::VertexAttribute &vertexAttrib = getVertexAttribState(attribIndex);
gl::Buffer *boundBuffer = vertexAttrib.buffer.get();
if (vertexAttrib.enabled && boundBuffer && boundBuffer->mapped())
{
return true;
}
}
}
else if (target == GL_ELEMENT_ARRAY_BUFFER)
{
Buffer *elementBuffer = getElementArrayBuffer();
return (elementBuffer && elementBuffer->mapped());
}
else if (target == GL_TRANSFORM_FEEDBACK_BUFFER)
{
UNIMPLEMENTED();
}
else UNREACHABLE();
return false;
}
}
extern "C"
{
gl::Context *glCreateContext(int clientVersion, const gl::Context *shareContext, rx::Renderer *renderer, bool notifyResets, bool robustAccess)
{
return new gl::Context(clientVersion, shareContext, renderer, notifyResets, robustAccess);
}
void glDestroyContext(gl::Context *context)
{
delete context;
if (context == gl::getContext())
{
gl::makeCurrent(NULL, NULL, NULL);
}
}
void glMakeCurrent(gl::Context *context, egl::Display *display, egl::Surface *surface)
{
gl::makeCurrent(context, display, surface);
}
gl::Context *glGetCurrentContext()
{
return gl::getContext();
}
}